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Abstract

In medical and epidemiological studies, the odds ratio is a commonly applied measure
to approximate the relative risk or risk ratio. It is well known such an approximation is
poor and can generate misleading conclusions, if the incidence rate of a study outcome
is not rare. However, there are times when the incidence rate is not directly available
in the published work. Motivated by real applications, this paper presents methods to
convert the odds ratio to the relative risk when published data offers limited information.
Specifically, the proposed new methods can convert the odds ratio to the relative risk, if
an odds ratio and/or a confidence interval as well as the sample sizes for the treatment
and control group are available. In addition, the developed methods can be utilized to
approximate the relative risk based on the adjusted odds ratio from logistic regression or
other multiple regression models. In this regard, this paper extends a popular method by
Zhang and Yu (1998) for converting odds ratios to risk ratios. The objective is novelly
mapped into a constrained nonlinear optimization problem, which is solved with both
a grid search and nonlinear optimization algorithm. The methods are implemented in
R package orsk which contains R functions and a Fortran subroutine for efficiency. The
proposed methods and software are illustrated with real data applications.
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1. Introduction

Investigators of medical and epidemiological studies are often interested in comparing a risk of
a binary outcome between a treatment and control group, or between exposed and unexposed.
Such an outcome can be an onset of a disease or a dichotomized length of labor duration.
In this context, the study results may be summarized in Table 1 and the odds ratio and the
relative risk are the important measures. The odds of outcome in the treatment group is %

Table 1: Compute the odds ratio and the relative risk.

Group Number of outcome Number of outcome free Total

Control no1 100 nctr
Treatment n11 n10 ntrt
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and the odds of outcome in the control group is %. The odds ratio is

g — nnnoo. (1)
niono1

The odds ratio evaluates whether the probability of a study outcome is the same for two
groups. An odds ratio is a positive number which can be 1 (the outcome of interest is similarly
likely to occur in both groups), or greater than 1 (the outcome is more likely to occur in the
treatment group), or less than 1 (the outcome is less likely to occur in the treatment group).
The odds ratio is to approximate the relative risk or risk ratio, which is a more direct measure
than the odds ratio. The risk of the outcome occurring in the treatment group is nnn}r%no and

the risk in the control group is no?ﬁmo' The relative risk is the ratio of the probability of the
outcome occurring in the treatment group versus a control group, and is naturally estimated

y ml"ﬁ“o / no:‘ﬁmo. It can be easily shown that the odds ratio is a good approximation to
the relative risk when the incidence or risk rate is low, for instance, in rare diseases, and can
largely overestimate the relative risk when the outcome is common in the study population
(Zhang and Yu 1998; Robbins et al. 2002). Although it is well-known that the two measures
evaluate different quantities in general, the odds ratio has been mis-interpreted as the relative
risk in some studies, and thus led to incorrect conclusions (Schulman et al. 1999; Schwartz
et al. 1999; Holcomb et al. 2001). For this reason, many methods have been proposed to
approximate the risk ratio, particularly in logistic or other multiple regression models. For
instance, see a popular method in Zhang and Yu (1998). The formula in Zhang and Yu
(1998) requires the proportion of control subjects who experience the outcome. Specifically,
derived from the definition of the odds ratio and the relative risk, the approximated risk ratio
is 17risk0j'r‘r1ii;ité‘é Torato» Where riskg is the risk of having a positive outcome in the control or
unexposed group (i.e., riskg = ¢L). Apparently, the formula can convert the unadjusted odds
ratio in the layout of Table 1. The formula can also be employed to approximate the lower
and upper limits of the confidence interval. However, the above formula becomes unusable if

riskg can’t be estimated from the data.

This paper extends the work in Zhang and Yu (1998) to the cases when risky can’t be estimated
trivially, although the proposed methods can be applied to the unadjusted odds ratio as well.
The problem under investigation can be described using a concrete example. In a retrospective
cohort study, Szal et al. (1999) collected data on 4237 women who had nulliparous, term
vaginal deliveries. Here we focus on the association between the use of epidural anesthesia
and prolonged first stage of labor (> 12 hours), and Table 2 and Table 3 were compiled
from the study. It seems to suggest that the women who used epidural anesthesia had 2.61
times (or 2.25 times, adjusting for other factors) the risk of the first stage of labor lasting >
12 hours than those who didn’t use epidural anesthesia. However, Szal et al. (1999) didn’t
describe how many epidural anesthesia users and non-users had the first stage of labor lasting
> 12 hours. Thus riskg is not available in order to approximate the relative risk. If we can
reconstruct Table 1 based on Table 2, then it is simple to estimate the risk of the study
outcome in the control and treatment groups. Completely or at least partially reconstructing
Table 1 is practically important not only in Table 2 and Table 3. For instance, when Holcomb
et al. assessed 112 clinical research articles in obstetrics and gynecology to determine how
often the odds ratio differs substantially from the relative risk estimates, they had to skip five
articles due to lack of information on risk of study outcome in the control group, using the
formula in Zhang and Yu (1998). More importantly, it remains unclear whether the odds ratio
exaggerates a risk association or a treatment effect in the skipped studies. Methodologies have
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not been proposed to estimate riskg when not all data information is directly available, based
on the author’s best knowledge. The methods proposed here can reconstruct Table 1, and can
not only convert the odds ratio to the relative risk, but can also estimate riskg. In this sense,
we extend the work in Zhang and Yu (1998) to the case where riskq is not directly available.
Table 2 will be utilized in this paper to demonstrate how to approximate the risk ratio based
on partial data information. Furthermore, with the estimated risky and the multiple logistic
regression results in Table 3, we will approximate the risk ratio based on the adjusted odds
ratio.

Table 2: Unadjusted odds ratio for the first stage of labor lasting > 12 hours.

Unadjusted odds ratio 95% confidence interval

Non-use of epidural anesthesia (n=1636) Reference Reference
Use of epidural anesthesia (n=2601) 2.61 2.25-3.03

Table 3: Adjusted odds ratio from multiple logistic regression for the first stage of labor
lasting > 12 hours.

Adjusted Odds ratio 95% confidence interval

Non-use of epidural anesthesia (n=1636) Reference Reference
Use of epidural anesthesia (n=2601) 2.25 1.92-2.63

In this paper, we develop methods to estimate the relative risk with partial data information
and implement the methods in R (R Development Core Team 2011) package orsk (odds ratio
to relative rigk). The paper is organized as follows. Section 2 proposes a nonlinear objective
function which measures the closeness between the calculated odds ratio and the reported odds
ratio. We also provide two methods to optimize the nonlinear objective function. Section 3
outlines the implementations in the package orsk. Section 4 illustrates the capabilities of orsk
with real data in Table 2 and Table 3. Finally, Section 5 concludes the paper.

2. Methods

We briefly review some additional results of the odds ratio, which form the basis for further
proposal development. An asymptotic (1 —«) confidence interval (CI) for the log odds ratio is
log(0) £ 24/25E, where z, 9 is the a/2 upper critical value of the standard normal distribution

and the standard error SE can be estimated by \/ L4 L Ly L The lower bound

nii n10 no1 700
of the confidence interval of the odds ratio can be calculated by 01, = exp(log(f) — z4/2SE).
Therefore,

1 1 1 1
0p=0exp |—zqp2\/ — + —+—+—|.
ni1 - M0 N1 100

(2)

Similarly, the upper bound of the confidence interval of the odds ratio is

1 1 1 1
Oy =0exp |22\ — +—+—+—|.
nii nio no1 oo
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Now, the problem to be solved can be stated as follows. In the context of Table 1, suppose
9(0),920),9((]0 ) are calculated by Equations (1, 2 and 3, respectively. In addition, nctr, ntrt,
and « are fixed. The aim is to estimate (no1,m11) and subsequently estimate the relative
risk and its corresponding confidence interval. In the layout of Table 2, we have nctr =
1636, ntrt = 2601,6) = 2.61,61”) = 2.25 6 = 3.03,a = 0.05. The task is to solve different
sets of nonlinear equations for two unknowns (ng1,n11) given that ng; + ngp = nctr and
ni1+mnio = ntrt: (i) Equations (1) and (2); (ii) Equations (1) and (3); (iii) Equations (2) and
(3); (iv) Equations (1) to (3). The proposal is to choose (ng1,n11) through minimizing the
sum of squared logarithmic deviations between the reported estimates 60 H(LO), Hg) ) and the
corresponding would-be-estimates based on assumed ng; and n1;. For instance, in scenario
(iv), consider a sum of squares S.S defined below.

nii(ntrt — n 2
SS(np1,n11) = {log (71:3157“ — n01)72(1)i _ log(ﬁ(o))}

2
trt — 1 1 1 1
o P ) o s e )}

(nctr — n01)n01 nii ntrt — nq1 no1 nctr — no1

trt — 1 1 1 1
+{log ni1(ntrt — noy) +Za/2\/ +7+7+7—log(0§]0)

(nctr — np1)no1 ni1  ntrt —niy1 ner netr — nop

2 2 2
= {108(0) ~108(0)}" + {108(01) — 10g(6)) } " + {108(01) ~ Tog(6) } .

(4)

Similar sums of squares can be considered with point estimate and lower or upper confidence

interval bounds, or with confidence interval bounds only. As a reviewer pointed out, it is

possible to develop a weighted sum of squares combining the different scenarios, which may

help attenuate the impact of rounding errors. This paper focuses on the basic idea of sum of

squares and potential improvements will be employed in the future version of the software.

The goal now is to solve the following optimization problem:

min SS(no1,n11) for integer noi, 11,1 < npp < netr — 1,1 < nyyp < ntrt — 1. (5)
no1,n11

Apparently SS will be very close to 0 for the true value of (ng1,n11), and a smaller SS im-
plies a better solution. Thus SS plays a role similar to the residual sum of squares in the
linear regression. Implementing different objective functions in a variety of scenarios provides
a means of cross-checking results. Ideally, the solutions should be robust when minimizing
any one of the objective functions. However, sometimes data are corrupted and questionable
results may occur. Indeed, an application of different objective functions discovered a suspi-
cious odds ratio and confidence interval in Lee et al. (2010), which was formally reported in
Wang (2011).

To solve the constrained optimization problem, we consider two approaches: the exhaustive
grid search and a numerical optimization algorithm. In the first algorithm, the minimization
can be performed as a two-way grid search over the choice of (ng1,n11). In other words, we
can evaluate all the values SS(ng1,n11), for no1 € {1,2,...,nctr —1},n11 € {1,2,...,ntrt — 1}.
This will result in a total number of (nctr—1)(ntrt—1) of SS to be sorted from the smallest to
the largest and the computational demand can be high when (nctr — 1)(ntrt — 1) is large. To
make the algorithm more efficient, we adopt a filtering procedure. Specifically, we filter out
SS if §S > § for a prespecified small threshold value &, with a default value 10~%. Apparently,

)

2
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a smaller threshold value d can lead to sparser solutions; however, the algorithm may fail to
obtain a solution if § is too close to 0. The problem can also be solved by applying numerical
optimization techniques. Here we consider a spectral projected gradient method implemented
in R package BB (Varadhan R 2009). This package can solve for large scale optimization with
simple constraints. It takes a nonlinear objective function as an argument as well as basic
constraints. In particular, the package can find multiple roots if available, with user specified
multiple starting values. To this end, starting values for ng; are randomly generated from 1
to nctr — 1. Similarly, starting values for n1; are randomly generated from 1 to ntrt — 1. We
then form min(nctr — 1, ntrt — 1) pairs of random numbers and select 10% as the starting
values to find multiple roots. Once the solutions (ng1,n11) are determined, the odds ratio
and the relative risk can be computed, and selected results can be arranged in the order of
the magnitude of SS. It is worth emphasizing that the calculated odds ratios are for the
scenarios created with different numbers of events in both treatment and control group that
lead to comparable results for the reported odds ratio and confidence interval.

3. Implementation

The above methods have been implemented in R package orsk. To make the grid search
algorithm computationally efficient, a Fortran subroutine is utilized. Several supporting R
functions are available to extract or calculate useful statistics, such as the reported odds
ratio, estimated odds ratio and relative risk, with confidence intervals. The function orsk
returns an object of class orsk, for which print and summary method are available. A de-
tailed description of these functions is available in the online help files. Function orsk has
an argument type which specifies the optimization objective function. With the default
value type="two-sided", function SS (4) is minimized. Other objective functions based
on Equations (1) and (2), (1) and (3), (2) and (3) have been implemented with argument
type="lower", type="upper" and type="ci-only", respectively. The optimization algo-
rithm can be called with argument method. If method="grid", the grid search algorithm is
called. Otherwise, the constrained nonlinear optimization algorithm is employed. The esti-
mating results from running function orsk can be illustrated using the summary function and
argument nlist controls the maximum number of solutions displayed (the default value is 5).
The source version of the orsk package is freely available from the Comprehensive R Archive
Network (http://CRAN.R-project.org). The reader can install the package directly from
the R prompt via

R> install.packages("orsk")

All analyses presented below are contained in a package vignette. The rendered output of the
analyses is available by the R-command

R> library("orsk")
R> vignette("orsk_demo", package = "orsk")

To reproduce the analyses, one can invoke the R code

R> edit(vignette("orsk_demo", package = "orsk"))


http://CRAN.R-project.org
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4. Example

The data in Table 2 and Table 3 are used to illustrate the capabilities of orsk. These analyses
were conducted using R version 2.14.0 (2011-10-31) and the operating system 1686-pc-1linux-gnu
(32-bit). We applied both grid search and optimization algorithms for minimizing objec-
tive function (4) and the solutions are similar for other types of objective function discussed
in Section 2. We first apply the orsk function to the data in Table 2. As seen below, the
output includes two parts: setup and results. The setup describes the configurations of the
optimization problem and the results include the solution ng; and n11, named as ctr_yes
and trt_yes, respectively. The risk rates in the control group and the treatment group are
labeled as ctr_risk and trt_risk, respectively. In the ascending order of S\S, the output
also includes the estimated odds ratio with confidence interval derived from the estimate
(no1,n11), along with the known nctr and ntrt. The estimated odds ratios and confidence
intervals in the output are very close to the reported values in Table 2. However, the derived
relative risks and confidence intervals are quite different. The results show that the estimated
relative risks are 2.02 or 1.24. The confidence intervals can be divided into two groups as
well. These two groups correspond to different assumptions on the incidence rates:

e Among those who didn’t use epidural anesthesia, if about 18% women had the first
stage of labor lasting > 12 hours (i.e., risky=0.18), and among those who used epidural
anesthesia, about 37% women had the first stage of labor lasting > 12 hours, then the
relative risk is 2.02 (95% confidence interval 1.8-2.3).

e On the other hand, if the corresponding risks are increased to 68% and 85%, respectively,
then the relative risk is 1.24 (95% confidence interval 1.2-1.3).

R> library("orsk")

R> resl <- orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25,
+ au = 3.03, method = "grid")
R> summary(resi)
Converting odds ratio to relative risk
Call:
orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25, au = 3.03,

method = "grid")

type: two-sided method: grid
threshold value: 1e-04
The odds ratio utilized: 2.61, confidence interval utilized: 2.25-3.03

estimated results. The calculated odds ratios and relative risks are for
the scenarios created with different numbers of events in both control and
treatment group that lead to comparable results for the reported odds ratio
and confidence interval.

ctr_yes ctr_no ctr_risk trt_yes trt_no trt_risk OR OR_lower
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1 297 1339 0.182 954 1647 0.367 2.61 2.25

2 295 1341 0.180 949 1652 0.365 2.61 2.25

3 299 1337 0.183 959 1642 0.369 2.61 2.25

4 298 1338 0.182 956 1645 0.368 2.61 2.25

5 1116 520 0.682 2207 394 0.849 2.61 2.25
OR_upper RR RR_lower RR_upper SS

1 3.03 2.02 1.8 2.27 3.54e-07

2 3.03 2.02 1.8 2.27 5.79e-07

3 3.03 2.02 1.8 2.26 6.10e-07

4 3.03 2.02 1.8 2.26 9.20e-07

5 3.03 1.24 1.2 1.29 9.76e-07

In either cases, the odds ratio in Table 2 overestimates the relative risk. When the incidence
rate is high, the odds ratio poorly approximates the relative risk. The higher the risk, the
worse the approximation. One may ask if there are low incidence rates so that the reported
odds ratio does approximate the relative risk well. To address this issue, consider those
cases in which the incidence of outcome in both the epidural anesthesia users and non-users
are within 10%, leading to reasonable good approximations (Cummings 2009). However,
there is no solution (no1,n11) satisfying the constraint 6L < 0.1, 2L < 0.1,]0 — 2.61] <
0.3,]0r, — 2.25| < 0.3, and |y — 3.03| < 0.3. To prove this assertion, first, it is simple algebra
to show that the constraint implies |log(f) — log(2.61)] < —log(1 — 0.3/2.61), |log(fr) —
log(2.25)] < —log(1—0.3/2.25), |log(0y) —log(3.03)| < —log(1 —0.3/3.03). Thus, the choice
of § = (log(1—0.3/2.61))%+(log(1—0.3/2.25))?+(log(1—0.3/3.03))? can generate results which
contain all solutions satisfying the above constraint on the point estimate and its confidence
interval. Furthermore, the essentially empty output from the last line in the following code
completes the proof of the assertion. Note that this particular  is one of the numbers such
that the generated results contain all solutions under the constraint. With larger §, many more
solutions are expected and the orsk function may fail on some systems due to the computing
demand. In conclusion, although the incidence rate can’t be determined from the published
data, there is a clear evidence that the incidence of outcome is above 10%. Otherwise,
the derived odds ratio (and its confidence interval) is different by 0.3 to the counterpart in
Table 2. Because of the high incidence rate, therefore, a correction may be desirable in order
to appropriately interpret the magnitude of the reported association (Zhang and Yu 1998).

R> anes <- orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25,

+ au = 3.03, method = "grid", d = (log(1 - 0.3/2.61))°2 +
+ (log(1 - 0.3/2.25))°2 + (log(1 - 0.3/3.03))°2)

R> tmp <- subset(anes$res, ctr_risk < 0.1 & trt_risk < 0.1 &
+ abs(OR - 2.61) < 0.3 & abs(OR_lower - 2.25) < 0.3 &

+ abs (OR_upper - 3.03) < 0.3)

R> tmp

[1] ctr_yes ctr_no ctr_risk trt_yes trt_no trt_risk OR
[8] OR_lower OR_upper RR RR_lower RR_upper SS
<0 rows> (or O-length row.names)

Next, utilizing the above results on the estimation of riskg, we approximate the risk ratio
based on the adjusted odds ratio in Table 3. If 18% women had the first stage of labor lasting



8 Converting Odds Ratio to Relative Risk

> 12 hours among those who didn’t use epidural anesthesia, then the approximated risk ratio
is 1.84 (95% confidence interval 1.65-2.03). If the risk was increased so that riskg is 68%
instead, then the approximated risk ratio is 1.22 (95% confidence interval 1.18-1.25). Taking
into account the incidence rate, we have obtained quite different risk ratios from Table 3.

In the situations under consideration it can be expected that there is often no unique solution.
As such, the user should carefully investigate the results. It can be possible that it is not
clear at all which of the computational results can be taken for further analysis. But this is
not unusual for an exploratory study. On the other hand, one may reasonably hope that a
subject matter expert can provide valuable insights to the situation and may help make a
decision.

When applying the numerical optimization algorithm, the estimated results typically have
larger S'S' than the grid search algorithm. Note the solutions may not be replicated if the
starting values are generated from different random numbers. In contrast to the grid search
algorithm, the estimated relative risks range from 1.40 to 2.19, which doesn’t contain value
1.24 as in the grid search algorithm. Apparently, the SS values are larger than the grid
search algorithm in the top solutions. This example suggests that the grid search algorithm
outperforms the numerical optimization algorithm as one might expect.

R> require("setRNG")

R> old.seed <- setRNG(list(kind = "Mersenne-Twister", normal.kind = "Inversion",
+ seed = 579))

R> res2 <- orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25,

+ au = 3.03, method = "optim")

R> summary (res2)
Converting odds ratio to relative risk

Call:
orsk(nctr = 1636, ntrt = 2601, a = 2.61, al = 2.25, au
method = "optim")

3.03,

type: two-sided method: optim
threshold value: NA
The odds ratio utilized: 2.61, confidence interval utilized: 2.25-3.03

estimated results. The calculated odds ratios and relative risks are for
the scenarios created with different numbers of events in both control and
treatment group that lead to comparable results for the reported odds ratio
and confidence interval.

ctr_yes ctr_no ctr_risk trt_yes trt_no trt_risk OR OR_lower

1 301 1335 0.184 963 1638 0.370 2.61 2.25

2 313 1323 0.191 993 1608 0.382 2.61 2.25

3 311 1325 0.190 989 1612 0.380 2.61 2.26

4 312 1324 0.191 990 1611 0.381 2.61 2.25

5 313 1323 0.191 994 1607 0.382 2.61 2.26
OR_upper RR RR_lower RR_upper S8

1 3.02 2.01 1.80 2.25 5.21e-06
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2 3.02 2.00 1.79 2.23 1.18e-05
3 3.03 2.00 1.79 2.24 1.36e-05
4 3.02 2.00 1.79 2.23 1.40e-05
5 3.03 2.00 1.79 2.23 1.82e-05

R> summary(res2$res$RR)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.401 1.660 1.849 1.820 1.951 2.189

We now compare the computing speed between the two methods of estimation. With the
grid search and optimization algorithm in the above example, it took 2.4 and 1.4 seconds,
respectively, on an ordinary desktop PC (Intel Core 2 CPU, 1.86 GHz). Although the op-
timization method has some computational advantage, the grid search method can generate
more accurate results with smaller SS and can detect multiple (local) minima. In the light
of the computing time difference, there is no real benefit of using the optimization based
method. From the code development perspective, the optimization based method is useful
since it provides the solutions to which the grid method can be compared.

5. Conclusion

In this article we have outlined the methods and algorithms for converting the odds ratio
to the relative risk when only partial data information is available. As an exploratory tool,
R package orsk can be utilized for this purpose. In addition, the methods may be used in
the formula in Zhang and Yu (1998) to approximate the risk ratio obtained from logistic
regression or other multiple regression models, when the risk of having a positive outcome in
the control or unexposed group is not directly available. Specifically, once the cells in Table 1
are reconstructed with the aid of the orsk function, risky can then be estimated. Since the
orsk function is based on the asymptotic distribution of the confidence intervals, the results
might not be valid in situations of small sample sizes or low event rates. However, one should
recognize that this limitation is inherited from the original study.
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