
The OCE package

Dan E. Kelley

December 13, 2007

Abstract

The oce package makes it easy to read, summarize and plot data from a variety of Oceanographic
instruments, isolating the researcher from the quirky data formats that are common in this field. It also
provides functions for working with basic seawater properties such as the equation of state, and with
derived quantities such as the buoyancy frequency. Although simple enough to be used in a teaching
context, oce is powerful enough for a research setting. These things are illustrated here with practical
examples.

1 Introduction

Oceanographers must deal with measurements made by a wide variety of instruments, a task that is compli-
cated by the delight instrument manufacturers seem to take in inventing new data formats. The manufac-
turers often provide software for scanning the data files and producing some standard plots, but this is of
limited use to researchers who work with several instrument types at the same time, and who need to carry
the analysis beyond the first step.

The need to scan diverse data files was just one motivation for the creation of oce. The other aim was
to provide a system in which oceanographic data could be analyzed easily in R. This second goal influenced
the design of the objects in oce, each of which blends three components: (a) the data itself, e.g. vectors
of pressure, temperature, and salinity from a CTD instrument, (b) metadata inferred from the data file’s
header, e.g. the location at which a CTD cast was made, and (c) processing-stage metadata, e.g. a time-
stamped log of changes made to the object by oce functions. This approach, along with a policy of adding
features according to the priorities of practical research, should make oce a comfortable tool today, and
should keep it relevant as it grows to incorporate new features.

2 Calculations of seawater properties

The oce package provides many functions for dealing with seawater properties. Probably the most used is
sw.rho(S,t,p), which computes seawater density ρ as a function of salinity S (PSU), in-situ temperature t
(◦C . . . note the use of lower-case in this and related functions, to avoid confusion with T, an abbreviation
used sometimes in R programs) and pressure p (decibar). The result is a number in the order of 1000kg/m3.
For many purposes, Oceanographers prefer to use the density anomaly σ = ρ − 1000kg/m3, provided with
sw.sigma(S,t,p), or its adiabatic cousin σθ, provided with sw.sigma.theta(S,t,p).

Note that the names of functions relating to seawater material properties start with“sw.”; future versions
of oce may add similarly named functions for the properties of air, sediment, organisms, etc.

Most of the functions use the UNESCO formulations of seawater properties, but new formulations
may be added as they come into use in the literature. A partial list of seawater functions is as follows:

1

sw.N2 (buoyancy freqency), sw.S.C.T.p (salinity S from C, T and p), sw.S.T.rho (S from T and ρ),
sw.T.S.rho (T from S and ρ), sw.T.freeze (freezing temperature), sw.alpha (thermal expansion coefficient
α = −ρ−1

0 ∂ρ/∂T), sw.beta (haline compression coefficient β = ρ−1
0 ∂ρ/∂S), sw.alpha.over.beta (α/β),

sw.conductivity (conductivity from S, T and p), sw.depth (depth from p and latitude), sw.lapse.rate
(adiabatic lapse rate), sw.rho (density ρ from S, T and p), sw.sigma (ρ−1000 kg/m3), sw.sigma.t (σ with
p set to zero and temperature unaltered), sw.sigma.theta (σ with p set to zero and temperature altered
adiabatically), sw.sound.speed (speed of sound in m/s), sw.specific.heat (specific heat in J/kg/◦C),
sw.spice (a quantity used in double-diffusive research), sw.theta (potential temperature in ◦C), and
sw.viscosity (viscosity). Details and examples are, of course, provided in the documentation of these
functions.

Exercise 1. (a) What is the density of a seawater parcel at pressure 100dbar, with salinity 34PSU
and temperature 10◦C? (b) What temperature would the parcel have if raised adiabatically to the
surface? (c) What density would it have if raised adiabatically to the surface? (d) What density would
it have if lowered about 100m, increasing the pressure to 200dbar? (e) Draw a blank TS diagram with
S from 30 to 40PSU and T from −2 to 20◦C. (Answers are provided at the end of this document.)

3 CTD data

3.1 Example with pre-trimmed data

To get you started with CTD data, oce provides a sample data set that has been trimmed to just the
downcast portion of the sampling. (See the next section to learn how to do this trimming.). The commands

> library(oce)

> data(ctd)

> plot(ctd)

produce Figure 1. You may also get a summary of the data with

> summary(ctd)

The object used to hold CTD data stores not just the data, but also the raw header sequence, and
whatever has been discovered about the dataset by parsing the header; use

> names(ctd)

to learn about these metadata, and use

> names(ctd$data)

to find out what sensors were attached to the instrument, thus providing data columns. It is possible to
plot the components individually, either by accessing the data directly (see the WOCE section, below, for
an example) or by using more specialized functions such as plot.TS and plot.profile.

Exercise 2. Plot a profile of σθ and N2, for just the data in the pycnocline.

2

P
re

ss
ur

e
[d

ba
r

]

4 5 6 7 8 9

Temperature [°°C]

40
30

20
10

0

24 25 26 27 28 29 30

Salinity [PSU]

●
●

●
● ● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
●●

24 25 26 27 28 29 30

4
5

6
7

8
9

te
m

pe
ra

tu
re

 [
°°C

]

Salinity [PSU]

19 20 21 22 23

24

P
re

ss
ur

e
[d

ba
r

]

19 20 21 22 23 24

σσθθ [kg m3]

40
30

20
10

0

0.000 0.005 0.010

N2 [((rad s))2]

CTD Station

 File: ctd.cnv

 Scientist: Peter S. Galbraith

 Institute: Maurice Lamontagne Institute, Dept. of Fisheries and Oceans

 Date: 2002−08−23 15:28:52

 Ship: Le Petit Lievre (Societe Duvetnor)

 Cruise: IML−02−59

 Station: a

 Depth: 40

 Location: 47.8878N 69.7327W

Figure 1: Overview graph of the sample CTD dataset ctd, acquired during the St Lawrence Estuary Internal
Wave Experiment. (This dataset has been trimmed to just the downcast; see the text and Figure 2 for more
on trimming.)

scan

P
re

ss
ur

e
[d

ba
r]

0 200 400 600 800

0
50

10
0

15
0

Scan

0 200 400 600 800

0
20

40
60

80
10

0
T

em
pe

ra
tu

re
 [d

eg
C

]

S
al

in
ity

 [P
S

U
]

0
20

40
60

80
10

0

Figure 2: Scanwise plot of the ctd.raw sample data set. Note the wild spike at the start, the equilibration
phase before the downcast, and the spurious freshening signal near the start of the upcast. See the text for
a discussion of how inspection of such graphs can help in trimming CTD data.

3

3.2 Example with raw data

Practicing Oceanographers may be wondering how the CTD cast used in the preceding section was trimmed
of equilibration-phase and upcast-phase data. Data from these sections are spurious and must be trimmed
as a first step in processing. For example, consider the following code.

> data(ctd.raw)

> plot.ctd.scan(ctd.raw)

This produces a two-panel plot (Figure 2) of the data as a time-series, revealing not just the (useful) downcast,
but also the subsequent upcast sequence. The x-axis in this plot is the scan number, which is a convenient
index for extraction of the downcast portion of the profile by an essentially manual method, e.g. proceeding
with a sequence of commands such as

> plot.ctd.scan(ctd.trim(ctd.raw, "scan", c(140, 250)))

> plot.ctd.scan(ctd.trim(ctd.raw, "scan", c(150, 250)))

This is the “gold standard” method, which is recommended for detailed work. However, for quick work, you
may find that the automatic downcast detection scheme works adequately, e.g.

> ctd.trimmed <- ctd.trim(ctd.raw)

It should be noted that ctd.trim inserts entries into the object’s log file, so that you (or anyone else
with whom you share the objec) will be able to track exactly how this trimming was done.

Once the profile has been trimmed, you may wish to use ctd.decimate() to smooth the data and
interpolate the smoothed results to uniformly-spaced pressure values. For example, a quick examination of
a file might be done by the following:

> plot(ctd.decimate(ctd.trim(read.ctd("stn123.cnv"))))

3.3 Example with WOCE archive data

The package has a harder time scanning the headers of data files in the WOCE archive format than it does
in the Seabird format illustrated in the previous examples. This is mainly because front-line researchers tend
to work in the Seabird format, and partly because the WOCE format is odd. For example, the first line of a
WOCE file is of the form CTD,20060609WHPOSIODAM. Only the first part of this is easy to scan. To the left
of the comma is the string CTD, which seems straightforward, except that in some cases it is written CTDO.
After the comma is found the file date (yyyymmdd), and that is easy to parse. But then things get tricky.
The next sequence is a string of characters that indicate the division of the institute (WHPO), the institute
itself (SIO), and the name of the investigator (DAM). The problem is that no dividers separate these items,
and that there are no standards for the item lengths. The approach to oce development is to tackle easy
and important problemss before complicated special cases, and so no attempt has been made to parse this
part of the header. Of course, R provides access to object constituents, so that a human working with this
file could easily do e.g.

> x <- read.ctd("nnsa_00934_00001_ct1.csv", type = "WOCE")

> x$institute <- "SIO"

> x$scientist <- "DAM"

For a real-world example (with warts!), visit http://cchdo.ucsd.edu/data_access?ExpoCode=58JH199410
and download the zip file containing the Arctic section called “CARINA”, measured in 1994. Expand the
zip file, enter the directory, and run the code below.

4

> library(oce)

> files <- system("ls *.csv", intern = TRUE)

> for (i in 1:length(files)) {

+ cat(files[i], "\n")

+ x <- read.ctd(files[i])

+ if (i == 1) {

+ plot.TS(x, xlim = c(31, 35.5), ylim = c(-1, 10), type = "l",

+ col = "red")

+ }

+ else {

+ lines(x$data$salinity, x$data$temperature, col = "red")

+ }

+ }

What you’ll see is an overall T −S diagram for the entire dataset. It may take a while, since the dataset
contains over 90,000 observations. You may note that, even though this is an official, quality-controlled
dataset, it is not without problems. The graph that is produced by this code has several spurious lines
oriented horizontally (indicating spurious salinity) and vertically (indicating spurious temperature). One
way to find such values is to put the lines

> print(range(x$data$temperature))

> print(range(x$data$salinity))

after the read.ctd command. One thing you’ll find is that station 987 has a minimum salinity range of
0.0009 to 987. These values are clearly in error, as are the temperatures at this spot in the file. (It is perhaps
revealing that the spurious salinity is equal to the station number.) Indeed, at this spot in the file it can be
seen that the pressure jumps from 1342 to 0, and then starts increasing again; the file contains two profiles,
or the same profile twice. This is not the only flaw that is revealed by the graph, and by range commands;
a generous user would spend a week tracking down such issues, and would then contact the data provider
(or the chief scientist of the field work) with specific suggestions for correcting the files. The point here is to
highlight how this package can be used with real-world data.

3.4 Section plots

The commands

> data(section)

> data(coastline.halifax)

> plot(section, coastline = coastline.halifax)

will plot a summary diagram (Figure 3) containing sections of T , S, and σθ, along with a chart indicating
station locations. In addition to such overview diagrams, plot can also create individual plots of individual
properties.

The Halifax section is supplied in a pre-gridded format, but some datasets have different pressure levels
at each station. For such cases, the section.grid function may be used, e.g.

> data(a03)

> a03g <- section.grid(a03, p = seq(0, 2000, 50))

> data(coastline.world)

> plot(a03g, station.indices = seq(124, 102), coastline = coastline.world,

+ map.xlim = c(-80, -60))

produces Figure 4. The ship doing the sampling was travelling westward from the Mediterranean towards
North America, taking 124 stations in total; the station.indices value selects the last few stations of the
section, during which the ship heading was changed to run in a northwesterly direction, to cross isobaths
(and perhaps, the Gulf Stream) at right angles.

5

●

●

0 2 4 6 8 10 12 14

30
25

20
15

10
5

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

T
●

●

0 2 4 6 8 10 12 14

30
25

20
15

10
5

0
Distance [km]

P
re

ss
ur

e
[d

ba
r

]

S

●

●

0 2 4 6 8 10 12 14

30
25

20
15

10
5

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

σσθθ

−63.66 −63.64 −63.62 −63.60 −63.58 −63.56 −63.54

44
.6

4
44

.6
6

44
.6

8
44

.7
0

Latitude

Lo
ng

itu
de

●

●

●

●

●

●

●

●

Figure 3: CTD section of data acquired in Halifax Harbour in the autumn of 2003 by students in the
Introduction to Physical Oceanography class at Dalhousie University. (Dan Kelley teaches this class, and the
work at sea was supervised by his teaching assistant Natacha Bernier, who received her PhD from Dalhousie
in 2005.) The stations go from a site near the Sackville river inflow at the northwest portion of Bedford
Basin to site at the entrance of the harbour. (The author’s office at Dalhousie is located near the bottom
axis at 63.58W.)

6

●

●

0 100 200 300 400

20
00

15
00

10
00

50
0

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

T
●

●

0 100 200 300 400

20
00

15
00

10
00

50
0

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

S

●

●

0 100 200 300 400

20
00

15
00

10
00

50
0

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

σσθθ

−80 −75 −70 −65 −60

30
35

40
45

Latitude

Lo
ng

itu
de ●●●●●●●●●●●●●●●●●●●●●●●

Figure 4: Portion of CTD A03, showing the region of the Gulf Stream.

7

−67 −66 −65 −64 −63 −62 −61 −60

44
45

46
47

●

Figure 5: Coastline of eastern Canada, showing Prince Edward Island, New Brunswick, and Nova Scotia.
The blue circle indicates the location of Halifax, the capital of Nova Scotia.

4 Coastline data

The commands

> library(oce)

> data(coastline.maritimes)

> plot(coastline.maritimes, col = "darkred")

> points(-(63 + 34/60), 44 + 39/60, cex = 3, col = "blue")

produce a map of the coastline of Eastern Canada (Figure 5). Such coastline data are available from a variety
of sources. The NOAA site http://www.ngdc.noaa.gov/mgg_coastline/ is particularly popular, and it
has the advantage of providing data in Splus format. The function read.coastline can handle reading that
format (plus some other formats).

5 Sea-level data

The commands

> library(oce)

> data(sealevel)

> plot(sealevel)

load and graph a build-in dataset of sea-level timeseries. The result, shown in Figure 6, is a four-panel plot.
The top panel is a timeseries view that provides an overview of the entire data set. The second panel is
narrowed to the most recent month, which should reveal spring-neap cycles if the tide is mixed. The third

8

ηη
−−

ηη 0
 [

m
]

Jan 01 Feb 01 Mar 01 Apr 01 May 01 Jun 01 Jul 01 Aug 01 Sep 01 Oct 01

−
2

−
1

0
1

2

0.
99

 m

Station 490 (HALIFAX) 44.6667N 63.5833E

ηη
−−

ηη 0
 [

m
]

Jan 01 Jan 08 Jan 15 Jan 22 Jan 29

−
2

−
1

0
1

2

0.
99

 m

0.00 0.02 0.04 0.06 0.08 0.10

1e
−

04
1e

−
02

1e
+

00
1e

+
02

ΓΓ2
[m

2
cp

h]

O1

K1

N2

M2

S2

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
1

0.
2

0.
3

0.
4

Frequency [cph]

⌠⌠ ⌡⌡ 0f ΓΓ
df

 [m
]

O1

K1

N2

M2

S2

Figure 6: Sea-level timeseries measured in 2003 in Halifax Harbour. (The spike in September is the storm
surge associated with Hurricane Juan, regarded by the Canadian Hurricane Centre to be one of the most
powerful and damaging hurricanes to ever hit Canada.

9

panel is a spectrum, with a few tidal constituents indicated. At the bottom is a cumulative spectrum, which
makes these narrow-banded constituents quite visible.

Exercise 3. Focus on the spike in sealevel that was caused by Hurricane Juan.

Note: An upcoming version of oce will also provide tidal constituent analysis. Some of this has been
developed already. The regression works, so that the amplitudes and phases can be calculated. However, sig-
nificance levels are not yet provided, and nor is any indication of the Rayleigh separation of the constituents.
The interface also needs work, e.g. for shallow-water and deep-water cases. If you understand these things,
and would like to test the code as it is being developed, please contact the author. Otherwise, you should
wait until the code is working properly, and until the user interface has settled into a firmer state.

Exercise 4. Draw a spectrum of sealevel variation, with the M2 tidal component indicated.

6 Lobo data

The commands

> library(oce)

> data(lobo)

> plot(lobo)

produce a plot (Figure 7) of lobo data from the Northwest Arm of Halifax Harbour. Note the relationship
between decreasing nutrients and increasing fluorescence, as well as the diurnal signal in the latter.

As an aside, it should be pointed out that the lobo part of oce is somewhat preliminary. In particular, the
package requires that certain data columns be present, and in a certain order. Also, the function read.oce
does not understand lobo files. Why these limitations, you ask? Well, the lobo code was really only written
as an aside, for the author’s contribution to a“predict the spring bloom”contest held at Dalhousie University.

Exercise 5. Draw a T − S plot for these data, using a colour coding to indicate time, and using
plotting tricks to reduce the obscuring of this time signal.

7 The future of oce

The present version of oce can only handle data types that the author has been using lately in his research.
New data types will be added as the need arises in that work. The author would be happy to add other data
types, if a convincing argument is made that they will be useful to the Oceanographic community. (The
data types need not be restricted to Physical Oceanography, but the author will need some help in dealing
with other types of data, given his research focus.)

As for algorithms, there are plenty of gaps in oce. The package should have routines for tidal decompo-
sition, for example, but that is just one example of many that could be listed.

Two principles will guide the addition of data types and functions: (a) the need, as perceived by the
author or by other contributors and (b) the ease with which the additions can be made.

The site http://code.google.com/p/r-oce/ provides a window on the development that goes on be-
tween the CRAN releases of the package. Please visit the site to report bugs, to suggest new features, or
just to see how oce development is coming along.

10

29
.5

30
.0

30
.5

31
.0

Feb 21 Feb 26 Mar 03

S
al

in
ity

 [P
S

U
]

0.
0

0.
5

1.
0

1.
5

2.
0

T
em

pe
ra

tu
re

 [d
eg

C
]

Feb 21 Feb 26 Mar 03

−
0.

4
0.

0
0.

2
0.

4

U
 [m

/s
]

−
0.

4
0.

0
0.

2
0.

4

V
 [m

/s
]

0
1

2
3

4
5

6

Feb 21 Feb 26 Mar 03

F
lu

or
es

ce
nc

e

2
3

4
5

6
7

N
itr

at
e

●
●●

●
●

●
●
●

●
●●

●●

●
●

●●
●

●

●
●

●● ●

●

●

●

●

●●

● ●
●●●

●

●

●
●

●
●

●

●

●
●●●●●

●●●●
●

●
●

●

●

●

●

●

●●

●●
●
●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●
●

●

●●●
●●●
●
●

●●

●●

●

●
●●

●

●
●●●●●
●

●●
●●●●●●●●●●●●●
●
●

●
●

●

●●●●●
●●

●
●●●●
●●
●●●

●

●

●

●

●

●

●
●
●

●
●
●●●

●●●
●

●

●

●●●
●●●

●
●

●

●

●
●●
●●

●●●●
●●●●●●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●●●

●●

●

●

●

●

●

●
● ●

●
●●

●
●●

●
●●●●●

● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●
● ● ●

●
●

●
●

●
●

● ●

●●

●

●

●

●
● ●

●

●

●

●
●●

● ● ●●
●

●

29.5 30.0 30.5 31.0

0.
0

0.
5

1.
0

1.
5

2.
0

te
m

pe
ra

tu
re

 [
°°C

]

Salinity [PSU]

23.5 24 24.5

25

Figure 7: Lobo measurements in Northwest Arm of Halifax Harbour, at the time of the 2007 Spring bloom.

11

Answers to exercises

Exercise 1.

> library(oce)

> sw.rho(S = 34, t = 10, p = 100)

[1] 1026.624

> sw.theta(S = 34, t = 10, p = 100)

[1] 9.988598

> sw.rho(S = 34, t = sw.theta(S = 34, t = 10, p = 100), p = 0)

[1] 1026.173

> sw.rho(S = 34, t = sw.theta(S = 34, t = 10, p = 100, pref = 200),

+ p = 200)

[1] 1027.074

> plot.TS(as.ctd(c(30, 40), c(-2, 20), rep(0, 2)), grid = TRUE,

+ col = "white")

Exercise 2. Although one may argue as to the limits of the pycnocline, for illustration let us say it is in
5bar to 12dbar range.

> library(oce)

> data(ctd)

> pycnocline <- ctd.trim(ctd, "pressure", c(5, 12))

> plot.profile(pycnocline, type = "sigmatheta+N2")

Exercise 3. A web search will tell you that Hurricane Juan hit about midnight, 2003-sep-28. The author
can verify that the strongest winds occurred a bit after midnight – that was the time he moved to a room
without windows, in fear of flying glass.

> library(oce)

> data(sealevel)

> plot(sealevel, focus.time = c("2003-09-23", "2003-10-05"))

> abline(v = as.POSIXct("2003-09-28 23:30:00"), col = "red", lty = "dotted")

> mtext("Hurricane\nJuan", at = as.POSIXct("2003-09-28 23:30:00"),

+ col = "red")

12

Exercise 4. Notice the use of (object)$data$(item) here. All oce objects are lists, and all of them
contain a data element of a similar form to this.

> library(oce)

> data(sealevel)

> spectrum(sealevel$data$eta, spans = c(3, 7))

> abline(v = 1/12.42)

> mtext("M2", at = 1/12.42, side = 3)

Exercise 5. The resampling with i is to avoid obscuring colours by overplotting. Note the use of as.ctd
to assemble the data into something that plot.TS can handle. This is an example of the practicality of
oce; eventually, plot.TS may be altered to take simple columns of data, but for now it seems reasonable to
require the user to assemble these data into a CTD object, and to spend development time on something
that will pay off better.

> library(oce)

> data(lobo)

> i <- sample(length(lobo$T))

> a <- as.numeric(lobo$time[i] - lobo$time[1])

> col <- hsv(0.5 * a/max(a), 1, 1)

> plot.TS(as.ctd(lobo$S[i], lobo$T[i], 0), col = col, pch = 1)

13

