
The neldermead Package - version 1.0-5

Sébastien Bihorel

January 15, 2011

neldermead is a R port of a module originally developped for Scilab version 5.2.1 by Michael
Baudin (INRIA - DIGITEO). Information about this software can be found at www.scilab.org.
The following documentation as well as the content of the functions .Rd files are adaptations of the
documentation provided with the original Scilab neldermead module.

neldermead currently does not include any adaptation of the Scilab ’nmplot’ function series that
is available in the original neldermead module.

1 Overview

1.1 Description

The goal of this toolbox is to provide several direct search optimization algorithms based on the
simplex method. The optimization problem to solve is the minimization of a cost function, with
bounds and nonlinear constraints.

minf(x)
li ≤ xi ≤ hi, i = 1, n
gj(x) ≥ 0, j = 0, nbineq

where f is the cost function, x is the vector of parameter estimates, l and h are vectors of
lower and upper bounds for the parameter estimates, n is the number of parameters and nbineq the
number of inequality constraints g(x).

The provided algorithms are direct search algorithms, i.e. algorithms which do not use the
derivative of the cost function. They are based on the update of a simplex, which is a set of
k ≥ n+ 1 vertices, where each vertex is associated with one point and one function value.

The following algorithms are available:

• The fixed shape simplex method of Spendley, Hext and Himsworth: this algorithm solves an
unconstrained optimization problem with a fixed shape simplex made of k = n+ 1 vertices.

• The variable shape simplex method of Nelder and Mead: this algorithm solves an unconstrained
optimization problem with a variable shape simplex made of k = n+ 1 vertices [3].

• Box’s complex method: this algorithm solves an constrained optimization problem with a
variable shape simplex made of an arbitrary k number of vertices (k = 2n is recommended by
Box).

1

www.scilab.org

1.2 Basic object

The basic object used by the neldermead package to store the configuration settings and the history
of an optimization is a ’neldermead’ object, i.e. a list typically created by neldermead.new and
having a strictly defined structure (see ?neldermead.new for more details).

1.3 The cost function

The function element of the neldermead object allows to configure the cost function. The cost
function is used to compute the objective function value f. If the nbineqconst element of the nel-
dermead object is configured to a non-zero value, the cost function must also compute the value of
the nonlinear, positive, inequality constraints c. The cost function can also take as input/output an
additional argument, if the costfargument element is configured. The function should be defined
as described in vignette(’optimbase’,package=’optimbase’):

costf <- function(x, index, fmsfundata){

Define f and c here

return(list(f, g=NULL, c, gc=NULL, index=index,

this=list(costfargument = fmsfundata)))

}

where

x: is the current point, as a column vector,

index: (optional), an integer representing the value to compute, and

fmsfundata: an user-provided input/output argument.

f: the value of the objective function (a scalar),

g: typically the gradient of the objective function in the context of the optimbase functions; must
be set to NULL as the Nelder-Mead is not gradient-based,

c: the vector of values of non-linear, positive, inequality constraints,

gc: typically the gradient of the constraints in the context of the optimbase functions; must be set
to NULL as the Nelder-Mead is not gradient-based,

this: must be set to list(costfargument = fmsfundata).

The index input parameter tells the cost function what to return as output arguments (as de-
scribed in vignette(’optimbase’,package=’optimbase’). It has the following meaning:

index = 2: compute f,

index = 5: compute c,

index = 6: compute f and c

2

The fmsdata argument is both input and output. This feature may be used in the situation
where the cost function has to update its environment from call to call. Its simplest use is to count
the number of calls to the cost function, but this feature is already available directly. Consider
the more practical situation where the optimization requires the execution of an underlying Newton
method (a chemical solver for example). This Newton method requires an initial guess x0. If the
initial guess for this underlying Newton method is kept constant, the Newton method may have
problems to converge when the current optimization point get far away from the its initial point. If
a costfargument element is defined in the neldermead object, it can be passed to the cost function
as the fmsdata argument. In this case, the initial guess for the Newton method can be updated so
that it gets the value of the previous call. This way, the Newton method will have less problems to
converge and the cost function evaluation may be faster.

We now present how the feature works. Everytime the cost function is called back, the costfargument
element is passed to the cost function as an input argument. If the cost function modifies its content
in the output argument, the content of the costfargument element is updated accordingly. Once
the optimization is performed, the user may call the neldermead.cget function and get back an
updated costfargument content.

1.4 The output function

The outputcommand element of the neldermead object allows to configure a command which is called
back at the start of the optimization, at each iteration and at the end of the optimization. The out-
put function must be defined as follows:

outputcmd <- function(state, data, myobj)

where

state: is a string representing the current state of the algorithm. Available values are ’init’, ’iter’,
and ’done’,

data: a list containing at least the following entries:

x: the current optimum,

fval: the current function value,

iteration: the current iteration index,

funccount: the number of function evaluations,

simplex: the current simplex,

step: the previous step in the algorithm. The following values are available: ’init’, ’done’, ’re-
flection’, ’expansion’, ’insidecontraction’, ’outsidecontraction’, ’reflectionnext’, and ’shrink’,

myobj: a user-defined parameter. This input parameter is defined with the outputcommandarg

element of the neldermead object.

The output function may be used when debugging the specialized optimization algorithm, so
that a verbose logging is produced. It may also be used to write one or several report files in a
specialized format (ASCII, LATEX, Excel, etc...). The user-defined parameter may be used in that
case to store file names or logging options.

The data list argument may contain more fields than the current presented ones. These addi-
tionnal fields may contain values which are specific to the specialized algorithm, such as the simplex
in a Nelder-Mead method, the gradient of the cost function in a BFGS method, etc...

3

1.5 Termination

The current package takes into account several generic termination criteria. The following termina-
tion criteria are enabled by default:

• maxiter,

• maxfunevals,

• tolxmethod,

• tolsimplexizemethod.

The neldermead.termination function uses a set of rules to compute if the termination occurs
and sets optimization status to one of the following: ’continue’, ’maxiter’, ’maxfunevals’, ’tolf’, ’tolx’,
’tolsize’, ’tolsizedeltafv’, ’kelleystagnation’, ’tolboxf’ or ’tolvariance’. The value of the status may
also be a user-defined string, in the case where a user-defined termination function has been set.

The following set of rules is examined in this order.

• By default, the status is ’continue’ and the terminate flag is FALSE.

• The number of iterations is examined and compared to the maxiter element of the neldermead
object: if iterations ≥ maxiter, then the status is set to ’maxiter’ and terminate is set to
TRUE.

• The number of function evaluations is examined and compared to the maxfunevals elements:
if funevals ≥ maxfunevals, then the status is set to ’maxfuneval’ and terminate is set to
TRUE.

• The tolerance on function value is examined depending on the value of the tolfunmethod.

FALSE: then the criteria is just ignored,

TRUE: if |currentfopt| < tolfunrelative · |previousfopt| + tolfunabsolute, then
the status is set to ’tolf’ and terminate is set to TRUE.

The relative termination criteria on the function value works well if the function value at
optimum is near zero. In that case, the function value at initial guess fx0 may be used as
previousfopt. This criteria is sensitive to the tolfunrelative and tolfunabsolute elements.
The absolute termination criteria on the function value works if the user has an accurate idea
of the optimum function value.

• The tolerance on x is examined depending on the value of the tolxmethod element.

FALSE: then the criteria is just ignored,

TRUE: if norm(currentxopt - previousxopt) < tolxrelative · norm(currentxopt) +

tolxabsolute, then the status is set to ’tolx’ and terminate is set to TRUE.

This criteria is sensitive to the tolxrelative and tolxabsolute elements. The relative ter-
mination criteria on x works well if x at optimum is different from zero. In that case, the
condition measures the distance between two iterates. The absolute termination criteria on x
works if the user has an accurate idea of the scale of the optimum x. If the optimum x is near
0, the relative tolerance will not work and the absolute tolerance is more appropriate.

4

• The tolerance on simplex size is examined depending on the value of the tolsimplexizemethod
element.

FALSE: then the criteria is just ignored,

TRUE: if ssize < tolsimplexizerelative · simplexsize0 + tolsimplexizeabsolute,
where simplexsize0 is the size of the simplex at iteration 0, then the status is set to
’tolsize’ and terminate is set to TRUE.

The size of the simplex is computed from the ’sigmaplus’ method of the optimsimplex package.
This criteria is sensitive to the tolsimplexizeabsolute and the tolsimplexizerelative

elements.

• The absolute tolerance on simplex size and absolute difference of function value is examined
depending on the value of the tolssizedeltafvmethod element.

FALSE: then the criteria is just ignored,

TRUE: if both the following conditions ssize < tolsimplexizeabsolute and shiftfv <

toldeltafv are true where ssize is the current simplex size and shiftfv is the absolute
value of the difference of function value between the highest and lowest vertices, then the
status is set to ’tolsizedeltafv’ and terminate is set to TRUE.

• The stagnation condition based on Kelley sufficient decrease condition is examined depending
on the value of the kelleystagnationflag element.

FALSE: then the criteria is just ignored,

TRUE: if newfvmean ≤ oldfvmean - alpha · t(sg) · sg where newfvmean (resp. oldfvmean)
is the function value average in the current iteration (resp. in the previous iteration), then
the status is set to ’kelleystagnation’ and terminate is set to TRUE. Here, alpha is a non-
dimensional coefficient and sg is the simplex gradient.

• The termination condition suggested by Box is examined depending on the value of the
boxtermination element.

FALSE: then the criteria is just ignored,

TRUE: if both the following conditions shiftfv < boxtolf and boxkount == boxnbmatch

are true, where shiftfv is the difference of function value between the best and worst
vertices, and boxkount is the number of consecutive iterations where this criteria is met,
then the status is set to ’tolboxf’ and terminate is set to TRUE. Here, the boxtolf

parameter is the value associated with the boxtolf element of the neldermead object and
is a user-defined absolute tolerance on the function value. The boxnbmatch parameter
is the value associated with the boxnbmatch element and is the user-defined number of
consecutive match.

• The termination condition based on the variance of the function values in the simplex is
examined depending on the value of the tolvarianceflag element.

FALSE: then the criteria is just ignored,

TRUE: if var < tolrelativevariance · variancesimplex0 + tolabsolutevariance, where
var is the variance of the function values in the simplex, then the status is set to
’tolvariance’ and terminate is set to TRUE. Here, the tolrelativevariance parame-
ter is the value associated with the tolrelativevariance element of the neldermead

5

object and is a user-defined relative tolerance on the variance of the function values. The
tolabsolutevariance parameter is the value associated with the tolabsolutevariance
element and is the user-defined absolute tolerance of the variance of the function values.

• The user-defined termination condition is examined depending on the value of the myterminateflag
element.

FALSE: then the criteria is just ignored,

TRUE: if the term boolean output argument returned by the termination function is TRUE,
then the status is set to the user-defined status and terminate is set to TRUE.

1.6 Kelley’s stagnation detection

The stagnation detection criteria suggested by Kelley is based on a sufficient decrease condition,
which requires a parameter alpha > 0 to be defined [1]. The kelleynormalizationflag element of
the neldermead object allows to configure the method to use to compute this alpha parameter. Two
methods are available, where each method corresponds to a different paper by Kelley:

constant: in ’Detection and Remediation of Stagnation in the Nelder-Mead Algorithm Using a
Sufficient Decrease Condition’, Kelley uses a constant alpha, with the suggested value 1.e-4,
which is the typical choice for line search method.

normalized: in ’Iterative Methods for Optimization’, Kelley uses a normalized alpha, computed
from the following formula: alpha = alpha0 · sigma0 / nsg, where sigma0 is the size of the
initial simplex and nsg is the norm of the simplex gradient for the initial guess point.

1.7 O’Neill’s factorial optimality test

In ’Algorithm AS47 - Function minimization using a simplex procedure’, O’Neill presents a fortran
77 implementation of the simplex method [5]. A factorial test is used to check if the computed
optimum point is a local minimum. If the restartdetection element of the neldermead object is
set to ’oneill’, that factorial test is used to see if a restart should be performed.

1.8 Implementation notes of the method of Spendley et al.

The original paper may be implemented with several variations, which might lead to different results
[6]. This section defines what algorithmic choices have been used in the present package.

The paper states the following rules.

• ’Rule 1. Ascertain the lowest reading y, of yi ... yk+1 Complete a new simplex Sp by excluding
the point Vp corresponding to y, and replacing it by V* defined as above.’

• ’Rule 2. If a result has occurred in (k + 1) successive simplexes, and is not then eliminated by
application of Rule 1, do not move in the direction indicated by Rule 1, or at all, but discard
the result and replace it by a new observation at the same point.’

• ’Rule 3. If y is the lowest reading in So , and if the next observation made, y* , is the lowest
reading in the new simplex S , do not apply Rule 1 and return to So from Sp . Move out of S,
by rejecting the second lowest reading (which is also the second lowest reading in So).’

We implement the following ’rules’ of the Spendley et al. method:

6

• Rule 1 is strictly applied, but the reflection is done by reflection of the high point, since we
minimize a function instead of maximizing it, like Spendley.

• Rule 2 is NOT implemented, as we expect that the function evaluation is not subject to errors.

• Rule 3 is applied, i.e. reflection with respect to next to the high point. The original paper does
not mention any shrink step. When the original algorithm cannot improve the function value
with reflection steps, the basic algorithm stops. In order to make the current implementation
of practical value, a shrink step is included, with shrinkage factor sigma. This perfectly fits into
to the spirit of the original paper. Notice that the shrink step makes the rule #3 (reflection
with respect to next-to-worst vertex) unnecessary. Indeed, the minimum required steps are
the reflection and shrinkage. Nevertheless, the rule #3 has been kept in order to make the
algorithm as close as it can be to the original.

1.9 Implementation notes on the method of Nelder and Mead

The purpose of this section is to analyse the current implementation of Nelder-Mead’s algorithm.
The algorithm that we use is described in ’Iterative Methods for Optimization’ by Kelley.

The original paper uses a ’greedy’ expansion, in which the expansion point is accepted whatever
its function value. The current implementation, as most implementations, uses the expansion point
only if it improves over the reflection point, that is,

• if fe<fr, then the expansion point is accepted,

• if not, the reflection point is accepted.

The termination criteria suggested by Nelder and Mead is based on an absolute tolerance on the
standard deviation of the function values in the simplex. We provide this original termination criteria
with the tolvarianceflag element of the neldermead object, which is disabled by default.

1.10 Box’s complex algorithm implementation notes

In this section, we analyse the current implementation of Box’s complex method [4]. The initial
simplex can be computed as in Box’s paper, but this may not be safe. In his paper, Box suggests
that if a vertex of the initial simplex does not satisfy the non linear constraints, then it should be
’moved halfway toward the centroid of those points already selected’. This behaviour is available
when the scalingsimplex0 element of the neldermead object is set to ’tocenter’. It may happen,
as suggested by Guin [2], that the centroid is not feasible if the constraints are not convex. In this
case, the initial simplex cannot be computed. This is why we provide the ’tox0’ option, which allows
to compute the initial simplex by scaling toward the initial guess, which is always feasible.

In Box’s paper, the scaling into the non linear constraints is performed ’toward’ the centroid,
that is, by using a scaling factor equal to 0.5. This default scaling factor might be sub-optimal in
certain situations. This is why we provide the boxineqscaling element, which allows to configure
the scaling factor.

In Box’s paper, whether we are concerned with the initial simplex or with the simplex at a given
iteration, the scaling for the non linear constraints is performed without end. This is because Box’s
hypothesis is that ’ultimately, a satisfactory point will be found’. As suggested by Guin, if the
process fails, the algorithm goes into an infinite loop. In order to avoid this, we perform the scaling
until a minimum scaling value is reached, as defined by the guinalphamin element.

We have taken into account the comments by Guin, but it should be emphasized that the current
implementation is still as close as possible to Box’s algorithm and is not Guin’s algorithm. More

7

precisely, during the iterations, the scaling for the non linear constraints is still performed toward
the centroid, be it feasible or not.

1.11 User-defined algorithm

The mymethod element of the neldemead object allows to configure a user-defined simplex-based al-
gorithm. The reason for this option is that many simplex-based variants of Nelder-Mead’s algorithm
have been developped over the years, with specific goals. While it is not possible to provide them all,
it is very convenient to use the current structure without being forced to make many developments.

The value of the mymethod element is expected to be a R function with the following structure:

> myalgorithm <- function(this) {

+ ...

+ return(this)

+ }

where this is the current neldermead object.
In order to use the user-defined algorithm, the method element must be set to ’mine’. In this

case, the component performs the optimization exactly as if the user-defined algorithm was provided
by the component.

The user interested in that feature may use the internal scripts provided in the distribution as
templates and tune his own algorithm from that point. There is of course no warranty that the
user-defined algorithm improves on the standard algorithm, so that users use this feature at their
own risks.

1.12 User-defined termination

Many termination criteria are found in the literature. Users who aim at reproducing the results
exhibited in a particular paper may find that that none of the provided termination criteria match
the one which is used in the paper. It may also happen that the provided termination criteria are
not suitable for the specific test case. In those situation the myterminate element of the neldermead
object allows to configure a user-defined termination function. The value of the myterminate element
is expected to be a R function with the following structure:

> mystoppingrule <- function(this, simplex) {

+ ...

+ return(list(this = this, terminate = terminate, status = status))

+ }

where this is the current neldermead object and simplex is the current simplex. The terminate

output argument is a logical flag which is FALSE if the algorithm must continue and TRUE if the
algorithm must stop. The status output argument is a string which is associated with the current
termination criteria.

In order to enable the use of the user-defined termination function, the value of the myterminateflag
element must be set to TRUE in the neldermead object. At each iteration, if the myterminateflag

element has been set to TRUE, the user-defined termination is called. If the terminate output ar-
gument is TRUE, then the algorithm is stopped. In that case, the value of the status element of
the neldermead.get function output is the value of the status output argument of the user-defined
termination function.

8

2 Specialized functions

2.1 fminsearch

The fminsearch function is based on a specialized use of the more general neldermead function
bundle and searches for the unconstrained minimum of a given cost function. This function corre-
sponds to the Matlab (or Scilab) fminsearch function. In the context of fminsearch, the function to
be minimized is not a cost function as described in Section 1.3 but an objective function (returning
a numeric scalar). Additional information and examples are available in ?fminsearch from a R
environment.

2.2 Direct grid search

Direct grid search, performed by fmin.gridsearch, is a functionality added to the original Scilab
neldermead module and constitutes another specialized use of the neldermead package. This func-
tion allows to explore the search space of an optimization problem around the initial point x0. This
optimization problem is defined by an objective function, like for fminsearch, and not a cost func-
tion. fmin.gridsearch automatically creates a grid of search points selected around the initial point
and evaluates the objective function at each point. The boundaries of the grid are set either by a vec-
tor of parameter-specific lower and upper limits, or by a vector of factors α as follows:[x0/α, x0×α].
The number npts of points evaluated for each parameter (or dimension of the optimization problem)
can also be defined. The total number of points in the grid is therefore nptsn. At the end of the
search, fmin.gridsearch returns a table sorted by value of the objective function. The feasibility
of the objective function is also determined at each point, as fmin.gridsearch is a wrapper around
optimbase.gridsearch which assesses the feasbility of a cost function in addition to calculating its
value at each particular search point. Because fmin.gridsearch does not accept constraints, the ob-
jective function should always be feasible. Additional information is available in ?fmin.gridsearch

from a R environment.

3 Examples

We present in this section basic examples illustrating the use of neldermead functions to optimize
unconstrained or constrained systems. More complex examples are described in a Scilab-based
document written by Michael Baudin and available at http://forge.scilab.org/index.php/p/

docneldermead/. Because the R port of the Scilab neldermead module is almost literal, the user
should be able to reproduce the described examples in R with minimal adaptations.

3.1 Example 1: Basic use

In the following example, we solve a simple quadratic test case. We begin by defining the cost
function, which takes 3 input arguments and returns the value of the objective function as the
f element of a list. The standard starting point [-1.2 1.0] is used. neldermead.new creates a new
neldermead object. Then we use neldermead.configure to configure the parameters of the problem.
We use all default settings and perform the search for the optimum. neldermead.get is finally used
to retrieve the optimum parameters.

> quadratic <- function(x = NULL, index = NULL, fmsfundata = NULL) {

+ return(list(f = x[1]^2 + x[2]^2, g = c(), c = c(), gc = c(),

+ index = index, this = list(costfargument = fmsfundata)))

9

http://forge.scilab.org/index.php/p/docneldermead/
http://forge.scilab.org/index.php/p/docneldermead/

+ }

> x0 <- transpose(c(1, 1))

> nm <- neldermead.new()

> nm <- neldermead.configure(nm, "-numberofvariables", 2)

> nm <- neldermead.configure(nm, "-function", quadratic)

> nm <- neldermead.configure(nm, "-x0", x0)

> nm <- neldermead.search(nm)

> transpose(neldermead.get(nm, "-xopt"))

[,1] [,2]

[1,] -1.010582e-08 -1.768891e-07

3.2 Example 2: Customized use

In the following example, we solve the Rosenbrock test case. We begin by defining the Rosenbrock
function, which takes 3 input arguments and returns the value of the objective function. The
standard starting point [-1.2 1.0] is used. neldermead.new creates a new neldermead object. Then
we use neldermead.configure to configure the parameters of the problem. The initial simplex is
computed from the axes and the single length 1.0 (this is the default, but is explicitely written here
as an example). The variable simplex algorithm by Nelder and Mead is used, which corresponds to
the -method ’variable’ option. neldermead.search performs the search for the minimum. Once the
minimum is found, we represent part of the search space using the contour function (this is possible
since our problem involves only 2 parameters) and we superimpose the starting point (in red), the
optimisation path (in bleu), and the optimum (in green) to the plot. The history of the optimisation
can be retrieved (using neldermead.get) because the ’-storehistory’ option was set to TRUE.

> rosenbrock <- function(x = NULL, index = NULL, fmsfundata = NULL) {

+ return(list(f = 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2,

+ g = c(), c = c(), gc = c(), index = index, this = list(costfargument = fmsfundata)))

+ }

> x0 <- transpose(c(-1.2, 1))

> nm <- neldermead.new()

> nm <- neldermead.configure(nm, "-numberofvariables", 2)

> nm <- neldermead.configure(nm, "-function", rosenbrock)

> nm <- neldermead.configure(nm, "-x0", x0)

> nm <- neldermead.configure(nm, "-maxiter", 200)

> nm <- neldermead.configure(nm, "-maxfunevals", 300)

> nm <- neldermead.configure(nm, "-tolfunrelative", 10 * .Machine$double.eps)

> nm <- neldermead.configure(nm, "-tolxrelative", 10 * .Machine$double.eps)

> nm <- neldermead.configure(nm, "-simplex0method", "axes")

> nm <- neldermead.configure(nm, "-simplex0length", 1)

> nm <- neldermead.configure(nm, "-method", "variable")

> nm <- neldermead.configure(nm, "-verbose", 0)

> nm <- neldermead.configure(nm, "-storehistory", TRUE)

> nm <- neldermead.configure(nm, "-verbosetermination", 0)

> nm <- neldermead.search(nm)

> xmin <- ymin <- -2

> xmax <- ymax <- 2

> nx <- ny <- 100

10

> stepy <- stepx <- (xmax - xmin)/nx

> ydata <- xdata <- seq(xmin, xmax, stepx)

> zdata <- apply(expand.grid(xdata, ydata), 1, function(x) neldermead.function(nm,

+ transpose(x)))

> zdata <- matrix(zdata, ncol = length(ydata))

> optimpath <- matrix(unlist((neldermead.get(nm, "-historyxopt"))),

+ nrow = 2)

> optimpath <- data.frame(x = optimpath[1,], y = optimpath[2,

+])

> contour(xdata, ydata, zdata, levels = c(1, 10, 100, 500,

+ 1000, 2000))

> par(new = TRUE, ann = TRUE)

> plot(c(x0[1], optimpath$x[158]), c(x0[2], optimpath$y[158]),

+ col = c("red", "green"), pch = 16, xlab = "x[1]", ylab = "x[2]",

+ xlim = c(xmin, xmax), ylim = c(ymin, ymax))

> par(new = TRUE, ann = FALSE)

> plot(optimpath$x, optimpath$y, col = "blue", type = "l",

+ xlim = c(xmin, xmax), ylim = c(ymin, ymax))

 1

 10

 10

 100

 100

 500 5
00

 1000 1
00

0

 2000

 2
00

0

−2 −1 0 1 2

−
2

−
1

0
1

2

● ●

−2 −1 0 1 2

−
2

−
1

0
1

2

x[1]

x[
2]

−2 −1 0 1 2

−
2

−
1

0
1

2

11

Setting the ’-verbose’ element of the neldermead object to 1 allows to get detailed information
about the current optimization process. The following is a sample output for an optimization based
on the Nelder and Mead variable-shape simplex algorithm. Only the output corresponding to the
iteration #156 is displayed. In order to display specific outputs (or to create specific output files
and graphics), the ’-outputcommand’ option should be used.

===

Iteration \#156 (total = 156)

Function Eval \#298

Xopt: 0.99999999999991 0.999999999999816

Fopt: 8.997809e-27

DeltaFv: 4.492261e-26

Center: 1.00000000000003 1.00000000000007

Size: 4.814034e-13

Vertex \#2/3 : fv=2.649074e-26, x=1.000000e+00 1.000000e+00

Vertex \#3/3 : fv=5.392042e-26, x=1.000000e+00 1.000000e+00

Reflect

xbar=1.00000000000001 1.00000000000003

Function Evaluation \#299 at [0.99999999999996]

Function Evaluation \#299 at [0.999999999999907]

xr=[0.99999999999996 0.999999999999907], f(xr)=0.000000

> Perform reflection

Sort

3.3 Example 3: Optimization with bound constraints

In the following example, we solve a simple quadratic test case used in Example 1 but in the case
where bounds are set for parameter estimates. We begin by defining the cost function, which takes
3 input arguments and returns the value of the objective function as the f element of a list. The
starting point [1.2 1.9] is used. neldermead.new creates a new neldermead object. Then we use
neldermead.configure to configure the parameters of the problem including the lower -boundsmin
and upper -boundsmax bounds. The initial simplex is computed from boxnbpoints random points
within the bounds. The variable simplex algorithm by Box is used, which corresponds to the -method
’box’ option. neldermead.search finally performs the search for the minimum.

> quadratic <- function(x = NULL, index = NULL, fmsfundata = NULL) {

+ return(list(f = x[1]^2 + x[2]^2, g = c(), c = c(), gc = c(),

+ index = index, this = list(costfargument = fmsfundata)))

+ }

> set.seed(0)

> x0 <- transpose(c(1.2, 1.9))

> nm <- neldermead.new()

> nm <- neldermead.configure(nm, "-numberofvariables", 2)

> nm <- neldermead.configure(nm, "-function", quadratic)

> nm <- neldermead.configure(nm, "-x0", x0)

> nm <- neldermead.configure(nm, "-verbose", 0)

> nm <- neldermead.configure(nm, "-storehistory", TRUE)

> nm <- neldermead.configure(nm, "-verbosetermination", 0)

> nm <- neldermead.configure(nm, "-method", "box")

12

> nm <- neldermead.configure(nm, "-boundsmin", c(1, 1))

> nm <- neldermead.configure(nm, "-boundsmax", c(2, 2))

> nm <- neldermead.search(nm)

> transpose(neldermead.get(nm, "-xopt"))

[,1] [,2]

[1,] 1.000001 1.000001

3.4 Example 4: Optimization with nonlinear inequality constraints

In the following example, we solve Michalewicz’s G6 test problem using Box’s methods [7] 1. This
problem consists in minimizing: G6(x) = (x1 − 10)3 + (x2 − 20)3, given the nonlinear constraints:

c1 : (x1 − 5)2 + (x2 − 5)2 − 100 ≥ 0
c2 : −(x1 − 6)2 − (x2 − 5)2 + 82.81 ≥ 0

and bounds: 13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.
We begin by defining the michalewicz function, which takes 3 input arguments and return

the value of the objective function and the constraint evaluations as the f and c elements of a
list. neldermead.new creates a new neldermead object. Then we use neldermead.configure to
configure the parameters of the problem, including the lower -boundsmin and upper -boundsmax

bounds. The initial simplex is computed from boxnbpoints random points within the bounds.
The variable simplex algorithm by Box is used, which corresponds to the -method ’box’ option.
neldermead.search finally performs the search for the minimum. The starting point ([15 4.99]) like
all the vertices of the optimization simplex must be feasible, i.e. they must satisfy all constraints and
bounds. Constraints are enforced by ensuring that all arguments of c in the cost function output
are positive or null. Note that the boundaries were set to stricter ranges to limit the sensitivity of
the solution to the initial guesses.

> michalewicz <- function(x = NULL, index = NULL, fmsfundata = NULL) {

+ f <- c()

+ c <- c()

+ if (index == 2 | index == 6)

+ f <- (x[1] - 10)^3 + (x[2] - 20)^3

+ if (index == 5 | index == 6)

+ c <- c((x[1] - 5)^2 + (x[2] - 5)^2 - 100, 82.81 -

+ ((x[1] - 6)^2 + (x[2] - 5)^2))

+ varargout <- list(f = f, g = c(), c = c, gc = c(), index = index,

+ this = list(costfargument = fmsfundata))

+ return(varargout)

+ }

> set.seed(0)

> x0 <- transpose(c(15, 4.99))

> nm <- neldermead.new()

> nm <- neldermead.configure(nm, "-numberofvariables", 2)

> nm <- neldermead.configure(nm, "-nbineqconst", 2)

> nm <- neldermead.configure(nm, "-function", michalewicz)

> nm <- neldermead.configure(nm, "-x0", x0)

> nm <- neldermead.configure(nm, "-maxiter", 300)

> nm <- neldermead.configure(nm, "-maxfunevals", 1000)

1Example suggested by Pascal Grandeau

13

> nm <- neldermead.configure(nm, "-simplex0method", "randbounds")

> nm <- neldermead.configure(nm, "-boxnbpoints", 3)

> nm <- neldermead.configure(nm, "-storehistory", TRUE)

> nm <- neldermead.configure(nm, "-method", "box")

> nm <- neldermead.configure(nm, "-boundsmin", c(13, 0))

> nm <- neldermead.configure(nm, "-boundsmax", c(20, 10))

> nm <- neldermead.search(nm)

> transpose(neldermead.get(nm, "-xopt"))

[,1] [,2]

[1,] 14.095 0.8429608

> neldermead.get(nm, "-fopt")

[1] -6961.814

3.5 Example 5: Passing data to the cost function

In the following example, we use a simple example to illustrate how to pass user-defined arguments
to a user-defined cost function. We try to find the mean and standard deviation of some normally
distributed data using maximum likelihood (actually a modifed negative log-likelihood approach) 2.

We begin by defining the negLL function, which takes 3 input arguments and return the value
of the objective function. The random dataset is then generated and stored in the list fmsdundata.
neldermead.new creates a new neldermead object. Then we use neldermead.configure to configure
the parameters of the problem, including costfargument, set to fmsdundata, and the lower -

boundsmin and upper -boundsmax bounds (the standard deviations has to be positive). The variable
simplex algorithm by Box is used. neldermead.search finally performs the search for the minimum.

> negLL <- function(x = NULL, index = NULL, fmsfundata = NULL) {

+ mn <- x[1]

+ sdv <- x[2]

+ out <- -sum(dnorm(fmsfundata$data, mean = mn, sd = sdv,

+ log = TRUE))

+ return(list(f = out, index = index, this = list(costfargument = fmsfundata)))

+ }

> set.seed(12345)

> fmsfundata <- list(data = rnorm(500, mean = 50, sd = 2))

> attr(fmsfundata, "type") <- "T_FARGS"

> x0 <- transpose(c(45, 3))

> nm <- neldermead.new()

> nm <- neldermead.configure(nm, "-numberofvariables", 2)

> nm <- neldermead.configure(nm, "-function", negLL)

> nm <- neldermead.configure(nm, "-x0", x0)

> nm <- neldermead.configure(nm, "-costfargument", fmsfundata)

> nm <- neldermead.configure(nm, "-maxiter", 500)

> nm <- neldermead.configure(nm, "-maxfunevals", 1500)

> nm <- neldermead.configure(nm, "-method", "box")

> nm <- neldermead.configure(nm, "-storehistory", TRUE)

2Example suggested by Mark Taper

14

> nm <- neldermead.configure(nm, "-boundsmin", c(-100, 0))

> nm <- neldermead.configure(nm, "-boundsmax", c(100, 100))

> nm <- neldermead.search(this = nm)

> transpose(neldermead.get(nm, "-xopt"))

[,1] [,2]

[1,] 50.16492 1.978316

> neldermead.get(nm, "-fopt")

[1] 1050.592

3.6 Example 6: Direct grid search

In the following example, we use the Rosenbrock test case introduced as Example 2 to illustrate the
direct grid search capacity of neldermead. We begin by defining the Rosenbrock function, which
takes only one input argument and returns the value of the objective function. We request 6 points
per dimension of the problem and set the range of search around the standard starting point [-1.2
1.0] by providing limits. fmin.gridsearch performs the search and return a table sorted by value
of the cost function.

> rosenbrock <- function(x = NULL) {

+ f <- 100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2

+ }

> x0 <- c(-1.2, 1)

> npts <- 6

> xmin <- c(-2, -2)

> xmax <- c(2, 2)

> fmin.gridsearch(fun = rosenbrock, x0 = x0, xmin = xmin, xmax = xmax,

+ npts = npts, alpha = alpha)

x1 x2 f feasible

22 1.0 1 0.0 1

15 0.0 0 1.0 1

20 -1.0 1 4.0 1

24 -1.2 1 24.2 1

30 -1.2 2 36.2 1

16 1.0 0 100.0 1

28 1.0 2 100.0 1

9 0.0 -1 101.0 1

21 0.0 1 101.0 1

14 -1.0 0 104.0 1

26 -1.0 2 104.0 1

18 -1.2 0 212.2 1

10 1.0 -1 400.0 1

3 0.0 -2 401.0 1

27 0.0 2 401.0 1

29 2.0 2 401.0 1

8 -1.0 -1 404.0 1

25 -2.0 2 409.0 1

15

12 -1.2 -1 600.2 1

4 1.0 -2 900.0 1

23 2.0 1 901.0 1

2 -1.0 -2 904.0 1

19 -2.0 1 909.0 1

6 -1.2 -2 1188.2 1

17 2.0 0 1601.0 1

13 -2.0 0 1609.0 1

11 2.0 -1 2501.0 1

7 -2.0 -1 2509.0 1

5 2.0 -2 3601.0 1

1 -2.0 -2 3609.0 1

4 References

[1] C.T. Kelley. Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics,
Philadelphia, PA, 1999.

[2] J.A. Guin. Discussion and correspondence: modification of the complex method of constrained
optimization. The Computer Journal, 10(4):416–417, 1968.

[3] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal,
7(4):308–313, 1965.

[4] M.J. Box. A New Method of Constrained Optimization and a Comparison With Other Methods.
The Computer Journal, 1(8):42–52, 1965.

[5] R. O’Neill. Algorithm AS47 - Function minimization using a simplex procedure. Applied Statis-
tics, 20:338–345, 1971.

[6] W. Spendley and G.R. Hext and F.R. Himsworth. Sequential Application of Simplex Designs in
Optimisation and Evolutionary Operation. Technometrics, 4:441–461, 1962.

[7] Z. Michalewicz and D.B. Fogel. How to solve it: modern heuristics, chapter Constraint-handling
techniques, pages 231–270. Springer, 2004.

5 Dependencies of fminsearch

We illustrate in the figures below the network of functions of the neldermead, optimbase, and
optimsimplex packages that are called from the fminsearch functions. This large network is broken
down in 6 plots, which are shown in the order functions are called. Green boxes represent functions
that are not expanded on a given plot but on a previous or later one.

16

Figure 1: fminsearch function network (1/6)

17

Figure 2: fminsearch function network (2/6)

18

Figure 3: fminsearch function network (3/6)

19

Figure 4: fminsearch function network (4/6)

20

Figure 5: fminsearch function network (5/6)

21

Figure 6: fminsearch function network (6/6)

22

6 Help on neldermead functions

neldermead-package R port of the Scilab neldermead module

Description

The goal of this package is to provide a Nelder-Mead direct search optimization method. That
Nelder-Mead algorithm may be used in the following optimization context:

• there is no need to provide the derivatives of the objective function,

• the number of parameters is small (up to 10-20),

• there are bounds and/or non linear constraints.

Design

This package provides the following components:

• neldermead provides various Nelder-Mead variants and manages for Nelder-Mead specific
settings, such as the method to compute the initial simplex, the specific termination criteria,

• fminsearch provides a simplified Nelder-Mead algorithm. Specific termination criteria,
initial simplex and auxiliary settings are automatically configured.

• optimset, optimget provide commands to emulate their Scilab counterparts.

• optimplotfunccount, optimplotx and optimplotfval provide plotting features for the
fminsearch function (Not implemented yet).

• nmplot provides a high-level component which provides directly output pictures for Nelder-
Mead algorithm. (Not implemented yet).

The current component is based on the following packages

• optimbase: provides an abstract class for a general optimization component, including
the number of variables, the minimum and maximum bounds, the number of non linear
inequality constraints, the loggin system, various termination criteria, the cost function,
etc...

• optimsimplex: provides a class to manage a simplex made of an arbitrary number of ver-
tices, including the computation of a simplex by various methods (axes, regular, Pfeffer’s,
randomized bounds), the computation of the size by various methods (diameter, sigma+,
sigma-, etc...),

Features

The following is a list of features the Nelder-Mead prototype algorithm currently provides:

• Provides 3 algorithms, including

– the fixed shape algorithm of Spendley et al.,

– the variable shape algorithm of Nelder and Mead,

– Box’s ’complex’ algorithm managing bounds and nonlinear inequality constraints based
on arbitrary number of vertices in the simplex.

23

• Manage various simplex initializations:

– initial simplex given by user,

– initial simplex computed with a length and along the coordinate axes,

– initial regular simplex computed with formula of Spendley et al.,

– initial simplex computed by a small perturbation around the initial guess point.

• Manage cost function:

– optionnal additionnal argument,

– direct communication of the task to perform: cost function or inequality constraints.

• Manage various termination criteria, including maximum number of iterations, tolerance
on function value (relative or absolute):

– tolerance on x (relative or absolute),

– tolerance on standard deviation of function value (original termination criteria in Box
1965),

– maximum number of evaluations of cost function,

– absolute or relative simplex size.

• Manage the history of the convergence, including:

– history of function values,

– history of optimum point,

– history of simplices,

– history of termination criterias.

• Provide a plot command which allows to graphically see the history of the simplices toward
the optimum (Not yet implemented).

• Provide query features for the status of the optimization process: number of iterations,
number of function evaluations, status of execution, function value at initial point, function
value at optimal point, etc...

• Kelley restart based on simplex gradient.

• O’Neill restart based on factorial search around optimum.

Details

Package: neldermead
Type: Package
Version: 1.0-5
Date: 2011-01-15
License: CeCILL-2
LazyLoad: yes

See vignette(’neldermead’,package=’neldermead’) for more information.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

24

References

’Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation’, Spend-
ley, W. and Hext, G. R. and Himsworth, F. R., American Statistical Association and American
Society for Quality, 1962

’A Simplex Method for Function Minimization’, Nelder, J. A. and Mead, R., The Computer
Journal, 1965

’A New Method of Constrained Optimization and a Comparison With Other Methods’, M. J.
Box, The Computer Journal 1965 8(1):42-52, 1965 by British Computer Society

’Discussion and correspondence: modification of the complex method of constrained optimiza-
tion’, J. A. Guin, The Computer Journal, 1968

’Detection and Remediation of Stagnation in the Nelder–Mead Algorithm Using a Sufficient
Decrease Condition’, Kelley C. T., SIAM J. on Optimization, 1999

’Iterative Methods for Optimization’, C. T. Kelley, SIAM Frontiers in Applied Mathematics,
1999

’Algorithm AS47 - Function minimization using a simplex procedure’, O’Neill, R., Applied
Statistics, 1971

See Also

optimbase optimsimplex

costf.transposex Cost Function Call

Description

Call the cost function after transposition of the value of the point estimate x, so that the input
row vector, given by optimsimplex, is transposed into a column vector as required by the cost
function.

Usage

costf.transposex(x = NULL, this = NULL)

Arguments

x The point estimate provide as a row matrix.

this A neldermead object.

Value

Return the value of the cost function (called by neldermead.costf.)

25

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.costf

fmin.gridsearch Grid evaluation of an unconstrained cost function

Description

Evaluate an unconstrained cost function on a grid of points around a given initial point estimate.

Usage

fmin.gridsearch(fun = NULL, x0 = NULL, xmin = NULL,

xmax = NULL, npts = 3, alpha = 10)

Arguments

fun An unconstrained cost function returning a numeric scalar, similar to those
used in the fminsearch function.

x0 The initial point estimate, provided as a numeric vector.

xmin Optional: a vector of lower bounds.

xmax Optional: a vector of upper bounds.

npts An integer scalar greater than 2, indicating the number of evaluation points
will be used on each dimension to build the search grid.

alpha A vector of numbers greater than 1, which give the factor(s) used to calculate
the evaluation range of each dimension of the search grid (see Details). If
alpha length is lower than that of x0, elements of alpha are recycled. If its
length is higher than that of x0, alpha is truncated.

Details

fmin.gridsearch evaluates the cost function at each point of a grid of npts^length(x0) points.
If lower (xmin) and upper (xmax) bounds are provided, the range of evaluation points is limited
by those bounds and alpha is not used. Otherwise, the range of evaluation points is defined as
[x0/alpha,x0*alpha].

The actual evaluation of the cost function is delegated to optimbase.gridsearch.

Value

Return a data.frame with the coordinates of the evaluation point, the value of the cost func-
tion and its feasibility. Because the cost function is unconstrained, it is always feasible. The
data.frame is ordered by feasibility and increasing value of the cost function.

26

Author(s)

Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminsearch, optimbase.gridsearch

fminsearch.function fminsearch Cost Function Call

Description

This function calls the cost function and makes it match neldermead requirements. It is used in
the fminsearch function as the function element of the neldermead object (see ?neldermead.new
and ?neldermead.configure).

Usage

fminsearch.function(x = NULL, index = NULL, fmsfundata = NULL)

Arguments

x A single column vector of parameter estimates.

index An integer variable set to 2, indicating that only the cost function is to be
computed by the algorithm.

fmsfundata A list with a type attribute set to ’T FARGS’ and with (at least) a fun element,
which contain the user-defined cost function.

Value

Returns a list with the following elements:

f The value of the cost function at the current point estimate.

index The same index variable.

this A list with a single element costargument which contains fmsfundata.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminsearch, neldermead.new, neldermead.configure,

27

fminsearch.outputfun fminsearch Output Function Call

Description

This function calls the output function and make it match neldermead requirements. It is
used in the fminsearch function as the outputcommand element of the neldermead object (see
?neldermead.new and ?neldermead.configure).

Usage

fminsearch.outputfun(state = NULL, data = NULL, fmsdata = NULL)

Arguments

state The current state of the algorithm either ’init’, ’iter’ or ’done’.

data The data at the current state. This is a list with a ’type’ attribute set to
’T NMDATA’ and with the following elements:

x The current parameter estimates.

fval The current value of the cost function.

simplex The current simplex object.

iteration The number of iterations performed.

funccount The number of function evaluations.

step The type of step in the previous iteration.

fmsdata This is a list with a ’type’ attribute set to ’T FARGS’ which contains specific
data of the fminsearch algorithm:

Display what to display

OutputFcn the array of output functions

PlotFcns the array of plot functions

Value

This function does not return any data, but execute the output function(s).

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminsearch, neldermead.new, neldermead.configure,

28

fminsearch Computation of the unconstrained minimimum of given function with
the Nelder-Mead algorithm.

Description

This function searches for the unconstrained minimum of a given cost function. The provided
algorithm is a direct search algorithm, i.e. an algorithm which does not use the derivative
of the cost function. It is based on the update of a simplex, which is a set of k>=n+1 ver-
tices, where each vertex is associated with one point and one function value. This algorithm
is the Nelder-Mead algorithm. This function is based on a specialized use of the more general
neldermead function bundle. Users who want to have a more flexible solution based on direct
search algorithms should consider using the neldermead functions instead of the fminsearch

function.

Usage

fminsearch(fun = NULL, x0 = NULL, options = NULL)

Arguments

fun A cost function return a numeric scalar.

x0 A numerical vector of initial guesses (length n).

options A list of optimization options, which drives the behaviour of fminsearch.
These options must be set with the optimset function (see ?optimset) which
returns a list with the following elements:

MaxIter The maximum number of iterations. The default is 200 * n.

MaxFunEvals The maximum number of evaluations of the cost function.
The default is 200 * n.

TolFun The absolute tolerance on function value. The default value is 1.e-4.

TolX The absolute tolerance on simplex size. The default value is 1.e-4.

Display The verbose level.

OutputFcn The output function, or a list of output functions called at the
end of each iteration. The default value is NULL.

PlotFcns The plot function, or a list of plotput functions called at the end
of each iteration. The default value is empty.

Details

Termination criteria

In this section, we describe the termination criteria used by fminsearch. The criteria is based
on the following variables:

ssize the current simplex size,

shiftfv the absolute value of the difference of function value between the highest and lowest
vertices.

29

If both ssize < options$TolX and shiftfv < options$TolFun conditions are true, then the
iterations stop. The size of the simplex is computed using the ’sigmaplus’ method of the optim-
simplex package. The ’sigmamplus’ size is the maximum length of the vector from each vertex
to the first vertex. It requires one loop over the vertices of the simplex.

The initial simplex

The fminsearch algorithm uses a special initial simplex, which is an heuristic depending on the
initial guess. The strategy chosen by fminsearch corresponds to the content of simplex0method
element of the neldermead pbject (set to ’pfeffer’). It is applied using the content of the
simplex0deltausual (0.05) and simplex0deltazero (0.0075) elements. Pfeffer’s method is
an heuristic which is presented in ’Global Optimization Of Lennard-Jones Atomic Clusters’ by
Ellen Fan. It is due to L. Pfeffer at Stanford. See in the help of optimsimplex for more details.

The number of iterations

In this section, we present the default values for the number of iterations in fminsearch.

The options input argument is an optionnal list which can contain the MaxIter field, which
stores the maximum number of iterations. The default value is 200n, where n is the number
of variables. The factor 200 has not been chosen by chance, but is the result of experiments
performed against quadratic functions with increasing space dimension. This result is presented
in ’Effect of dimensionality on the nelder-mead simplex method’ by Lixing Han and Michael
Neumann. This paper is based on Lixing Han’s PhD, ’Algorithms in Unconstrained Optimiza-
tion’. The study is based on numerical experiments with a quadratic function where the number
of terms depends on the dimension of the space (i.e. the number of variables). Their study
showed that the number of iterations required to reach the tolerance criteria is roughly 100n.
Most iterations are based on inside contractions. Since each step of the Nelder-Mead algorithm
only require one or two function evaluations, the number of required function evaluations in this
experiment is also roughly 100n.

Output and plot functions

The optimset function can be used to configure one or more output and plot functions. The
output or plot function is expected to have the following definition:

myfun <- function(x , optimValues , state)

The input arguments x, optimValues and state are described in detail in the optimset help
page. The optimValues$procedure field represents the type of step preformed at the current
iteration and can be equal to one of the following strings:

• ” (the empty string),

• ’initial simplex’,

• ’expand’,

• ’reflect’,

• ’contract inside’,

• ’contract outside’.

Value

Return a list with the following fields:

x The vector of n numeric values, minimizing the cost function.

30

fval The minimum value of the cost function.

exitflag The flag associated with exist status of the algorithm. The following values are avail-
able:

-1 The maximum number of iterations has been reached.

0 The maximum number of function evaluations has been reached.

1 The tolerance on the simplex size and function value delta has been reached. This
signifies that the algorithm has converged, probably to a solution of the problem.

output A list which stores detailed information about the exit of the algorithm. This list
contains the following fields:

algorithm A string containing the definition of the algorithm used, i.e. ’Nelder-Mead
simplex direct search’.

funcCount The number of function evaluations.

iterations The number of iterations.

message A string containing a termination message.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

References

’Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation’, Spend-
ley, W. and Hext, G. R. and Himsworth, F. R., American Statistical Association and American
Society for Quality, 1962

’A Simplex Method for Function Minimization’, Nelder, J. A. and Mead, R., The Computer
Journal, 1965

’Iterative Methods for Optimization’, C. T. Kelley, SIAM Frontiers in Applied Mathematics,
1999

’Algorithm AS47 - Function minimization using a simplex procedure’, O’Neill, R., Applied
Statistics, 1971

’Effect of dimensionality on the nelder-mead simplex method’, Lixing Han and Michael Neu-
mann, Optimization Methods and Software, 21, 1, 1–16, 2006.

’Algorithms in Unconstrained Optimization’, Lixing Han, Ph.D., The University of Connecticut,
2000.

’Global Optimization Of Lennard-Jones Atomic Clusters’ Ellen Fan, Thesis, February 26, 2002,
McMaster University

See Also

optimset

31

Examples

#In the following example, we use the fminsearch function to compute the minimum

#of the Rosenbrock function. We first define the function 'banana', and then use

#the fminsearch function to search the minimum, starting with the initial guess

#(-1.2, 1.0). In this particular case, 85 iterations are performed with 159

#function evaluations

banana <- function(x){

y <- 100*(x[2]-x[1]^2)^2 + (1-x[1])^2

}

sol <- fminsearch(banana, c(-1.2,1))

sol

#In the following example, we configure the absolute tolerance on the size of

#the simplex to a larger value, so that the algorithm performs less iterations.

#Since the default value of 'TolX' for the fminsearch function is 1.e-4, we

#decide to use 1.e-2. The optimset function is used to create an optimization

#option list and the field 'TolX' is set to 1.e-2. The options list is then

#passed to the fminsearch function as the third input argument. In this

#particular case, the number of iterations is 70 with 130 function evaluations.

opt <- optimset(TolX=1.e-2)

sol <- fminsearch(banana, c(-1.2,1), opt)

sol

#In the following example, we want to produce intermediate outputs of the

#algorithm. We define the outfun function, which takes the current point x as

#input argument. The function plots the current point into the current graphic

#window with the plot function. We use the 'OutputFcn' feature of the optimset

#function and set it to the output function. Then the option list is passed

#to the fminsearch function. At each iteration, the output function is called

#back, which creates and update a plot. While this example creates a 2D plot,

#the user may customized the output function so that it writes a message in

#the console, write some data into a data file, etc... The user can distinguish

#between the output function (associated with the 'OutputFcn' option) and the

#plot function (associated with the 'PlotFcns' option). See the optimset for

#more details on this feature.

outfun <- function(x, optimValues, state){

plot(x[1],x[2],xlim=c(-1.5,1.5),ylim=c(-1.5,1.5))

par(new=TRUE)

}

opt <- optimset(OutputFcn=outfun)

sol <- fminsearch(banana, c(-1.2,1), opt)

sol

#The 'Display' option allows to get some input about the intermediate steps of

#the algorithm as well as to be warned in case of a convergence problem.

#In the following example, we present what happens in case of a convergence

#problem. We set the number of iterations to 10, instead of the default 400

#iterations. We know that 85 iterations are required to reach the convergence

#criteria. Therefore, the convergence criteria is not met and the maximum number

#of iterations is reached.

32

opt <- optimset(MaxIter=10)

sol <- fminsearch(banana, c(-1.2,1), opt)

#Since the default value of the 'Display' option is 'notify', a message is

#generated, which warns the user about a possible convergence problem. The

#previous script produces the following output.

Exiting: Maximum number of iterations has been exceeded

- increase MaxIter option.

Current function value: 4.1355598

#In the following example, we present how to display intermediate steps used by

#the algorithm. We simply set the 'Display' option to the 'iter' value. This

#option allows to see the number of function evaluations, the minimum function

#value and which type of simplex step is used for the iteration.

opt <- optimset(Display='iter')
sol <- fminsearch(banana, c(-1.2,1), opt)

sol

neldermead.algo Nelder-Mead Algorithm

Description

neldermead.algo performs an optimization without restart using the method associated with
the method element of the neldermead object; neldermead.fixed, neldermead.variable, neldermead.box,
boxlinesearch, neldermead.storehistory, neldermead.termination, and neldermead.interpolate

are utility functions for neldermead.algo.

Usage

neldermead.algo(this = NULL)

neldermead.fixed(this = NULL)

neldermead.variable(this = NULL)

neldermead.box(this = this)

boxlinesearch(this = NULL, n = NULL, xbar = NULL, xhigh = NULL, fhigh = NULL,

rho = NULL)

neldermead.storehistory(this = NULL, n = NULL, fopt = NULL, xopt = NULL,

xcoords = NULL)

neldermead.termination(this = NULL, fvinitial = NULL, oldfvmean = NULL,

newfvmean = NULL, previousxopt = NULL,

currentxopt = NULL, simplex = NULL)

neldermead.interpolate(x1 = NULL, x2 = NULL, fac = NULL)

Arguments

this A neldermead object.

n Number of variables.

33

xbar The centroid.

xhigh The high point.

fhigh The value of the cost function at xhigh.

rho The reflection factor.

fopt The current value of the function at the current optimum point estimate.

xopt The current optimum point estimate.

xcoords Matrix of size n x n+1, coordinates of the n+1 vertices

fvinitial The initial cost function value.

oldfvmean The old cost function value average on the simplex.

newfvmean The new cost function value average on the simplex.

previousxopt The previous point estimate.

currentxopt The current point estimate.

simplex The simplex. The best point estimate in the simplex is expected to be stored
at 1, while the worst point estimate in the simplex is expected to be stored at
n+1.

x1 The first reference point estimate to perform the interpolation.

x2 The second reference point estimate to perform the interpolation.

fac A factor to perform the interpolation.

Details

neldermead.fixed The simplex algorithm with fixed size simplex. We implement the following
’rules’ of the method of Spendley et al.

• Rule 1 is strictly applied, but the reflection is done by reflection of the high point, since
we minimize a function instead of maximizing it, like Spendley.

• Rule 2 is NOT implemented, as we expect that the function evaluation is not subject
to errors.

• Rule 3 is applied, i.e. reflection with respect to next to high point. A shrink step is
included, with shrinkage factor sigma.

Rule 1. Ascertain the lowest reading y, of yi ... Yk+1 Complete a new simplex Sp by
excluding the point Vp corresponding to y, and replacing it by V* defined as above.

Rule 2. If a result has occurred in (k + 1) successive simplexes, and is not then eliminated
by application of Rule 1, do not move in the direction indicated by Rule 1, or at all, but
discard the result and replace it by a new observation at the same point.

Rule 3. If y is the lowest reading in So , and if the next observation made, y* , is the lowest
reading in the new simplex S , do not apply Rule 1 and return to So from Sp . Move out
of S, by rejecting the second lowest reading (which is also the second lowest reading in So).

neldermead.variable The original Nelder-Mead algorithm, with variable-size simplex.

neldermead.box The Nelder-Mead algorithm, with variable-size simplex and modifications by
Box for bounds and inequality constraints.

boxlinesearch Called by neldermead.box, i.e. Box’s method. Perform a line search from xbar,
on the line (xhigh,xbar). The reflected point estimate satisfies the following constraints:

34

• fr < fhigh

• xr satisfies the bounds constraints

• xr satisfies the nonlinear positive inequality constraints

• xr satisfies the linear positive inequality constraints

The method is based on projection and scaling toward the centroid.

neldermead.storehistory Store the optimization history into the neldermead object.

neldermead.termination Determine if the algorithm must continue or terminate. The function
uses the cost function average in the simplex instead of the best cost function value. This
is because the function average changes at each iteration. Instead, the best function value
has a step-by-step evolution and may not change between two successive iterations, leading
to a stop of the algorithm.

neldermead.interpolate Compute the point estimate xi as an interpolation between x1 and
x2, as follows: xi = (1+fac)x1 - fac*x2

Value

neldermead.fixed, neldermead.variable, and neldermead.box Return the updated nelder-
mead object, containing the optimum point estimate.

boxlinesearch Return a list with the following elements:

this The updated neldermead object.

status TRUE if the search is successful, FALSE otherwise.

xr The reflected point estimate.

fr The value of the cost function at xr.

neldermead.storehistory Return the updated neldermead object.

neldermead.termination Return a list with the following elements:

this The updated neldermead object

terminate TRUE if the algorithm terminates, FALSE if the algorithm must continue.

status The termination status: ’continue’, ’maxiter’, ’maxfuneval’, ’tolf’, ’tolx’, ’tolsize’,
’tolsizedeltafv’, ’kelleystagnation’, ’tolboxf’, ’tolvariance’ or the user-defined termina-
tion status.

neldermead.interpolate Return a new point estimate, i.e. a column vector.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

35

neldermead.configure Neldermead Object Configuration

Description

Configure the current neldermead object with the given value for the given key.

Usage

neldermead.configure(this = NULL, key = NULL, value = NULL)

Arguments

this The current neldermead object.

key The key to configure. See details for the list of possible keys.

value The value to assign to the key.

Details

neldermead.configure sets the content of the key element of the neldermead object this to
value. If key is a sub-element of this$optbase, value is assigned by optimbase.configure.

The main available keys are the following:

’-verbose’ Set to 1 to enable verbose logging.

’-verbosetermination’ Set to 1 to enable verbose termination logging.

’-x0’ The initial guess, as a n x 1 column vector, where n is the number of variables.

’-maxfunevals’ The maximum number of function evaluations. If this criteria is triggered
during optimization, the status of the optimization is set to ’maxfuneval’.

’-maxiter’ The maximum number of iterations. If this criteria is triggered during optimization,
the status of the optimization is set to ’maxiter’.option

’-tolfunabsolute’ The absolute tolerance for the function value.

’-tolfunrelative’ The relative tolerance for the function value.

’-tolfunmethod’ The method used for the tolerance on function value in the termination cri-
teria. The following values are available: TRUE, FALSE. If this criteria is triggered, the
status of the optimization is set to ’tolf’.

’-tolxabsolute’ The absolute tolerance on x.

’-tolxrelative’ The relative tolerance on x.

’-tolxmethod’ The method used for the tolerance on x in the termination criteria. The follow-
ing values are available: TRUE, FALSE. If this criteria is triggered during optimization,
the status of the optimization is set to ’tolx’.

’-function’ The objective function, which computes the value of the cost and the non linear
constraints, if any. See vignette(’neldermead’,package=’neldermead’) for the details
of the communication between the optimization system and the cost function.

36

’-costfargument’ An additionnal argument, passed to the cost function.

’-outputcommand’ A command which is called back for output. See vignette(’neldermead’,package=’neldermead’)
for the details of the communication between the optimization system and the output com-
mand function.

’-outputcommandarg’ An additionnal argument, passed to the output command.option

’-numberofvariables’ The number of variables to optimize.

’-storehistory’ Set to TRUE to enable the history storing.

’-boundsmin’ The minimum bounds for the parameters.

’-boundsmax’ The maximum bounds for the parameters.

’-nbineqconst’ The number of inequality constraints.

’-method’ The name of the algorithm to use. The following methods are available:

’fixed’ the fixed simplex shape algorithm of Spendley et al. This algorithm is for uncon-
strained problems (i.e. bounds and non linear constraints are not taken into account)

’variable’ the variable simplex shape algorithm of Nelder and Mead. This algorithm is
for unconstrained problems (i.e. bounds and non linear constraints are not taken into
account)

’box’ Box’s complex algorithm. This algorithm takes into account bounds and nonlinear
inequality constraints.

’mine’ the user-defined algorithm, associated with the mymethod element. See vignette(’neldermead’,package=’neldermead’)
for details.

’-simplex0method’ The method to use to compute the initial simplex. The first vertex in the
simplex is always the initial guess associated with the x0 element. The following methods
are available:

’given’ The coordinates associated with the coords0 element are used to compute the
initial simplex, with arbitrary number of vertices. This allows the user to setup the
initial simplex by a specific method which is not provided by the current package (for
example with a simplex computed from a design of experiments). This allows also
to configure the initial simplex so that a specific behaviour of the algorithm is to be
reproduced (for example the Mac Kinnon test case). The given matrix is expected to
have nbve rows and n columns, where n is the dimension of the problem and nbve is
the number of vertices.

’axes’ The simplex is computed from the coordinate axes and the length associated with
the simplex0length element.

’spendley’ The simplex is computed so that it is regular with the length associated with
the simplex0length element (i.e. all the edges have the same length).

’pfeffer’ The simplex is computed from an heuristic, in the neighborhood of the initial
guess. This initial simplex depends on the -simplex0deltausual and -simplex0deltazero.

’randbounds’ The simplex is computed from the bounds and a random number. This
option is available only if bounds are available: if bounds are not available, an error
is generated. This method is usually associated with Box’s algorithm. The number of
vertices in the simplex is taken from the boxnbpoints element.

’-coords0’ The coordinates of the vertices of the initial simplex. If the simplex0method element
is set to ’given’, these coordinates are used to compute the initial simplex. This matrix is
expected to have shape nbve x n, where nbve is the number of vertices and n is the number
of variables.

37

’-simplex0length’ The length to use when the initial simplex is computed with the ’axes’ or
’spendley’ methods. If the initial simplex is computed from ’spendley’ method, the length
is expected to be a scalar value. If the initial simplex is computed from ’axes’ method, it
may be either a scalar value or a vector of values, of length n, where n is the number of
variables.

’-simplex0deltausual’ The relative delta for non-zero parameters in ’pfeffer’ method.

’-simplex0deltazero’ The absolute delta for non-zero parameters in ’pfeffer’ method.

’-rho’ The reflection coefficient. This parameter is used when the method element is set to
’fixed’ or ’variable’.

’-chi’ The expansion coefficient. This parameter is used when the method element is set to
’variable’.

’-gamma’ The contraction coefficient. This parameter is used when the method element is set
to ’variable’.

’-sigma’ The shrinkage coefficient. This parameter is used when the method element is set to
’fixed’ or ’variable’.

’-tolsimplexizemethod’ Set to FALSE to disable the tolerance on the simplex size. If this
criteria is triggered, the status of the optimization is set to ’tolsize’. When this criteria is
enabled, the values of the tolsimplexizeabsolute and tolsimplexizerelative elements
are used in the termination criteria. The method to compute the size is the ’sigmaplus’
method.

’-tolsimplexizeabsolute’ The absolute tolerance on the simplex size.

’-tolsimplexizerelative’ The relative tolerance on the simplex size.

’-tolssizedeltafvmethod’ Set to TRUE to enable the termination criteria based on the size of
the simplex and the difference of function value in the simplex. If this criteria is triggered,
the status of the optimization is set to ’tolsizedeltafv’. This termination criteria uses the
values of the tolsimplexizeabsolute and toldeltafv elements.option

’-toldeltafv’ The absolute tolerance on the difference between the highest and the lowest func-
tion values.

’-tolvarianceflag’ Set to TRUE to enable the termination criteria based on the variance of
the function value. If this criteria is triggered, the status of the optimization is set to
’tolvariance’. This criteria is suggested by Nelder and Mead.

’-tolabsolutevariance’ The absolute tolerance on the variance of the function values of the
simplex.

’-tolrelativevariance’ The relative tolerance on the variance of the function values of the
simplex.

’-kelleystagnationflag’ Set to TRUE to enable the termination criteria using Kelley’s stagna-
tion detection, based on sufficient decrease condition. If this criteria is triggered, the status
of the optimization is set to ’kelleystagnation’.

’-kelleynormalizationflag’ Set to FALSE to disable the normalization of the alpha coefficient
in Kelley’s stagnation detection, i.e. use the value of the kelleystagnationalpha0 element
as is. Default value is TRUE, i.e. the simplex gradient of the initial simplex is takeoptionn
into account in the stagnation detection.

’-kelleystagnationalpha0’ The parameter used in Kelley’s stagnation detection.

38

’-restartflag’ Set to TRUE to enable the automatic restart of the algorithm.

’-restartdetection’ The method to detect if the automatic restart must be performed. The
following methods are available:

’oneill’ The factorial local optimality test by O’Neill is used. If the test finds a local point
which is better than the computed optimum, a restart is performed.

’kelley’ The sufficient decrease condition by O’Neill is used. If the test finds that the
status of the optimization is ’kelleystagnation’, a restart is performed. This status
may be generated if the -kelleystagnationflag option is set to TRUE.

’-restartmax’ The maximum number of restarts, when automatic restart is enabled via the
-restartflag option.

’-restarteps’ The absolute epsilon value used to check for optimality in the factorial O’Neill
restart detection.

’-restartstep’ The absolute step length used to check for optimality in the factorial O’Neill
restart detection.

’-restartsimplexmethod’ The method to compute the initial simplex after a restart. The
following methods are available.

’given’ The coordinates associated with the coords0 element are used to compute the
initial simplex, with arbitrary number of vertices. This allow the user to setup the
initial simplex by a specific method which is not provided by the current package (for
example with a simplex computed from a design of experiments). This allows also
to configure the initial simplex so that a specific behaviour of the algorithm is to be
reproduced (for example the Mc Kinnon test case). The given matrix is expected to
have nbve rows and n columns, where n is the dimension of the problem and nbve is
the number of vertices.

’axes’ The simplex is computed from the coordinate axes and the length associated with
the -simplex0length option.

’spendley’ The simplex is computed so that it is regular with the length associated with
the -simplex0length option (i.e. all the edges have the same length).

’pfeffer’ The simplex is computed from an heuristic, in the neighborhood of the initial
guess. This initial simplex depends on the -simplex0deltausual and -simplex0deltazero.

’randbounds’ The simplex is computed from the bounds and a random number. This
option is available only if bounds are available: if bounds are not available, an error
is generated. This method is usually associated with Box’s algorithm. The number of
vertices in the simplex is taken from the -boxnbpoints option.

’oriented’ The simplex is computed so that it is oriented, as suggested by Kelley.

’-scalingsimplex0’ The algorithm used to scale the initial simplex into the nonlinear con-
straints. The following two algorithms are provided:

’tox0’ scales the vertices toward the initial guess.

’tocentroid’ scales the vertices toward the centroid, as recommended by Box.

If the centroid happens to be unfeasible, because the constraints are not convex, the scaling
of the initial simplex toward the centroid may fail. Since the initial guess is always feasible,
scaling toward the initial guess cannot fail.

’-boxnbpoints’ The number of points in the initial simplex, when the -simplex0method is set
to ’randbounds’. The value of this option is also use to update the simplex when a restart is

39

performed and the -restartsimplexmethod option is set to ’randbounds’. The default value
is so that the number of points is twice the number of variables of the problem.

’-boxineqscaling’ The scaling coefficient used to scale the trial point for function improvement
or into the constraints of Box’s algorithm.

’-guinalphamin’ The minimum value of alpha when scaling the vertices of the simplex into
nonlinear constraints in Box’s algorithm.

’-boxreflect’ The reflection factor in Box’s algorithm.

’-boxtermination’ Set to TRUE to enable Box’s termination criteria.

’-boxtolf ’ The absolute tolerance on difference of function values in the simplex, suggested by
Box. This tolerance is used if the -boxtermination element is set to TRUE.

’-boxnbmatch’ tThe number of consecutive match of Box’s termination criteria.

’-boxboundsalpha’ The parameter used to project the vertices into the bounds in Box’s algo-
rithm.

’-mymethod’ A user-derined simplex algorithm. See vignette(’neldermead’,package=’neldermead’)
for details.

’-myterminate’ A user-defined terminate function. See vignette(’neldermead’,package=’neldermead’)
for details.

’-myterminateflag’ Set to TRUE to enable the user-defined terminate function.

Value

An updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.new

neldermead.destroy Erase a neldermead object.

Description

neldermead.destroy calls optimbase.destroy and optimsimplex.destroy to erase the con-
tent of this$optbase and this$simplex0.

Usage

neldermead.destroy(this = NULL)

40

Arguments

this A neldermead object.

Value

Return an updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.destroy, optimsimplex.destroy

Get functions Get the value for the given key

Description

Get the value for the given key in a neldermead object.

Usage

neldermead.get(this = NULL, key = NULL)

neldermead.cget(this = NULL, key = NULL)

Arguments

this A neldermead object.

key The name of the key to quiery. The list of available keys for query with
neldermead.get is: ’-historysimplex’, ’-simplexopt’, ’-simplex0’, and ’-restartnb’.
If key is different, the query is delegated to optimbase.get.

The list of available keys for query with neldermead.cget is: ’-method’, ’-
coords0’, ’-simplex0method’, ’-simplex0length’, ’-simplex0deltausual’, ’-simplex0deltazero’,
’-rho’, ’-chi’, ’-gamma’, ’-sigma’, ’-tolsimplexizeabsolute’, ’-tolsimplexizerelative’,
’-tolsimplexizemethod’, ’-toldeltafv’, ’-tolssizedeltafvmethod’, ’-restartmax’, ’-
restarteps’, ’-restartstep’, ’-kelleystagnationflag’, ’-kelleynormalizationflag’, ’-
kelleystagnationalpha0’, ’-restartflag’, ’-restartdetection’, ’-restartsimplexmethod’,
’-checkcostfunction’, ’-boxnbpoints’, ’-boxineqscaling’, ’-scalingsimplex0’, ’-guinalphamin’,
’-boxtermination’, ’-boxtolf’, ’-boxnbmatch’, ’-boxreflect’, ’-mymethod’, ’-myterminate’,
’-myterminateflag’, ’-tolvarianceflag’, ’-tolabsolutevariance’, ’-tolrelativevariance’,
and ’-greedy’. If key is different, the query is delegated to optimbase.cget.

Value

Return the value of the list element key, or an error message if key does not exist.

41

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.configure, optimbase.cget, optimbase.get

neldermead.new Initialize Neldermead Object

Description

Creates a new neldermead object.

Usage

neldermead.new()

Value

Return a new neldermead object, i.e. a list with a ’type’ attribute set to ’T NELDERMEAD’
and containing the following elements:

optbase An optimization object, created by optimbase.new(), i.e. list of ’type’ attribute set
to ’T OPTIMIZATION’ and containing the following elements:

verbose The verbose option, controlling the amount of messages. Set to 0.

x0 The initial guess. Set to NULL.

fx0 The value of the function for the initial guess. Set to NULL.

xopt The optimum parameter. Set to 0.

fopt The optimum function value. Set to 0.

tolfunabsolute The absolute tolerance on function value. Default is 0.

tolfunrelative The relative tolerance on function value. Default is .Machine$double.eps.

tolfunmethod Logical flag for the tolerance on function value in the termination criteria.
This criteria is suitable for functions which minimum is associated with a function
value equal to 0. Set to FALSE.

tolxabsolute The absolute tolerance on x. Set to 0.

tolxrelative The relative tolerance on x. Set to .Machine$double.eps.

tolxmethod Possible values: FALSE, TRUE. Set to TRUE.

funevals The number of function evaluations. Set to 0.

maxfunevals The maximum number of function evaluations. Set to 100.

maxiter The maximum number of iterations. Set to 100.

iterations The number of iterations. Set to 0.

fun The cost function. Set to ”.

42

status The status of the optimization. Set to ”.

historyfopt The vector to store the history for fopt. The values of the cost function will
be stored at each iteration in a new element, so the length of historyfopt at the end
of the optimization should be the number of iterations. Set to NULL.

historyxopt The list to store the history for xopt. The vectors of estimates will be
stored on separated levels of the list, so the length of historyfopt at the end of the
optimization should be the number of iterations. Set to NULL.

verbosetermination The verbose option for termination criteria. Set to 0.

outputcommand The command called back for output. Set to ”.

outputcommandarg The outputcommand argument is initialized as a string. If the user
configure this element, it is expected that a matrix of values or a list is passed so that
the argument is appended to the name of the function. Set to ”.

numberofvariables The number of variables to optimize. Set to 0.

storehistory The flag which enables/disables the storing of the history. Set to FALSE.

costfargument The costf argument is initialized as a string. If the user configure this
element, it is expected that a matrix of values or a list is passed so that the argument
is appended to the name of the function. Set to ”.

boundsmin Minimum bounds for the parameters. Set to NULL.

boundsmax Maximum bounds for the parameters. Set to NULL.

nbineqconst The number of nonlinear inequality constraints. Default is 0.

logfile The name of the log file. Set to ”.

logfilehandle The handle for the log file. Set to 0.

logstartup Set to TRUE when the logging is started up. Set to FALSE.

withderivatives Set to TRUE when the method uses derivatives. Set to FALSE.

method The name of the algorithm to use. Set to ’variable’.

simplex0 A simplex object created by optimsimplex.new()$newobj, i.e. list of type attribute
set to ’T SIMPLEX’ and containing the following elements:

verbose The verbose option, controlling the amount of messages. Set to 0.

x The coordinates of the vertices, with size nbve x n. Set to NULL.

n The dimension of the space. Set to 0.

fv The function values, with size nbve x 1. Set to NULL.

nbve The number of vertices. Set to 0.

simplex0method The method to use to compute the initial simplex. Set to ’axes’.

simplex0length The length to use when the initial simplex is computed with the ’axes’ or
’spendley’ methods. Set to 1.

rho The reflection coefficient. This parameter is used when the method element is set to ’fixed’
or ’variable’. Set to 1.

chi The expansion coefficient. This parameter is used when the method element is set to ’vari-
able’. Set to 2.

gamma The contraction coefficient. This parameter is used when the method element is set to
’variable’. Set to 0.5.

sigma The shrinkage coefficient. This parameter is used when the method element is set to
’fixed’ or ’variable’. Set to 0.5.

43

tolfstdeviation The tolerance for the standard deviation. Set to 0.

tolfstdeviationmethod Set to FALSE.

tolsimplexizeabsolute The absolute tolerance on the simplex size. Set to 0.

tolsimplexizerelative The relative tolerance on the simplex size. Set to .Machine$double.eps.

tolsimplexizemethod Logical flag to enable/disable the tolerance on the simplex size. When
this criteria is enabled, the values of the tolsimplexizeabsolute and tolsimplexizerelative

elements are used in the termination criteria. The method to compute the size is the
’sigmaplus’ method. Set to FALSE.

simplexsize0 Initial size of the simplex, for the tolerance on the simplex size. Set to 0.

toldeltafv The absolute tolerance on the difference between the highest and the lowest function
values. Set to .Machine$double.eps.

tolssizedeltafvmethod Logical flag to enable/disable the termination criteria based on the
size of the simplex and the difference of function value in the simplex. If this criteria is
triggered, the status of the optimization is set to ’tolsizedeltafv’. This termination criteria
uses the values of the tolsimplexizeabsolute and toldeltafv elements. This criteria is
identical to Scilab’s fminsearch. Set to FALSE.

historysimplex The list to store the history for simplex. The simplex will be stored on a
new level of the list at each iteration, so the length of historyfopt at the end of the
optimization should be the number of iterations. Set to NULL.

coords0 The coordinates of the vertices of the initial simplex. If the simplex0method element
is set to ’given’, these coordinates are used to compute the initial simplex. This matrix is
expected to have shape nbve x n where nbve is the number of vertices and n is the number
of variables. Set to NULL.

simplex0deltausual The relative delta for non-zero parameters in ’pfeffer’ method. Set to
0.05.

simplex0deltazero The absolute delta for non-zero parameters in ’pfeffer’ method. Set to
0.0075.

simplexopt The optimum simplex, after one optimization process. Set to NULL.

restartsimplexmethod The method to compute the initial simplex after a restart. Set to
’oriented’.

restartmax The maximum number of restarts, when automatic restart is enabled via the
restartflag element. Set to 3.

restarteps The absolute epsilon value used to check for optimality in the factorial O’Neill
restart detection. Set to .Machine$double.eps.

restartstep The absolute step length used to check for optimality in the factorial O’Neill restart
detection. Set to 1.

kelleystagnationflag Logical flag to enable/disable the termination criteria using Kelley’s
stagnation detection, based on sufficient decrease condition. If this criteria is triggered,
the status of the optimization is set to ’kelleystagnation’. Set to FALSE.,

kelleynormalizationflag Logical flag to enable/disable the normalization of the alpha coeffi-
cient in Kelley’s stagnation detection, i.e. use the value of the kelleystagnationalpha0

element as is. Set to TRUE, i.e. the simplex gradient of the initial simplex is taken into
account in the stagnation detection.

44

kelleystagnationalpha0 The parameter used in Kelley’s stagnation detection. Set to 1.e-4.

kelleyalpha The current value of Kelley’s alpha, after normalization, if required. Set to 1.e-4.

restartnb Number of restarts performed. Set to 0.

restartflag Logical flag to enable/disable the automatic restart of the algorithm. Set to FALSE.

restartdetection The method to detect if the automatic restart must be performed. Set to
’oneill’.

startupflag Set to TRUE when the startup has been performed. Set to FALSE.

boxnbpoints The number of points in the initial simplex, when the simplex0method is set to
’randbounds’. The value of this element is also use to update the simplex when a restart
is performed and the restartsimplexmethod element is set to ’randbounds’. The default
value is so that the number of points is twice the number of variables of the problem. Set
to ’2n’.

boxnbpointseff The effective number of points required in the simplex for Box’s algorithm.
Set to 0.

boxineqscaling The scaling coefficient used to scale the trial point for function improvement
or into the constraints of Box’s algorithm. Set to 0.

checkcostfunction Logical flag to enable/disable the checking of the connection of the cost
function. Set to TRUE.

scalingsimplex0 The algorithm used to scale the initial simplex into the nonlinear constraints.
The following two algorithms are provided:

’tox0’ scales the vertices toward the initial guess.

’tocentroid’ scales the vertices toward the centroid, as recommended by Box.

If the centroid happens to be unfeasible, because the constraints are not convex, the scaling
of the initial simplex toward the centroid may fail. Since the initial guess is always feasible,
scaling toward the initial guess cannot fail. Set to ’tox0’.

guinalphamin The minimum value of alpha when scaling the vertices of the simplex into
nonlinear constraints in Box’s algorithm. Set to 1.e-5.

boxboundsalpha The parameter used to project the vertices into the bounds in Box’s algo-
rithm. Set to 1.e-6.

boxtermination Logical flag to enable/disable Box’s termination criteria. Set to FALSE.

boxtolf The absolute tolerance on difference of function values in the simplex, suggested by
Box. This tolerance is used if the boxtermination element is set to TRUE. Set to 1.e-5.

boxnbmatch The number of consecutive match of Box’s termination criteria. Set to 5.

boxkount Current number of consecutive match. Set to 0.

boxreflect The reflection factor in Box’s algorithm. Set to 1.3.

tolvarianceflag Logical flag to enable/disable the termination criteria based on the variance
of the function value. If this criteria is triggered, the status of the optimization is set to
’tolvariance’. This criteria is suggested by Nelder and Mead. Set to FALSE.

tolabsolutevariance The absolute tolerance on the variance of the function values of the sim-
plex. Set to 0.

tolrelativevariance The relative tolerance on the variance of the function values of the simplex.
Set to .Machine$double.eps.

45

variancesimplex0 Relative tolerance on variance. Set to .Machine$double.eps.

mymethod A user-derined simplex algorithm. Set to NULL.

myterminate A user-defined terminate function. Set to NULL.

myterminateflag Logical flag to enable/disable the user-defined terminate function. Set to
FALSE.

greedy Logical flag to enable/disable greedy Nelder-Mead. Set to FALSE.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimbase.new, optimsimplex.new

neldermead.restart Restart neldermead search.

Description

Update the simplex with neldermead.updatesimp and restart the search with neldermead.search.

Usage

neldermead.restart(this = NULL)

Arguments

this A neldermead object.

Value

Returns an updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

neldermead.updatesimp, neldermead.search,

46

neldermead.search Starts the optimization

Description

Performs the optimization associated with the method associated with the method element of
the neldermead object and find the optimum. If the restartflag element is enabled, automatic
restarts are performed, based on the restartdetection element.

Usage

neldermead.search(this = NULL)

Arguments

this A neldermead object.

Value

Return an updated neldermead object.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

fminsearch, neldermead.new, neldermead.configure,

Secondary search functions

Secondary functions for neldermead.search

Description

Utility functions for neldermead.serch and dependent functions.

47

Usage

neldermead.startup(this = NULL)

neldermead.log(this = NULL, msg = NULL)

neldermead.scaletox0(this = NULL, simplex0 = NULL)

neldermead.scaletocenter(this = NULL, simplex0 = NULL, x0 = NULL)

neldermead.termstartup(this = NULL)

neldermead.outputcmd(this = NULL, state = NULL, simplex = NULL, step = NULL)

neldermead.autorestart(this = NULL)

neldermead.istorestart(this = NULL)

neldermead.isroneill(this = NULL)

neldermead.isrkelley(this = this)

neldermead.updatesimp(this = NULL)

scaleinconstraints(this = NULL, x = NULL, xref = NULL)

neldermead.costf(x = NULL, this = NULL)

Arguments

this A neldermead object.

msg A character string.

simplex0 The initial simplex object.

x0 A column matrix of initial parameters.

state The state of the algorithm, either ’init’, ’done’ or ’iter’.

simplex The current simplex object.

step The type of step performed during the iteration: ’init’, ’done’, ’reflection’, ’ex-
pansion’, ’insidecontraction’, ’outsidecontraction’, ’reflectionnext’ or ’shrink’.

x The point estimate to scale.

xref The reference point estimate.

Details

neldermead.startup Startup the algorithm. Compute the initial simplex, depending on the
content of the simplex0method element of the neldermead object (’given’, ’axes’, ’spendley’,
’pfeffer’ or ’randbounds’).

neldermead.log Print a message to the log file using optimbase.log.

neldermead.scaletox0 Scale the simplex into the nonlinear inequality constraints, if any. Scale
toward x0, which is feasible.

neldermead.scaletocenter Scale the simplex into the nonlinear inequality constraints, if any.
Scale to the centroid of the points which satisfy the constraints. This is Box’s method for
scaling. It is unsure, since the centroid of the points which satisfy the constraints may not
be feasible.

neldermead.termstartup Initialize Kelley’s stagnation detection system when normalization
is required, by computing kelleyalpha. If the simplex gradient is zero, then use alpha0 as
alpha.

neldermead.outputcmd Call the array of user-defined output functions

48

neldermead.autorestart Perform an optimization with automatic restart. The loop processes
for i = 1 to restartmax + 1. This is because a RE-start is performed after one simulation
has been performed, hence the ’RE’.

neldermead.istorestart Determine if the optimization is to restart using neldermead.isroneill

or neldermead.isrkelley depending on the content of the restartdetection element.

neldermead.isroneill Determine if the optimization is to restart. Use O’Neill method as a
criteria for restart. It is an axis-by-axis search for optimality.

neldermead.isrkelley Determine if the optimization is to restart. Use kelleystagnation as
a criteria for restart.

neldermead.updatesimp Update the initial simplex simplex0 for a restart.

scaleinconstraints Given a point reference to scale and a reference point which satisfies the
constraints, scale the point towards the reference point estimate until it satisfies all the
constraints.

neldermead.costf Call the cost function and return the value. This function is given to
the simplex function class as a callback. Input/Output arguments are swapped w.r.t.
optimbase.function, so that it matches the requirements of simplex methods.

Value

neldermead.startup Return an updated neldermead object this.

neldermead.log Return the neldermead object this.

neldermead.scaletox0 Return an updated simplex.

neldermead.scaletocenter Return an updated simplex.

neldermead.termstartup Return an updated neldermead object this.

neldermead.outputcmd Do not return any data, but execute the output function(s).

neldermead.autorestart Return an updated neldermead object this.

neldermead.istorestart Return a list with the following elements:

this The input neldermead object.

istorestart Set to TRUE if the optimization is to restart, to FALSE otherwise.

neldermead.isroneill Return a list with the following elements:

this The input neldermead object.

istorestart Set to TRUE if the optimization is to restart, to FALSE otherwise.

neldermead.isrkelley Return a list with the following elements:

this The input neldermead object.

istorestart Set to TRUE if the optimization is to restart, to FALSE otherwise.

neldermead.updatesimp Return an updated neldermead object this.

scaleinconstraints Return a list with the following elements:

this The updated neldermead object.

isscaled TRUE if the procedure has succeeded before boxnbnlloops, FALSE if it has
failed.

p The scaled parameters.

neldermead.costf Return a list with the following elements:

f The value of the cost function.

this The updated neldermead object.

49

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

optimget Queries an optimization option list

Description

This function allows to make queries on an existing optimization option list. This list must have
been created and updated by the optimset function. The optimget allows to retrieve the value
associated with a given key.

Usage

optimget(options = NULL, key = NULL, value = NULL)

Arguments

options A list created or modifies by optimset.

key A single character string, which should be the name of the field in options to
query (case insensitive).

value A default value.

Details

key is matched against the field names of options using grep and a case-insensitive regular
expression. If key is not found in options, the function returns NULL. If several matches are
found, optimget is stopped.

Value

Return options$key if key is found in options. Return value, otherwise.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimset

Examples

opt <- optimset(method='fminsearch')
optimget(opt,'Display')
optimget(opt,'abc','!@')

50

optimset.method Default set of optimization options

Description

This function returns a default set of optimization options for defined ’methods’; optimset.method
is called by optimset when a method was provided as input. Currently, the only valid method

is ’fminsearch’.

Usage

optimset.method(method = NULL)

Arguments

method A character string.

Value

Returns a list with the following fields: Display, FunValCheck, MaxFunEvals, MaxIter, Output-
Fcn, PlotFcns, TolFun, and TolX.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimset

Examples

optimset.method('fminsearch')
Not run: optimset.method('abc')

optimset Configures and returns an optimization data structure.

Description

This function creates or updates a list which can be used to modify the behaviour of optimization
methods. The goal of this function is to manage the options list with a set of fields (for example,
’MaxFunEvals’, ’MaxIter’, etc...). The user can create a new list with empty fields or create
a new structure with default fields which correspond to a particular algorithm. The user can
also configure each field and set it to a particular value. Finally, the user passes the list to an
optimization function so that the algorithm uses the options configured by the user.

51

Usage

optimset(method = NULL,

Display = NULL,

FunValCheck = NULL,

MaxFunEvals = NULL,

MaxIter = NULL,

OutputFcn = NULL,

PlotFcns = NULL,

TolFun = NULL,

TolX = NULL)

Arguments

method If provided, the method argument overrides all the others and optimset.method

is called. If the content of method is recognized, a defuault set of options are
returned. The only current recognized character string is ’fminsearch’.

Display The verbose level. The default value is ’notify’. The following is a list of
available verbose levels.

’off’ The algorithm displays no message at all.

’notify’ The algorithm displays message if the termination criteria is not
reached at the end of the optimization. This may happen if the maximum
number or iterations of the maximum number of function evaluations is
reached and warns the user of a convergence problem.

’final’ The algorithm displays a message at the end of the optimization, show-
ing the number of iterations, the number of function evaluations and the
status of the optimization. This option includes the messages generated
by the ’notify’ option i.e. warns in case of a convergence problem.

’iter’ The algorithm displays a one-line message at each iteration. This option
includes the messages generated by the ’notify’ option i.e. warns in case
of a convergence problem. It also includes the message generated by the
’final’ option.

FunValCheck A logical flag to enable the checking of function values.

MaxFunEvals The maximum number of evaluations of the cost function.

MaxIter The maximum number of iterations.

OutputFcn A function which is called at each iteration to print out intermediate state of
the optimization algorithm (for example into a log file).

PlotFcns A function which is called at each iteration to plot the intermediate state of
the optimization algorithm (for example into a 2D graphic).

TolFun The absolute tolerance on function value.

TolX The absolute tolerance on the variable x.

Details

Most optimization algorithms require many algorithmic parameters such as the number of iter-
ations or the number of function evaluations. If these parameters are given to the optimization

52

function as input parameters, this forces both the user and the developper to manage many
input parameters. The goal of the optimset function is to simplify the management of input
arguments, by gathering all the parameters into a single list.

While the current implementation of the optimset function only supports the fminsearch

function, it is designed to be extended to as many optimization function as required. Because
all optimization algorithms do not require the same parameters, the data structure aims at
remaining flexible. But, most of the time, most parameters are the same from algorithm to
algorithm, for example, the tolerance parameters which drive the termination criteria are often
the same, even if the termination criteria itself is not the same.

Output and plot functions The ’OutputFcn’ and ’PlotFcns’ options accept as argument a func-
tion (or a list of functions). In the client optimization algorithm, this output or plot function is
called back once per iteration. It can be used by the user to display a message in the console,
write into a file, etc... The output or plot function is expected to have the following definition:

myfun <- function(x, optimValues, state)

where the input parameters are:

x The current point estimate.

optimValues A list which contains the following fields:

funccount The number of function evaluations.

fval The best function value.

iteration The current iteration number.

procedure The type of step performed. This string depends on the specific algorithm (see
fminsearch for details).

state the state of the algorithm. The following states are available:

’init’ when the algorithm is initializing,

’iter’ when the algorithm is performing iterations,

’done’ when the algorithm is terminated.

Value

Return a list with the following fields: Display, FunValCheck, MaxFunEvals, MaxIter, Output-
Fcn, PlotFcns, TolFun, and TolX.

Author(s)

Author of Scilab neldermead module: Michael Baudin (INRIA - Digiteo)

Author of R adaptation: Sebastien Bihorel (<sb.pmlab@gmail.com>)

See Also

optimset.method,fminsearch

Examples

optimset()

optimset(Display='iter')

53

7 CeCILL FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result

of discussions between its authors in order to ensure compliance with

the two main principles guiding its drafting:

* firstly, compliance with the principles governing the distribution

of Free Software: access to source code, broad rights granted to

users,

* secondly, the election of a governing law, French law, with which

it is conformant, both as regards the law of torts and

intellectual property law, and the protection that it offers to

both authors and holders of the economic rights over software.

The authors of the CeCILL (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])

license are:

Commissariat a l'Energie Atomique - CEA, a public scientific, technical

and industrial research establishment, having its principal place of

business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific

and technological establishment, having its principal place of business

at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique -

INRIA, a public scientific and technological establishment, having its

principal place of business at Domaine de Voluceau, Rocquencourt, BP

105, 78153 Le Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users

the right to modify and redistribute the software governed by this

license within the framework of an open source distribution model.

The exercising of these rights is conditional upon certain obligations

for users so as to preserve this status for all subsequent redistributions.

In consideration of access to the source code and the rights to copy,

modify and redistribute granted by the license, users are provided only

with a limited warranty and the software's author, the holder of the

economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying

and/or developing or reproducing the software by the user are brought to

54

the user's attention, given its Free Software status, which may make it

complicated to use, with the result that its use is reserved for

developers and experienced professionals having in-depth computer

knowledge. Users are therefore encouraged to load and test the

suitability of the software as regards their requirements in conditions

enabling the security of their systems and/or data to be ensured and,

more generally, to use and operate it in the same conditions of

security. This Agreement may be freely reproduced and published,

provided it is not altered, and that no provisions are either added or

removed herefrom.

This Agreement may apply to any or all software for which the holder of

the economic rights decides to submit the use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions

commence with a capital letter, they shall have the following meaning:

Agreement: means this license agreement, and its possible subsequent

versions and annexes.

Software: means the software in its Object Code and/or Source Code form

and, where applicable, its documentation, "as is" when the Licensee

accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its

Object Code form and, where applicable, its documentation, "as is" when

it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one

Contribution.

Source Code: means all the Software's instructions and program lines to

which access is required so as to modify the Software.

Object Code: means the binary files originating from the compilation of

the Source Code.

Holder: means the holder(s) of the economic rights over the Initial

Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Contribution.

Licensor: means the Holder, or any other individual or legal entity, who

55

distributes the Software under the Agreement.

Contribution: means any or all modifications, corrections, translations,

adaptations and/or new functions integrated into the Software by any or

all Contributors, as well as any or all Internal Modules.

Module: means a set of sources files including their documentation that

enables supplementary functions or services in addition to those offered

by the Software.

External Module: means any or all Modules, not derived from the

Software, so that this Module and the Software run in separate address

spaces, with one calling the other when they are run.

Internal Module: means any or all Module, connected to the Software so

that they both execute in the same address space.

GNU GPL: means the GNU General Public License version 2 or any

subsequent version, as published by the Free Software Foundation Inc.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the

Licensee of a non-exclusive, transferable and worldwide license for the

Software as set forth in Article 5 hereinafter for the whole term of the

protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and

conditions of this Agreement upon the occurrence of the first of the

following events:

* (i) loading the Software by any or all means, notably, by

downloading from a remote server, or by loading from a physical

medium;

* (ii) the first time the Licensee exercises any of the rights

granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the

characteristics of the Software, to the limited warranty, and to the

fact that its use is restricted to experienced users has been provided

56

to the Licensee prior to its acceptance as set forth in Article 3.1

hereinabove, and the Licensee hereby acknowledges that it has read and

understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by

the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of

protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following

rights over the Software for any or all use, and for the term of the

Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents

protecting all or part of the functions of the Software or of its

components, the Licensor undertakes not to enforce the rights granted by

these patents against successive Licensees using, exploiting or

modifying the Software. If these patents are transferred, the Licensor

undertakes to have the transferees subscribe to the obligations set

forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation

as to its fields of application, with it being hereinafter specified

that this comprises:

1. permanent or temporary reproduction of all or part of the Software

by any or all means and in any or all form.

2. loading, displaying, running, or storing the Software on any or

all medium.

3. entitlement to observe, study or test its operation so as to

57

determine the ideas and principles behind any or all constituent

elements of said Software. This shall apply when the Licensee

carries out any or all loading, displaying, running, transmission

or storage operation as regards the Software, that it is entitled

to carry out hereunder.

5.2 ENTITLEMENT TO MAKE CONTRIBUTIONS

The right to make Contributions includes the right to translate, adapt,

arrange, or make any or all modifications to the Software, and the right

to reproduce the resulting software.

The Licensee is authorized to make any or all Contributions to the

Software provided that it includes an explicit notice that it is the

author of said Contribution and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,

transmit and communicate the Software to the general public on any or

all medium, and by any or all means, and the right to market, either in

consideration of a fee, or free of charge, one or more copies of the

Software by any means.

The Licensee is further authorized to distribute copies of the modified

or unmodified Software to third parties according to the terms and

conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in

Source Code or Object Code form, provided that said distribution

complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is

redistributed, the Licensee allows future Licensees unhindered access to

the full Source Code of the Software by indicating how to access it, it

being understood that the additional cost of acquiring the Source Code

shall not exceed the cost of transferring the data.

58

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes a Contribution to the Software, the terms and

conditions for the distribution of the resulting Modified Software

become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in

source code or object code form, provided that said distribution

complies with all the provisions of the Agreement and is accompanied by:

1. a copy of the Agreement,

2. a notice relating to the limitation of both the Licensor's
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified

Software is redistributed, the Licensee allows future Licensees

unhindered access to the full source code of the Modified Software by

indicating how to access it, it being understood that the additional

cost of acquiring the source code shall not exceed the cost of

transferring the data.

5.3.3 DISTRIBUTION OF EXTERNAL MODULES

When the Licensee has developed an External Module, the terms and

conditions of this Agreement do not apply to said External Module, that

may be distributed under a separate license agreement.

5.3.4 COMPATIBILITY WITH THE GNU GPL

The Licensee can include a code that is subject to the provisions of one

of the versions of the GNU GPL in the Modified or unmodified Software,

and distribute that entire code under the terms of the same version of

the GNU GPL.

The Licensee can include the Modified or unmodified Software in a code

that is subject to the provisions of one of the versions of the GNU GPL,

and distribute that entire code under the terms of the same version of

the GNU GPL.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

59

The Holder owns the economic rights over the Initial Software. Any or

all use of the Initial Software is subject to compliance with the terms

and conditions under which the Holder has elected to distribute its work

and no one shall be entitled to modify the terms and conditions for the

distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at

least by this Agreement, for the duration set forth in Article 4.2.

6.2 OVER THE CONTRIBUTIONS

The Licensee who develops a Contribution is the owner of the

intellectual property rights over this Contribution as defined by

applicable law.

6.3 OVER THE EXTERNAL MODULES

The Licensee who develops an External Module is the owner of the

intellectual property rights over this External Module as defined by

applicable law and is free to choose the type of agreement that shall

govern its distribution.

6.4 JOINT PROVISIONS

The Licensee expressly undertakes:

1. not to remove, or modify, in any manner, the intellectual property

notices attached to the Software;

2. to reproduce said notices, in an identical manner, in the copies

of the Software modified or not.

The Licensee undertakes not to directly or indirectly infringe the

intellectual property rights of the Holder and/or Contributors on the

Software and to take, where applicable, vis-a-vis its staff, any and all

measures required to ensure respect of said intellectual property rights

of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to

provide technical assistance or maintenance services for the Software.

60

However, the Licensor is entitled to offer this type of services. The

terms and conditions of such technical assistance, and/or such

maintenance, shall be set forth in a separate instrument. Only the

Licensor offering said maintenance and/or technical assistance services

shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under

its sole responsibility, a warranty, that shall only be binding upon

itself, for the redistribution of the Software and/or the Modified

Software, under terms and conditions that it is free to decide. Said

warranty, and the financial terms and conditions of its application,

shall be subject of a separate instrument executed between the Licensor

and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be

entitled to claim compensation for any direct loss it may have suffered

from the Software as a result of a fault on the part of the relevant

Licensor, subject to providing evidence thereof.

8.2 The Licensor's liability is limited to the commitments made under

this Agreement and shall not be incurred as a result of in particular:

(i) loss due the Licensee's total or partial failure to fulfill its

obligations, (ii) direct or consequential loss that is suffered by the

Licensee due to the use or performance of the Software, and (iii) more

generally, any consequential loss. In particular the Parties expressly

agree that any or all pecuniary or business loss (i.e. loss of data,

loss of profits, operating loss, loss of customers or orders,

opportunity cost, any disturbance to business activities) or any or all

legal proceedings instituted against the Licensee by a third party,

shall constitute consequential loss and shall not provide entitlement to

any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical

state-of-the-art when the Software was distributed did not enable all

possible uses to be tested and verified, nor for the presence of

possible defects to be detected. In this respect, the Licensee's
attention has been drawn to the risks associated with loading, using,

modifying and/or developing and reproducing the Software which are

reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means,

the suitability of the product for its requirements, its good working

61

order, and for ensuring that it shall not cause damage to either persons

or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled

to grant all the rights over the Software (including in particular the

rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied "as is" by

the Licensor without any other express or tacit warranty, other than

that provided for in Article 9.2 and, in particular, without any warranty

as to its commercial value, its secured, safe, innovative or relevant

nature.

Specifically, the Licensor does not warrant that the Software is free

from any error, that it will operate without interruption, that it will

be compatible with the Licensee's own equipment and software

configuration, nor that it will meet the Licensee's requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the

Software does not infringe any third party intellectual property right

relating to a patent, software or any other property right. Therefore,

the Licensor disclaims any and all liability towards the Licensee

arising out of any or all proceedings for infringement that may be

instituted in respect of the use, modification and redistribution of the

Software. Nevertheless, should such proceedings be instituted against

the Licensee, the Licensor shall provide it with technical and legal

assistance for its defense. Such technical and legal assistance shall be

decided on a case-by-case basis between the relevant Licensor and the

Licensee pursuant to a memorandum of understanding. The Licensor

disclaims any and all liability as regards the Licensee's use of the

name of the Software. No warranty is given as regards the existence of

prior rights over the name of the Software or as regards the existence

of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations

hereunder, the Licensor may automatically terminate this Agreement

thirty (30) days after notice has been sent to the Licensee and has

remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be

authorized to use, modify or distribute the Software. However, any

licenses that it may have granted prior to termination of the Agreement

shall remain valid subject to their having been granted in compliance

with the terms and conditions hereof.

62

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to

perform the Agreement, that may be attributable to an event of force

majeure, an act of God or an outside cause, such as defective

functioning or interruptions of the electricity or telecommunications

networks, network paralysis following a virus attack, intervention by

government authorities, natural disasters, water damage, earthquakes,

fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke

one or more of the provisions hereof, shall under no circumstances be

interpreted as being a waiver by the interested Party of its right to

invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements,

whether written or oral, between the Parties and having the same

purpose, and constitutes the entirety of the agreement between said

Parties concerning said purpose. No supplement or modification to the

terms and conditions hereof shall be effective as between the Parties

unless it is made in writing and signed by their duly authorized

representatives.

11.4 In the event that one or more of the provisions hereof were to

conflict with a current or future applicable act or legislative text,

said act or legislative text shall prevail, and the Parties shall make

the necessary amendments so as to comply with said act or legislative

text. All other provisions shall remain effective. Similarly, invalidity

of a provision of the Agreement, for any reason whatsoever, shall not

cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions

are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this

Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is

63

protected and may only be modified by the authors of the License, who

reserve the right to periodically publish updates or new versions of the

Agreement, each with a separate number. These subsequent versions may

address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may

only be subsequently distributed under the same version of the Agreement

or a subsequent version, subject to the provisions of Article 5.3.4.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to

endeavor to seek an amicable solution to any disagreements or disputes

that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their

occurrence, and unless emergency proceedings are necessary, the

disagreements or disputes shall be referred to the Paris Courts having

jurisdiction, by the more diligent Party.

Version 2.0 dated 2006-09-05.

64

	Overview
	Description
	Basic object
	The cost function
	The output function
	Termination
	Kelley's stagnation detection
	O'Neill's factorial optimality test
	Implementation notes of the method of Spendley et al.
	Implementation notes on the method of Nelder and Mead
	Box's complex algorithm implementation notes
	User-defined algorithm
	User-defined termination

	Specialized functions
	fminsearch
	Direct grid search

	Examples
	Example 1: Basic use
	Example 2: Customized use
	Example 3: Optimization with bound constraints
	Example 4: Optimization with nonlinear inequality constraints
	Example 5: Passing data to the cost function
	Example 6: Direct grid search

	References
	Dependencies of fminsearch
	Help on neldermead functions
	neldermead-package
	costf.transposex
	fmin.gridsearch
	fminsearch.function
	fminsearch.outputfun
	fminsearch
	neldermead.algo
	neldermead.configure
	neldermead.destroy
	Get functions
	neldermead.new
	neldermead.restart
	neldermead.search
	Secondary search functions
	optimget
	optimset.method
	optimset

	CeCILL FREE SOFTWARE LICENSE AGREEMENT

