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Abstract

Several matters relating the nnc package are discussed. When show that when k, the
number of nearest neighbors is even, there is considerable variability in the predictions
using knn in the package class. This variability occurs even with the default setting of the
argument use.all=TRUE. Cross-validation is discussed as well. The importance of honest
cross-validation is noted and the delete-d method is recommended. Cross-validation is
then used to estimate the prediction errors to compare Fisher linear discriminant classifi-
cation with kNN for the iris data. We conclude with two graphics that demonstrate why
Fisher linear discriminate analysis works so well with the iris data. These graphs should
be viewed in color.

Keywords: cluster and multicore computers; cross-validation; delete-d cross-validation; hon-
est cross-validation; k-nearest neighbor classification; repeated-holdout cross validation; Rmpi
package.

1. The problem of ties

Holmes and Adams (2003) reported that misclassification rate for Ripley’s synthetic test data
was 0.82 using the optimal maximum pseudolikelihood estimate for k, k̂ = 66. The code
below verifies that this estimate agrees with our software,

R> library(nnc)

R> library(MASS)

R> X <- synth.tr[, 1:2]

R> y <- factor(synth.tr[, 3])

R> KMAX <- 100

R> d <- numeric(KMAX)

R> for (k in 1:KMAX) {

+ z <- nnc(k = k, X = X, Y = y)

+ d[k] <- deviance(glm.fit(x = z, y = y, family = binomial(link = "logit")))

+ }

R> khat <- which.min(d)

R> plot(d, xlab = "k", ylab = "deviance")

R> points(khat, d[khat], col = "red", pch = 16, cex = 1.4)

R> title(sub = bquote(hat(k) == .(khat)))

In practice even values of k are often avoided since there is some arbitrariness due to the
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Figure 1: Optimal k for kNN for Ripley’s synthetic data

likelihood of ties values. In the knn function, ties are still a problem even when the default
option, use.all=TRUE, is used.

R> XTest <- synth.te[, 1:2]

R> yTest <- factor(synth.te[, 3])

R> REP <- 100

R> K <- 66

R> e <- numeric(REP)

R> for (i in 1:REP) {

+ yhat <- knn(train = X, test = XTest, cl = y, k = K, use.all = TRUE)

+ e[i] <- mean(yhat != yTest)

+ }

R> hist(e, main = "Distribution of error rate", xlab = "Error rate")

As can be seen a misclassification rate of 0.82 is on the low side of what can be expected
when k = 66 is used. Trying k = 67, we find, as expected, the misclassification rate remains
constant.
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Figure 2: Histogram of misclassification rates for the test data when k = 66 is used for the
training data.

R> K <- 67

R> for (i in 1:REP) {

+ yhat <- knn(train = X, test = XTest, cl = y, k = 67)

+ e[i] <- mean(yhat != yTest)

+ }

R> summary(e)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.085 0.085 0.085 0.085 0.085 0.085

2. Fisher’s iris data

We use the built-in R dataset iris to illustrate how our algorithms work for the case when
there are Q = 3 classes. With the iris data there are 3 classes, according to iris species, setosa,
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versicolor, and virginica. The inputs are measurements of sepal length and width and petal
length and width, respectively. There are 50 observations on each species.

2.1. Optimal k

Here we find the optimal k,

R> khat(iris[, 1:4], iris[, 5])
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Figure 3: Profile deviance plot for estimate k with iris data

2.2. Iris data visualization

Wikipedia has a nice article about this dataset with pictures of the three iris species: setosa,
virginica and versicolor.

See http://en.wikipedia.org/wiki/Iris_flower_data_set

The scatterplot in the figure below, obtained from the Wikipedia article cited above, shows
how well separated the three species are.

http://en.wikipedia.org/wiki/Iris_flower_data_set
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Figure 4: Scatterplot matrix for iris data

Fisher (1936)1 used this iris data2 to illustrate the technique we know today as Fisher linear
discriminant analysis. It is no surprise that the method is probably the best method for this
data.

Visualization of the data with suitable graphics reveals that the species are well separated
with in fact no overlap between setosa and the other species.

The lattice graphic strongly suggests linear decision boundaries and so it is not surprising the
Fisher linear discriminate classification works well with this data. It is a little suprising that
kNN works as well as it does!

The parallel coordinates plot below also shows how well separated the three classes are and
that there is no suggestion of a nonlinear decision boundary.

R> library(lattice)

R> parallel(˜iris[, 1:4], groups = iris[, 5], auto.key = list(space = "top",

+ columns = 3))

2.3. Cross-validation comparison with FLDA

Hastie, Tibshirani, and Friedman (2009, §7.10.2 and 7.10.3) have pointed out that frequently
cross-validation methods have been misapplied when a parameter is not re-estimated each
time on the training data. The term honest cross-validation may be used to emphasize that
this is done. The consequence of not doing so is that a much more optimistic result is obtained.
The true test error is likely to be much larger.

Hastie et al. (2009, §7.10) recommend k-fold cross-validation using the one-standard-deviation
rule. An important drawback to k-fold cross-validation is that the results are quite variable
since there is not really enough replication. Kim (2009) recommended that the method
given in Hastie et al. (2009) not be used for classification problems and instead recommended

1 http://digital.library.adelaide.edu.au/coll/special//fisher/138.pdf
2 There was a typo in the data listed in Fisher (1936). See http://archive.ics.uci.edu/ml/datasets/

Iris

http://digital.library.adelaide.edu.au/coll/special//fisher/138.pdf
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
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Figure 5: Scatterplot matrix for iris data

repeated-holdout cross validation. This is essentially equivalent to the delete-d method recom-
mended by Shao (1997) for linear model selection. With this algorithm, a randomly sampling
algorithm is used to select the test data and the validation data is then formed by removing
this test data. Many replications are required, at least 1000. This cross-validation method is
also very easy to implement using an R package for cluster or parallel computing.

The R function, OneItn, shown below computes a single-cross-validation estimate. In the
code we use the parameter fold to specify that the fraction of data being used for the test
sample will be 1/fold. This function can then be independently evaluated on each thread or
node in a multicore or cluster computer.

With the iris data, it is more efficient to use stratified sampling, taking an equal number from
each class for the training samples. This makes the code below slightly more complicated and
lengthy.

R> OneItn <- function() {

+ Y <- iris[, 5]

+ X <- iris[, 1:4]

+ Xset <- iris[iris$Species == "setosa", 1:4]

+ Xver <- iris[iris$Species == "versicolor", 1:4]

+ Xvir <- iris[iris$Species == "virginica", 1:4]

+ Yset <- iris[iris$Species == "setosa", 5]

+ Yver <- iris[iris$Species == "versicolor", 5]

+ Yvir <- iris[iris$Species == "virginica", 5]

+ n <- nrow(Xset)

+ fold <- 5

+ nTest <- floor(n/fold)

+ NREP <- 100

+ kmax <- 80
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+ jset <- sample(1:n, size = nTest)

+ jver <- sample(1:n, size = nTest)

+ jvir <- sample(1:n, size = nTest)

+ indsetTest <- rep(FALSE, n)

+ indsetTest[jset] <- TRUE

+ indverTest <- rep(FALSE, n)

+ indverTest[jver] <- TRUE

+ indvirTest <- rep(FALSE, n)

+ indvirTest[jvir] <- TRUE

+ YsetTrain <- Yset[!indsetTest]

+ YsetTest <- Yset[indsetTest]

+ XsetTrain <- Xset[!indsetTest, ]

+ XsetTest <- Xset[indsetTest, ]

+ YverTrain <- Yver[!indverTest]

+ YverTest <- Yver[indverTest]

+ XverTrain <- Xver[!indverTest, ]

+ XverTest <- Xver[indverTest, ]

+ YvirTrain <- Yvir[!indvirTest]

+ YvirTest <- Yvir[indvirTest]

+ XvirTrain <- Xvir[!indvirTest, ]

+ XvirTest <- Xvir[indvirTest, ]

+ XTrain <- rbind(XsetTrain, XverTrain, XvirTrain)

+ YTrain <- c(YsetTrain, YverTrain, YvirTrain)

+ XTest <- rbind(XsetTest, XverTest, XvirTest)

+ YTest <- c(YsetTest, YverTest, YvirTest)

+ train.LDA <- lda(XTrain, YTrain)

+ yfitLDA <- predict(train.LDA, newdata = XTest, dimen = 1)$class

+ etaFLDA <- mean(as.numeric(yfitLDA != YTest))

+ kopt <- khat(XTrain, YTrain, kmax, plot = FALSE)

+ ans <- knn(train = XTrain, test = XTest, k = kopt, cl = YTrain)

+ etaKNN <- mean(as.numeric(ans != YTest))

+ eta <- c(etaFLDA, etaKNN)

+ names(eta) <- c("LDA", "kNN")

+ eta

+ }

Using the script below we evaluate OneItn five times to estimate the time required.

R> library(nnc)

R> StartTime <- proc.time()[1]

R> NREP <- 5

R> eta <- matrix(numeric(NREP * 2), ncol = 2)

R> for (i in 1:NREP) eta[i, ] <- OneItn()

R> EndTime <- proc.time()[1]

R> TotTime <- EndTime - StartTime

R> e <- apply(eta, MARGIN = 2, FUN = mean)

R> e
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[1] 0.006666667 0.240000000

R> TotTime

user.self

8.38

The script used for running using Rmpi is given below.

##Source: nncRmpi.R

#Delete d-cross validation to compare FLDA and kNN for iris data.

#Note the function OneItn() is defined in the workspace and is also given

# in the vignette for the 'nnc' package.

#TO RUN THIS SCRIPT

#LOAD 'nnc/Rmpi/.Rdata' or load script for 'OneItn'
#Timing: NumRep<-10ˆ4 takes about 27 minutes with 8 threads

#

library(Rmpi)

Start <- proc.time()[3]

StartDate <- date()

#start slave nodes

mpi.spawn.Rslaves(nslaves=8)

#compare FLDA and kNN using cross-validation

mpi.bcast.cmd(library(nnc))

mpi.bcast.cmd(library(MASS))

NumRep <- 10ˆ4

ISEED <- 19100437

#setup parallel RNG. seed can be specified.

mpi.setup.rngstream(ISEED)

#export function

mpi.bcast.Robj2slave(OneItn)

#Use parallel replication

ans<-mpi.iparReplicate(n=NumRep, expr=OneItn())

End <- proc.time()[3]

EndDate<-date()

TotalTime <- End-Start

write(TotalTime, file="TotalTime.txt")

write(StartDate, file="TotalTime.txt", append=TRUE)

write(EndDate, file="TotalTime.txt", append=TRUE)

ans<-t(ans) #so columns are FLDA, kNN

#save data for analysis later

save(ans, file="ans.Rdata")

#print out

cat("Total time in seconds =", TotalTime, fill=TRUE)

cat("Total time in minutes =", TotalTime/60, fill=TRUE)

apply(ans, 2, mean)

apply(ans, 2, median)
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apply(ans, 2, function(x), mean(x, trim=0.1))

boxplot(ans)

boxplot(jitter(ans))

tb<-apply(ans, 2, table)

#frequency plot

graphics.off()

library(lattice)

tbLDA<-as.data.frame(tb$LDA)

tbLDA$Var1 <- round(as.numeric(as.character(tbLDA$Var1)), 3)

xyplot(Freq/NumRep ˜ Var1, data=tbLDA, type="h", lwd=4, col="red", xlab="value", ylab="frequency")

#

tbkNN<-as.data.frame(tb$kNN)

tbkNN$Var1 <- round(as.numeric(as.character(tbkNN$Var1)), 3)

xyplot(Freq/NumRep ˜ Var1, data=tbkNN, type="h", lwd=4, col="red", xlab="value", ylab="frequency")

#close and quit

mpi.close.Rslaves()

mpi.quit()

We ran the R script on a Mac Pro with 8 virtual cpu’s with NumRep<-10000 and it took about
27 minutes. The mis-classification rates are summarized in the table below.

LDA kNN

mean 0.0198 0.1809
sd 0.0224 0.0845

median 0.0000 0.1667
10 % trim mean 0.0164 0.1778

Table 1: Summary of 10000 cross-validation replications

As expected FLDA performed much better than kNN for this data. This is confirmed in the
boxplot shown below.
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Figure 6: Boxplot of the mis-classification rates in 10,000 replications for FDLA and kNN.

There is extreme discretness in the cross-validated mis-classification rates. The lattice style
line plots show that in fact the FDLA test errors take on only 4 distinct values in all 10,000
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replications.
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Figure 7: Lattice plot showing the distribution of mis-classification in 10,000 replications for
FDLA and kNN.
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