
paramlink: An R package for parametric linkage analysis

Magnus Dehli Vigeland

March 20, 2011

This document gives an introduction to the R package paramlink, which provides various functions
for SNP-based parametric linkage analysis, including LOD score calculations, power analysis, pedigree
manipulation and exploratory methods. Likelihoods are calculated using the Elston-Stewart algorithm.

1 An example session

We begin by running through a very simple linkage analysis, in which we load a pedigree, plot it, set the
disease model, and calculate the LOD score of a single marker.

To get started, we load the paramlink package and the toy pedigree given in the toyped dataset:

> library(paramlink)

> data(toyped)

> toyped

ID FID MID SEX AFF M_A1 M_A2

1 1 0 0 1 2 1 0

2 2 0 0 2 1 1 1

3 3 1 2 1 2 1 2

4 4 1 2 1 2 1 2

The pedigree is a data frame whose columns are individual ID, father ID, mother ID, sex (male=1,
female=2), affection status (healthy=1, affected=2, unknown=0), and and two columns containing the
alleles of a single SNP marker. Individual 2 is homozygous for the ’1’ allele, 3 and 4 are heterozygous,
and individual 1 has a missing allele.

This is the standard LINKAGE format for pedigrees, but without a ”family ID” column. (Files with
family ID column cause no trouble, see Section 6.)

Most of the functions in paramlink take as input not data frames but objects of class linkdat. A
linkdat object is basically a list containing various information about the pedigree, markers and the
disease model. We transform the ’toy’ data frame to a linkdat object as follows:

> x = linkdat(toyped)

To plot the pedigree with genotypes, use the plot method1:

> plot(x, marker = 1)

1The plot.linkdat function this is a wrapper for plot.pedigree in the kinship package.

1

1
1−

3
12

2
11

4
12

The symbols are standard for medical pedigrees: female = circle; male = square; affected by disease =
filled, non-affected = open.

The genotype labels can be changed using optional arguments to the plot function. The following
example should be fairly self explanatory; see ?plot.linkdat for more information:

> plot(x, marker = 1, alleles = c("A", "B"), missing = "??", sep = " / ")

1
A / ??

3
A / B

2
A / A

4
A / B

Setting the model

To perform parametric linkage analysis, a disease model has to be described. The parameters include
whether the disease is autosomal or X-linked, penetrance values, and allele frequencies for the disease
and marker loci. In paramlink we set the model using the function setModel, whose argument model

takes an integer value (1-4) with the following meaning:

2

1. Autosomal dominant

2. Autosomal recessive

3. X-linked dominant

4. X-linked recessive

If nothing else is indicated, the other parameters are given default values: Full penetrance, no phenocopies,
disease allele frequency=0.00001, and equifrequent SNP markers (both alleles have frequency 0.5).

For our toy example we want an autosomal dominant model:

> x = setModel(x, model = 1)

This is a good moment to take a look at the summary of the linkdat object, to check that everything is
as we expect:

> summary(x)

Pedigree:

4 individuals

2 founders, 2 nonfounders

1 nuclear subfamily

Marker data:

1 markers in total

0 individuals with no available genotypes

12.5% missing genotypes

Marker simulation:

No simulation indicated

Model parameters:

Autosomal inheritance with penetrances: (f0, f1, f2) = (0, 1, 1)

Disease allele frequency: 1e-05

Marker allele frequencies: 0.5 0.5

Note in particular, the (f0, f1, f2) parameters, which refer to the standard notation for penetrance
values:

fi = P (affected | i copies of the disease allele).

See Section 2 for how to set model parameters other than the default values.

Calculating the LOD score

To calculate the LOD score of the marker in our toy pedigree (with the disease model we just set), simply
write

> lod(x)

Computing singlepoint LOD scores at each marker

for the following recombination values:

t = 0

t = 0.1

t = 0.2

t = 0.5

Max LOD score: 0.3010257

Achieved at marker(s): M1

By default, the function calculates the LOD scores for each marker for a set of recombination fractions2,
and reports the maximum score (0.3 in our example).

We can specify the recombination fraction(s) we want using the t argument. Note also how to suppress
the verbose output and instead inspect the LOD scores as a matrix:

2Similarly to the MLINK program of the LINKAGE suite.

3

> lods = lod(x, t = c(0, 0.01, 0.05), silent = T)

> lods

M1

0 0.3010257

0.01 0.2923404

0.05 0.2576747

2 More about setting the disease model

As explained above, the model argument of setModel offers a very simple way to set one of the four
standard models for rare, fully penetrant monogenic diseases. To indicate parameter values other than
the defaults, these can be supplied using other arguments of setModel, the most important of which
are chrom (”autosomal” or ”X”), penetrances, dfreq (disease allele frequency) and afreq (marker allele
frequencies). For example, the shortcut we used above for an autosomal dominant model,

> x = setModel(x, model = 1)

is equivalent to the command

> x = setModel(x, chrom = "autosomal", penetrances = c(0, 1, 1),

+ dfreq = 1e-05, afreq = c(0.5, 0.5))

If x already has a model, setModel uses the existing parameter values for any missing arguments.
This makes it easy to change one parameter while keeping everything else as before. For example, the
following command alters the penetrances (but nothing else) of x’s model, to give 1% phenocopy rate
and 90% penetrance:

> x = setModel(x, penetrances = c(0.01, 0.9, 0.9))

> x$model

Model parameters:

Autosomal inheritance with penetrances: (f0, f1, f2) = (0.01, 0.9, 0.9)

Disease allele frequency: 1e-05

Marker allele frequencies: 0.5 0.5

For autosomal models, the penetrances argument should always be a vector of length 3, (f0, f1, f2),
whose values are assumed to hold for both males and females. In X-linked cases f2 is meaningless
for males (having only one X chromosome), and penetrances should be a list of two vectors, of the
form list(male = c(f0_m, f1_m), female = c(f0_f, f1_f, f2_f)). For example, the default for
X-linked recessive models (model 4) is penetrances = list(male = c(0, 1), female = c(0, 0, 1)).

3 Computing and plotting LOD scores

We move on to a more interesting pedigree, contained in largefam dataset.

> data(largefam)

> y = linkdat(largefam, model = 1)

Notice that the disease model can be set already in the linkdat command, instead of using setModel as
an additional step. We set the model to autosomal dominant, which is consistant with the pattern shown
in the pedigree:

> plot(y)

4

1

3

11

2

4

12

20

13

5

14

6

15

7

16

21

22

8

23

9

17

10

18

19

Typing summary(y) will show that most of the family members are genotyped with 650 markers. We will
compute single-point LOD scores for each marker and plot the results.

As we saw in the first section, the lod function by default computes LOD scores for each marker at
the recombination fractions 0, 0.1, 0.2 and 0.5. In this example we will start by overriding this, testing
only for complete linkage (recombination fraction equal to 0):

> lods0 = lod(y, t = 0)

Computing singlepoint LOD scores at each marker

for the following recombination value:

t = 0

Max LOD score: 1.80618

Achieved at marker(s): M309

The results show a maximum LOD score of 1.8, obtained by the 309’th marker.
The output of any call to lod is an object of class linkres, for which a plot method has been written.

Hence to visualize the LOD scores it suffices to write:

> plot(lods0)

0 100 200 300 400 500 600

−
1

0
1

2
3

Markers

LO
D

 s
co

re

5

Note: The genomic positions of the 650 markers is not part of the largefam dataset. Hence the x-axis
shows only the numbers 1-650.

Instead of specifying a set of fixed recombination fractions, we can let the program find the optimal
recombination fraction for each marker. This is implemented by first computing a maximum likelihood
estimate of t (using R’s own optimize), given the pedigree and the marker genotypes, and then computing
the LOD score for this recombination fraction3. This behavior is achieved by setting t="max", and is
somewhat more time consuming than the approach above.

> lods.max = lod(y, t = "max")

Computing singlepoint LOD scores for each marker,

maximizing over all recombination values.

Max LOD score: 1.80618

Achieved at the following marker(s):

M309

LOD 1.80618

t_max 0.00000

> plot(lods.max)

0 100 200 300 400 500 600

0
1

2
3

Markers

LO
D

 s
co

re

We see that the linkage peak is the same as before, but the curve looks rather different: While many
LOD scores for t = 0 are negative (in fact−∞ if the genotypes are incompatible with zero recombinations),
the t="max" approach always gives LOD ≥ 0 (since t = 0.5 implies LOD = 0).

Finally, note that lod takes an optional argument markers where the user can specify a subset of
markers. LOD scores are then computed for these markers only. For example, let’s zoom in on the
markers surrounding number 309:

> lods.peak = lod(y, t = "max", markers = 306:312)

Computing singlepoint LOD scores for each marker,

maximizing over all recombination values.

Max LOD score: 1.80618

Achieved at the following marker(s):

M309

LOD 1.80618

t_max 0.00000

> lods.peak

3This is similar to the ILINK program in the LINKAGE suite.

6

M306 M307 M308 M309 M310 M311 M312

LOD 0.3485592 1.08009484 0.2474003 1.80618 0.0 0.0 1.50515

t_max 0.2316881 0.09236886 0.1444397 0.00000 0.5 0.5 0.00000

A more advanced example: Varying the penetrance

To main strength of paramlink is of course the environment within which it exists: R itself. In this
section we give a quick example of combining paramlink with basic R functionality.

We address the following question: For the largefam dataset we analysed above – what happens to
the LOD score peak if we vary the model parameters? In particular we will look at allowing reduced
penetrance.

Reducing the penetrance is done by setting penetrances=c(0, f, f), where f is some number less
than 1. Instead of doing this one value at a time, we take advantage of R’s sapply. The code below
assumes y is as in the previous section. We use t=0 to save time; t="max" would of course also work.
The argument max.only=T forces lod to return only the maximum LOD score, instead of all the scores
collected in a linkres object.

> penet = seq(from = 0.1, to = 1, by = 0.05)

> maxlod = sapply(penet, function(f) {

+ z = setModel(y, penetrances = c(0, f, f))

+ lod(z, t = 0, max.only = T)

+ })

> plot(penet, maxlod, type = "l")

0.2 0.4 0.6 0.8 1.0

1.
8

2.
0

2.
2

2.
4

penet

m
ax

lo
d

The result is quite interesting: The LOD score peak gets higher when we reduce the penetrance. This
suggests that something is wrong: Either the model is incorrect (i.e. disease is not autosomal dominant)
or perhaps there are mistakes in the pedigree. We will come back to this in Section 5.

4 Genotype probability distributions

A novel feature of paramlink is the possibility of computing genotype probability distributions for spec-
ified individuals, conditional on pedigree/disease/partial marker data.

For an example we go back to the toy pedigree and make up a different marker. Note how setMarkers

works: Its input is an existing linkdat object and a matrix containing the alleles (one row for each
individual; two columns), and outputs a linkdat object with the given genotypes. The default symbol
for missing alleles is 0.

> toy = linkdat(toyped, model = 1)

7

Pedigree read, 4 individuals

No simulation column found

Peeling order set, 1 maximal nuclear subfamily.

1 markers read.

> new.marker = rbind(c(0, 0), c("A", 0), c("A", 0), c("B", 0))

> new.marker

[,1] [,2]

[1,] "0" "0"

[2,] "A" "0"

[3,] "A" "0"

[4,] "B" "0"

> toy = setMarkers(toy, new.marker)

After setting a new marker it’s a good idea to check the result by plotting the pedigree:

> plot(toy, marker = 1)

1
−−

3
A−

2
A−

4
B−

What is the probability that – independently of the disease – individual 3 is homozygous for the A
allele? The genoDistr function gives the answer:

> genoDistr(toy, id = 3, partialmarker = 1)

Computing genotype probabilities for individual 3

conditional on the following existing genotypes:

ID M1

1 1 --

2 2 A-

3 3 A-

4 4 B-

Using default recombination t=0.5, i.e. marker segregates independently of disease.

Results:

AA AB BB

0.28 0.72 0.00

Hence the probability that individual 3 is homozygous is 28%. The default behavior of genoDistr is
to assume the marker is unlinked to the disease, i.e. recombination fraction t = 0.5. However, the user
can specify any recombination fraction. For example, given that the marker we created is completely
linked to the disease (t = 0), the genotype probability distribution of individual 3 is:

8

> genoDistr(toy, id = 3, partialmarker = 1, t = 0)

Computing genotype probabilities for individual 3

conditional on the following existing genotypes:

ID M1

1 1 --

2 2 A-

3 3 A-

4 4 B-

Results:

AA AB BB

0.1666690 0.8333310 0.0000000

5 Power calculations

The questions usually addressed in power analyses for linkage projects are

1. What is the maximum LOD score obtainable in a given pedigree for a marker completely linked to
the disease?

2. What is the expected LOD score (the ELOD) for a completely linked marker?

For non-trivial cases a simulation based approach is normally used to answer these. In paramlink this
is implemented in the linkage.power function, which simulates a specified number of SNPs conditional
on the pedigree, disease and model data4, and summarizes the LOD scores for these markers.

As an example, let us return to the largefam pedigree, and run a power analysis for this pedigree:

> linkage.power(y)

Simulating genotypes for the following individuals:

1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18

100 markers simulated

Highest singlepoint LOD score for simulated markers: 3.61236

Markers obtaining maximum score: 5 %

ELOD: 1.300426

By default, only those individuals that were originally genotyped, are simulated. We could change
this by adding an argument all=TRUE, or by setting y’s simulation vector y$sim (see next section).

The default number of simulated markers is 100. To specify a different number, use the N argument.
For a family of this size it is advisable to simulate a lot more than 100 markers.

Also we could inquire how many of the markers exceed 3 (a commonly used significance threshold for
autosomal disease models) or any other threshold. This is done by including the argument threshold=3
in the function call.

Finally, to generate reproducible output it can be a good idea to set the seed for the random number
generator manually, using the seed argument.

To sum up, a typical call to linkage.power would be something like this (but with a much larger
value of N):

> simLODs = linkage.power(y, N = 5, threshold = 3, seed = 1111)

Simulating genotypes for the following individuals:

1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18

5 markers simulated

Highest singlepoint LOD score for simulated markers: 3.61236

Markers obtaining maximum score: 20 %

ELOD: 1.451180

Threshold: 3

Markers with score above threshold: 20 %

4Using a similar algorithm as the SLINK program in the LINKAGE/FASTLINK suite.

9

> simLODs

M1 M2 M3 M4 M5

0 1.028029 3.61236 1.177791 0.3912066 1.046512

Comparing the result of the power analyses above with the LOD scores in Sect. 3 we see that none of
the real markers came close to the maximum of 3.6. As it turns out, two of the family members (6 and
12) were wrongly diagnosed; they should be marked as affected. We fix this using the modifyPedigree

command (see Sect. 7)

> y = modifyPedigree(y, c(6, 12), "AFF")

Computing the LOD scores using the modified pedigree gives more promising results:

> lods = lod(y, t = "max")

Computing singlepoint LOD scores for each marker,

maximizing over all recombination values.

Max LOD score: 3.61236

Achieved at the following marker(s):

M313 M314 M316

LOD 3.61236 3.61236 3.61236

t_max 0.00000 0.00000 0.00000

> plot(lods)

0 100 200 300 400 500 600

0
1

2
3

4

Markers

LO
D

 s
co

re

5.1 An example with X-linked disease

In this section we perform a power analysis of the Xped pedigree included in the package. This is a
complex pedigree with several half-sibships. The disease pattern is consistent with an X-linked recessive
inheritance mode, so we indicate this as our model (cf. Section 1):

> data(Xped)

> z = linkdat(Xped, model = 4, verbose = F)

> plot(z)

10

1

6

9

12

2

7

10

13

3

8

11

14

4

15

5

Let’s check the maximum LOD score:

> linkage.power(z)

Simulating genotypes for the following individuals:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

100 markers simulated

Highest singlepoint LOD score for simulated markers: 1.204122

Markers obtaining maximum score: 20 %

ELOD: 0.4816481

What would the power be if only the boys 12-14 were available for genotyping? By default, genotypes
for all individuals are simulated, but we can change this by setting the sim vector of z. This vector should
consist of 2’s and 0’s, meaning included and not included respectively.

> z$sim = rep(0, 15)

> z$sim[12:14] = 2

> linkage.power(z)

Simulating genotypes for the following individuals:

12, 13, 14

100 markers simulated

Highest singlepoint LOD score for simulated markers: 0.60206

Markers obtaining maximum score: 52 %

ELOD: 0.2665544

As we see, the maximum LOD score using only the boys is 0.6, only half of what we can achieve with
everyone included. (Of course some members of the family do not contribute any linkage information,
e.g. male founders without daughters, so including everyone would be a waste of time and resources.)

6 Reading and writing files

The package includes the functions read.linkdat and write.linkdat for reading and writing pedigree
files in LINKAGE format. These functions are basically wrappers for read.table and write.table.

As an example we will write the toyped pedigree to a file called ”test.ped”:

11

> data(toyped)

> x = linkdat(toyped)

> write.linkdat(x, file = "test.ped")

By default the resulting pedfile is in accordance with traditional (pre-makeped) LINKAGE format:
No column headers, and family ID as the first column. (This column will always be all 1’s, since linkdat

objects contain only one family.) These actions can be controlled by using the optional arguments
col.names and famid:

> write.linkdat(x, file = "test2.ped", famid = F, col.names = T)

Reading pedigree files is equally simple. To read the files ”test.ped” and ”test2.ped” we just created
(the resulting linkdat objects will be equal), the appropriate commands are

> x1 = read.linkdat(file = "test.ped")

> x2 = read.linkdat(file = "test2.ped", header = T)

If the input file contains a family ID column, this will be detected automatically. If the file contains
a column indicating simulation status (this should be in SLINK format: 0=not included, 2=included),
the user must specify the column number using the simcol argument of read.linkdat. See help files for
details.

7 Pedigree creation and manipulation

As an alternative to writing a ped-file describing your pedigree in LINKAGE format, it is often conve-
nient to let paramlink create the pedigree for you. There are also several functions for modifying both
the pedigree and the marker alleles of existing linkdat objects. All of these should be fairly easy to
understand from their help pages, so we will just give a few simple examples.

The basic functions for creating pedigrees are nuclearPed and cousinPed. The former makes a
nuclear family with a specified number of male and female offspring, while the latter makes a pedigree
linking two cousins of the specified degree. The output of both functions are linkdat objects with no
model set and with all individuals non-affected.

Functions for manipulating pedigrees include addChildren (which adds a specified number of offspring
to the indicated parents), modifyPedigree (for changing either the sex or affection status of the specified
individuals), removeIndiv (removes an individual and all its descendants) and subset.linkdat (for
extracting a sub-pedigree and/or a subset of the markers).

For manipulating the marker data of a linkdat object, use modifyMarker (to modify the alleles of a
single marker) and setMarkers (to reset all the marker info).

It should be noted that all of these functions – like setModel – return new linkdat objects, i.e.,
they do not do in-place modifications. Hence their output should always be stored in some variable. We
conclude this section with an example to give a rough idea of how to use some of these functions. First,
let’s create a pedigree of a nuclear family with two affected boys and three non-affected girls:

> a = nuclearPed(boys = 2, girls = 3)

> a = modifyPedigree(a, id = c(1, 4), "AFF")

> plot(a)

1

3

2

4 5 6 7

12

Now let’s do a few changes:
Give individual 4 two affected children, one boy and one girl. Note: mother=0 creates a new founder.

> a = addChildren(a, father = 4, mother = 0, children = 2, sex = c(1,

+ 2), aff = 2)

Create a marker for which everyone is homozygous AA:

> a = setMarkers(a, matrix("A", nrow = 10, ncol = 2))

Making individuals 1,4 and 10 heterozygous, and giving 9 a missing allele:

> a = modifyMarker(a, id = c(1, 4, 10), alleles = c("A", "B"))

> a = modifyMarker(a, id = 9, alleles = c("A", 0))

Removing individual 7:

> a = removeIndiv(a, 7)

Pedigree read, 9 individuals

Relabeled individuals:

1 -> 1

2 -> 2

3 -> 3

4 -> 4

5 -> 5

6 -> 6

8 -> 7

9 -> 8

10 -> 9

No simulation column found

Peeling order set, 2 maximal nuclear subfamilies.

1 markers read.

The new pedigree looks like this:

> plot(a, marker = 1)

1
AB

3
AA

8
A−

2
AA

4
AB

9
AB

7
AA

5
AA

6
AA

13

