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Abstract

The R package mvord implements composite likelihood estimation in the class of mul-
tivariate ordinal regression models with probit and a logit link. A flexible modeling
framework for multiple ordinal measurements on the same subject is set up, which takes
into consideration the dependence among the multiple observations by employing different
error structures. Heterogeneity in the error structure across the subjects can be accounted
for by the package, which allows for covariate dependent error structures. In addition,
regression coefficients and threshold parameters are varying across the multiple response
dimensions in the default implementation. However, constraints can be defined by the
user if a reduction of the parameter space is desired.

Keywords: Composite likelihood, Cross-sectional data, Longitudinal data, Multivariate ordinal
regression model, R.

1. Introduction

The analysis of ordinal data is an important task in various areas of research. One of the most
common settings is the modeling of preferences or opinions (on a scale from, say, poor to very
good or strongly disagree to strongly agree). The scenarios involved range from psychology
(e.g., aptitude and personality testing), marketing (e.g., consumer preferences research) and
economics and finance (e.g., credit risk assessment for sovereigns or firms) to information
retrieval (where documents are ranked by the user according to their relevance) and medical
sciences (e.g., modelling of pain severity or cancer stages).

Most of these applications deal with correlated ordinal data, as typically multiple ordinal mea-
surements or outcomes are available for a collection of subjects or objects (e.g., interviewees
answering different questions, different raters assigning credit ratings to a firm, pain levels
being recorded for patients repeatedly over a period of time, etc.). In such a multivariate
setting, models which can deal with the correlation in the ordinal outcomes are desired. One
possibility is to employ a multivariate ordinal regression model where the marginal distribu-
tion of the subject errors is assumed to be multivariate. Other options are the inclusion of
random-effects in the ordinal regression model and conditional models (Fahrmeir and Tutz
2001).

Several ordinal regression models can be employed for the analysis of ordinal data, with
cumulative link models being the most popular ones (see Tutz 2012; Christensen 2015a).
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Other approaches include continuation-ratio or adjacent-category models (see Agresti 2002,
2010). Different packages to analyze and model ordinal data are available in R ( R Core
Team 2017): For univariate ordinal regression models with fixed effects the function polr()

of the MASS package (Venables and Ripley 2002), the function clm() of the ordinal package
(Christensen 2015b) and the function vglm() of the VGAM package (Yee 2010). Ordinal
regression models which can account for heteroskedasticity can be estimated using package
oglmx (Carroll 2016), while package ordinalNet (Wurm, Rathouz, and Hanlon 2017) offers
tools for model selection by using an elastic net penalty.

While there are sufficient software tools in R which deal with the univariate case, the ready-
to-use packages for dealing with the multivariate case fall behind, mainly due to computa-
tional problems or lack of flexibility in the model specification. However, there are some R

packages which support correlated ordinal data. One-dimensional normally distributed ran-
dom effects in ordinal regression can be handled by the clmm() function of package ordinal

(Christensen 2015b); multiple possibly correlated random effects are implemented in package
mixor (Hedeker, Archer, Nordgren, and Gibbons 2015). Note that this package uses multi-
dimensional quadrature methods and estimation becomes infeasible for increasing dimension
of the random effects. Bayesian multilevel models for ordinal data are implemented in the
package brms (Bürkner 2017). Multivariate ordered probit models, where the subject errors
are assumed to follow a multivariate normal distribution with a general correlation matrix,
can be estimated with package PLordprob (Kenne Pagui, Canale, Genz, and Azzalini 2014),
which uses maximum composite likelihood methods estimation. This package works well for
standard applications but lacks flexibility. For example, the number of levels of the ordinal
responses needs to be equal across all dimensions, threshold and regression coefficients are the
same for all multiple measurements and it does not account for missing observations in the
outcome variable. None of these packages support at the time of writing covariate dependent
error structures.

The motivation of this package lies in a credit risk application, where multiple credit ratings
are assigned by various credit rating agencies (CRAs) to firms over several years. CRAs have
an important role in financial markets, as they deliver subjective assessments or opinions of
an entity’s creditworthiness, which are then used by the other players on the market, such
as investors and regulators, in their decision making process. Entities are assigned to rating
classes by CRAs on an ordinal scale by using both quantitative and qualitative criteria.
Ordinal credit ratings can be seen as a coarser version of an underlying continuous latent
process, which measures creditworthiness. In the literature, this latent variable motivation
has been used in various credit rating models (e.g., Blume, Lim, and Mackinlay 1998; Afonso,
Gomes, and Rother 2009; Alp 2013; Reusens and Croux 2017).

This setting is an example of an application where correlated ordinal data arises naturally.
On the one hand, multiple ratings for one firm at the same point in time can be assumed
to be correlated and on the other hand, given the longitudinal dimension of the data, for
each rater, there is serial dependence in the ratings assigned over several periods. Moreover,
aside from the need of a model class that can handle correlated ordinal data, additional
flexibility is desired due to the following characteristics of the problem at hand: Firstly,
there is heterogeneity in the rating methodology. Raters use different labeling as well as a
different number of rating classes. Secondly, the credit risk measure employed in assessing
creditworthiness can differ among raters (e.g., probability of default versus recovery in case of
default), which leads to heterogeneity in the covariates, as raters might use different variables
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in their rating process and assign different importance to the variables employed. Thirdly, the
data has missing values and is unbalanced, as firms can leave the data set before the end of
the observation period due to various reasons such as default but also because of mergers and
acquisitions, privatizations, etc., or ratings can be withdrawn. Moreover, there are missings
in the multiple ratings, as not all firms are rated by all CRAs at each time point.

The paper and package mvord (Hirk, Hornik, and Vana 2017b) for R aim at providing a
flexible framework for analyzing correlated ordinal data by means of the class of multivariate
ordinal regression models. We offer the following features which (to the best of our knowledge)
enhance the currently available software for multivariate ordinal regression models in R:

i Different error structures are available (such as a general, an autoregressive order one, or
an equicorrelation structure for the subject error);

ii we also account for heterogeneity in the error structure among the subjects by allowing
the use of subject-specific covariates in the specification of the error structure;

iii we implement a multivariate logit link for the class of multivariate ordinal regression
models;

iv we allow for outcome specific threshold parameters;

v we allow for outcome specific regression parameters;

vi the user can impose further restrictions on the threshold and regression parameters in
order to achieve a more parsimonious model (e.g., using one set of thresholds for all
outcome dimensions);

vii we offer the possibility to switch between different parameterizations, which are needed
in ordinal models to ensure identifiability.

This paper is organized as follows: Section 2 provides an overview of the model class and
the estimation procedure, including model specification and identifiability issues. Section 3
presents the main functions of the package. A description of the illustrative data sets used
for exemplifying the functionalities of the package is given in Section 4. A couple of worked
examples are given in Section 5. Section 6 concludes.

2. Model class and estimation

Multivariate ordinal regression models are an appropriate modeling choice when a vector
of correlated ordinal response variables, together with covariates, is observed for each unit
or subject in the sample. The response vector can be composed of different variables, i.e.,
multiple measurements on the same subject (e.g., different credit ratings assigned to a firm
by different CRAs, different survey questions answered by an interviewee, etc.) or repeated
measurements on the same variable at different time points.

2.1. Model specification

Let Yij denote the ordinal observation and xij be a p dimensional vector of covariates for
subject i and outcome j, where i = 1, . . . , n and j ∈ Ji, for Ji a subset of all available
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outcomes J in the data set. Moreover, we denote by q = |J | and qi = |Ji| the number of
elements in the set J and Ji, respectively. Following the cumulative link modeling approach
(McCullagh 1980), the ordinal response Yij is assumed to be a coarser version of a latent
continuous variable Ỹij . The observable categorical outcome Yij and the unobservable latent
variable Ỹij are connected by:

Yij = rij ⇔ θj,rij−1 < Ỹij ≤ θj,rij
, rij ∈ {1, . . . , Kj},

where rij is a category out of Kj ordered categories and θj is a vector of suitable threshold
parameters for outcome j with the following restriction: −∞ < θj,1 < · · · < θj,Kj−1 < ∞.
Note that in this setting binary observations can be treated as ordinal observations with two
categories (Kj = 2).

The following linear model is assumed for the relationship between the latent variable Ỹij and
the vector of covariates xij :

Ỹij = βj0 + x⊤
ijβj + ǫij , (1)

where βj0 is an intercept term, βj = (βj1, . . . , βjp)⊤ is a vector of regression coefficients,
both corresponding to outcome j, and ǫij is a mean zero error term. Note that the number of
ordered categories Kj as well as the threshold parameters θj and the regression coefficients
βj are allowed to vary across outcome dimensions j ∈ J to account for possible heterogeneity
across the response variables. We further assume the n subjects to be independent and that
the error terms are uncorrelated with the covariates.

The dependence among the different responses is accounted for by assuming that, for each
subject i, the vector of error terms ǫi = [ǫij ]j∈Ji

follows a suitable multivariate distribution.
We consider two multivariate distributions which correspond to the multivariate probit and
logit link functions. For the multivariate probit link we assume that the errors follow a
multivariate normal distribution: ǫi ∼ Nqi

(0, Σi). A multivariate logit link is constructed by
employing a multivariate logistic distribution family with univariate logistic margins and a
t copula with certain degrees of freedom. For a vector z = (z1, . . . , zq)⊤, the multivariate
logistic distribution function with ν degrees of freedom, mean µ and covariance matrix Σ is
defined as:

Fν,µ,Σ(z) = tν,R({gν((z1 − µ1)/σ1), . . . , gν((zq − µq)/σq)}⊤), (2)

where tν,R is the q dimensional multivariate t distribution with ν degrees of freedom and
correlation matrix R corresponding to Σ, gν(x) = t−1

ν (exp(x)/(exp(x)+1)), t−1
ν is the quantile

function of the univariate t distribution with ν degrees of freedom and σ2
1, . . . , σ2

q are the
diagonal elements of Σ.

This t copula based multivariate logistic family was proposed by O’Brien and Dunson (2004)
and later also employed by Nooraee, Abegaz, Ormel, Wit, and van den Heuvel (2016) and
Hirk, Hornik, and Vana (2017a), who approximate the distribution by a multivariate t distri-
bution with the degrees of freedom chosen appropriately. The employed distribution family
differs from the conventional multivariate logistic distributions of Gumbel (1961) or Malik
and Abraham (1973) in that it offers a more flexible dependence structure through the corre-
lation matrix of the t copula, while still keeping the log odds interpretation of the regression
coefficients through the univariate logistic margins.



Rainer Hirk, Kurt Hornik and Laura Vana 5

2.2. Identifiability issues

As the absolute scale and the absolute location are not identifiable in ordinal models, further
restrictions on the parameter set need to be imposed. Assuming Σi to be a covariance matrix
with diagonal elements [σ2

ij ]j∈Ji
, only the quantities βj/σij and (θj,rij

−βj0)/σij are identifiable
in the model in Equation 1. Hence, in order to obtain an identifiable model the parameter
set is typically constrained in one of the following ways:

• Fixing the intercept βj0 (e.g., to zero), using flexible thresholds θj and fixing σij (e.g.,
to unity) ∀j ∈ Ji, ∀i ∈ {1, . . . , n};

• Leaving the intercept βj0 unrestricted, fixing one threshold parameter (e.g., θj,1 = 0)
and fixing σij (e.g., to unity) ∀j ∈ Ji, ∀i ∈ {1, . . . , n};

• Fixing the intercept βj0 (e.g., to zero), fixing one threshold parameter (e.g., θj,1 = 0)
and leaving σij unrestricted ∀j ∈ Ji, ∀i ∈ {1, . . . , n};

• Leaving the intercept βj0 unrestricted, fixing two threshold parameters (e.g., θj,1 = 0
and θj,2 = 1) and leaving σij unrestricted ∀j ∈ Ji, ∀i ∈ {1, . . . , n}.1

Note that the first two options are the most commonly used in the literature. All of these
alternative model parameterizations are supported by the mvord package, allowing the user
to choose the most convenient one for each specific application. Table 1 in Section 3.5 gives
an overview on the identifiable parameterizations implemented in the package.

2.3. Error structures

Basic model

The basic multivariate ordinal regression model assumes that the correlation (and possibly
variance, depending on the parameterization) parameters in the distribution function of the
ǫi’s are constant for all subjects i.

Correlation The dependence between the multiple measurements or outcomes can be cap-
tured by different correlation structures. Among them, we concentrate on the following three:

• the general correlation structure assumes different correlation parameters between pairs
of outcomes corr(ǫik, ǫil) = ρkl;

• the equicorrelation structure corr(ǫik, ǫil) = ρ implies that the correlation between all
pairs of outcomes is constant;

• when faced with longitudinal data, especially when moderate to long subject-specific
time series are available, an AR(1) autoregressive correlation model of order one can be
employed. For given equally spaced time points t1, t2, . . . , tq this AR(1) error structure
implies an exponential decay in the correlation with the lag. If tk and tl are the time
points when Yik and Yil are observed, then corr(ǫik, ǫil) = ρ|tk−tl|.

1Note that this parameterization cannot be applied to the binary case.
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Variance If a parameterization which supports the estimation of the variance of the latent
processes is used (see Section 2.2), it is assumed that VAR(ǫij) = σ2

j .

Extending the basic model

In some applications, the constant correlation (and variance) structure across subjects may
be too restrictive. We hence extend the basic model by allowing the use of covariates in the
correlation (and variance) specifications.

Correlation For each subject i and each pair (k, l) from the set Ji, the correlation parameter
ρikl is assumed to depend on a vector si of m subject-specific covariates. The hyperbolic
tangent transformation allows us to reparameterize the linear term α0kl + s⊤

i αkl in terms of
a correlation parameter:

1

2
log

(
1 + ρikl

1 − ρikl

)
= α0kl + s⊤

i αkl, ρikl =
e2(α0kl+s⊤

i
αkl) − 1

e2(α0kl+s⊤

i
αkl) + 1

.

If αkl = 0 for all k, l ∈ Ji, this model would correspond to the general correlation structure
in the basic model. Moreover, if α0kl = 0 and αkl = 0 for all k, l ∈ Ji, the correlation matrix
is the identity matrix and the responses are uncorrelated.

For the more parsimonious error structures of equicorrelation and AR(1), in the extended
model the correlation parameters are modeled as:

1

2
log

(
1 + ρi

1 − ρi

)
= α0 + s⊤

i α, ρi =
e2(α0+s⊤

i
α) − 1

e2(α0+s⊤

i
α) + 1

.

Variance Similarly, one could model the heterogeneity among the subjects through the
variance parameters VAR(ǫij) = σ2

ij by employing the following linear model on the log-
variance:

log(σ2
ij) = γ0j + s⊤

i γj .

The correlation (or covariance) matrix Σi must be positive-semi-definite. This can be ensured
by the use of special algorithms such as the one proposed by Higham (1988).

2.4. Composite likelihood estimation

In order to estimate the model parameters we use a composite likelihood approach, where the
full likelihood is approximated by a pseudo-likelihood which is constructed from lower dimen-
sional marginal distributions, more specifically by “aggregating” the likelihoods corresponding
to pairs of observations (Varin, Reid, and Firth 2011).

For a given parameter vector δ, which contains the threshold parameters, the regression
coefficients and the parameters of the error structure, the likelihood is given by:

L (δ) =
n∏

i=1

P

( ⋂

j∈Ji

{Yij = rij}

)wi

=
n∏

i=1

(∫

Di

fqi
(Ỹi; δ)dqiỸi

)wi

,
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where Di =
∏

j∈Ji
(θj,rij−1, θj,rij

] is a Cartesian product, wi are subject-specific non-negative
weights, which are set to one in the default case, and fqi

is the qi-dimensional density of
the error terms ǫi. We approximate this full likelihood by a pairwise likelihood which is
constructed from bivariate marginal distributions. If the number of observed outcomes for
subject i is less than two (qi < 2), the univariate marginal distribution enters the likelihood.
The pairwise log-likelihood function is obtained by:

pℓ(δ) =
n∑

i=1

wi

[
✶{qi≥2}

∑

k<l
k,l∈Ji

log (P(Yik = rik, Yil = ril)) +

✶{qi=1}✶{k∈Ji}log (P(Yik = rik))

]
. (3)

Denoting by Uij = (θj,rij
−βj0 −x⊤

ijβj)/σij the upper and by Lij = (θj,rij−1 −βj0 −x⊤
ijβj)/σij

the lower integration bounds and by f1 and f2 the uni- and bivariate density functions corre-
sponding to the error distribution, the uni- and bivariate probabilities are given by:

P(Yik = rik, Yil = ril) =

∫ Uik

Lik

∫ Uil

Lil

f2(vik, vil; ρikl)dvikdvil,

P(Yik = rik) =

∫ Uik

Lik

f1(vik)dvik.

The maximum pairwise likelihood estimates δ̂PL are obtained by direct maximization of the
composite likelihood given in Equation 3. The threshold and error structure parameters to
be estimated are reparameterized such that unconstrained optimization can be performed.
Firstly, we reparameterize the threshold parameters in order to achieve monotonicity. Sec-
ondly, for all unrestricted correlation (and covariance) matrices we use the spherical param-
eterization of Pinheiro and Bates (1996). This parameterization has the advantage that it
can be easily applied to correlation matrices. Thirdly, if we assume to have equicorrelated or
AR(1) errors, we use the hyperbolic tangent transformation.

Computation of the standard errors is needed in order to quantify the uncertainty of the
maximum pairwise likelihood estimates. Under certain regularity conditions, the maximum
pairwise likelihood estimates are consistent as the number of responses is fixed and n → ∞. In
addition, the maximum pairwise likelihood estimator is asymptotically normal with asymp-
totic mean δ and a covariance matrix which equals the inverse of the Godambe information
matrix:

G(δ)−1 = H−1(δ)V (δ)H−1(δ),

where H(δ) the Hessian (sensitivity matrix) and V (δ) the variability matrix. The variability
matrix V (δ) and the Hessian H(δ) can be estimated as follows:

V̂ (δ) =
1

n

n∑

i=1

(
∂pℓi(δ̂PL)

∂δ

)(
∂pℓi(δ̂PL)

∂δ

)⊤

,
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Ĥ(δ) = −
1

n

n∑

i=1

∂2pℓi(δ̂PL)

∂δ∂δ⊤

=
1

n

n∑

i=1

∑

k<l
k,l∈Ji

(
∂pℓikl(δ̂PL)

∂δ

)(
∂pℓikl(δ̂PL)

∂δ

)⊤

,

where pℓi(δ) is the component of the pairwise log-likelihood corresponding to subject i and
pℓikl(δ) corresponds to subject i and pair (k, l).

In order to compare different models, the composite likelihood information criterion by Varin
and Vidoni (2005) can be used: CLIC(δ) = −2 pℓ(δ̂PL) + k tr(V̂ (δ)Ĥ(δ)−1) (where k = 2
corresponds to CLAIC and k = log(n) corresponds to CLBIC). A comprehensive overview and
further details on the properties of the maximum composite likelihood estimates is provided
in Varin (2008).

2.5. Interpretation of the coefficients

Unlike in linear regression models, the interpretation of the regression coefficients and of
the threshold parameters in ordinal models is not straightforward. Estimated thresholds
and coefficients represent only signal to noise ratios and cannot be interpreted directly (see
Section 2.2). For one particular outcome j, the coefficients can be interpreted in the same way
as in univariate cumulative link models. Let us assume without loss of generality that a higher
latent score leads to better ratings on the ordinal scale. This implies that the first category
is the worst and category Kj is the best category. The marginal cumulative probabilities
implied by the model in Equation 1 are then given by the following relationship:

P(Yij ≤ rij |xij) = P(x⊤
ijβj + ǫij ≤ θj,rij

) = P(ǫij ≤ θj,rij
− x⊤

ijβj) = F1(θj,rij
− x⊤

ijβj),

where F1 is the marginal (univariate) distribution function of the errors for the j-th outcome.

One natural way to interpret ordinal regression models is to analyze partial effects, where one
is interested in how a marginal change in one variable xijv changes the outcome distribution.
The partial probability effects in the cumulative model are given by:

δj
r,v(xij) =

∂P(Yij = rij |xij)

∂xijv

= −
(
f1(θj,rij

− x⊤
ijβj) − f1(θj,rij−1 − x⊤

ijβj)
)

βjv,

where f1 is the density corresponding to F1, xijv is the v-th element in xij and βjv is the v-th
element in βj . In case of discrete variables it is more appropriate to consider the changes in
probability before and after the change in the variable instead of the partial effects using:

∆P(Yij = rij |xij , x̃ij) = P(Yij = rij |x̃ij) − P(Yij = rij |xij),

where all elements of x̃ij are equal to xij except for the v-th element, which is equal to
x̃ijv = xijv + ∆xijv for the discrete change ∆xijv in the variable xv. We refer to Greene and
Hensher (2010) and Boes and Winkelmann (2006) for further discussion of the interpretation
of partial effects in ordered response models.

In the presence of the probit link function, we have the following relationship between the
cumulative probabilities and the latent process:

Φ−1 (P(Yij ≤ rij |xij)) = θj,rij
− x⊤

ijβj .
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An increase of one unit in a variable xjv (given that all other variables are held constant)
changes the probit of the probability that category r or lower is observed by the value of
the coefficient βjv of this variable. In other words P(Yij ≤ rij |xij), the probability that
category rij or lower is observed, changes by the increase/decrease in the distribution function.
Moreover, predicted probabilities for all ordered response categories can be calculated and
compared for given sets of explanatory variables.

In the presence of the logit link function, the regression coefficients of the underlying latent
process are scaled in terms of marginal log odds (McCullagh 1980):

log

(
P(Yij ≤ rij |xij)

P(Yij > rij |xij)

)
= θj,rij

− x⊤
ijβj .

For a one unit increase in one variable xjv holding all the others constant, we expect a change
of size of the coefficient βjv of this variable in the expected value on the log odds scale. Due
to the fact that the marginal effects of the odds ratios do not depend on the category, one
often exponentiates the coefficients in order to obtain the following convenient interpretation
in terms of odds ratios:

P(Yij ≤ rij |xij)/P(Yij > rij |xij)

P(Yij ≤ rij |x̃ij)/P(Yij > rij |x̃ij)
= exp((x̃ij − xij)⊤βj).

This means for a one unit increase in xjv holding all the other variables constant, changes
the odds ratio by eβjv . In other words, the odds after a one unit change in xjv are the odds
before the change multiplied by e−βjv

P(Yij ≤ rij |xij)

P(Yij > rij |xij)
exp(−βj) =

P(Yij ≤ rij |x̃ij)

P(Yij > rij |x̃ij)
.

If the regression coefficients vary across the multiple responses, they cannot be compared
directly due to the fact that the measurement units of the underlying latent processes dif-
fer. Nevertheless, one possibility to compare coefficients is through concept of importance.
Reusens and Croux (2017) extend an approach for comparing coefficients of probit and logit
models by Hoetker (2007) in order to compare the coefficients across repeated measurements.
They analyze the importance ratio

Rjv =
βjv

βj,base

,

where βj,base is the coefficient of a base variable and v is one of the remaining p − 1 variables.
This ratio can be interpreted as follows: A one unit increase in the variable v has in expectation
the same effect in the base variable multiplied by the ratio Rjv. Another interpretation is the
so called compensation variation: The ratio is the required increase in the base variable that
is necessary to compensate a one unit decrease in the variable v in a way that the score of
the outcome remains the same.

3. Implementation

Multivariate ordinal regression models in the R package mvord are fitted using the function
mvord():
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R> mvord(formula,

+ data,

+ error.structure = corGeneral(~ 1),

+ link = mvprobit(),

+ index = NULL,

+ response.names = NULL,

+ response.levels = NULL,

+ threshold.constraints = NULL,

+ threshold.values = NULL,

+ coef.constraints = NULL,

+ coef.values = NULL,

+ weights = NULL,

+ se = TRUE,

+ start.values = NULL,

+ solver = "BFGS",

+ PL.lag = NULL,

+ control = list(maxit=200000, trace = 1, kkt = FALSE)

+ )

3.1. Data structure

We use a long format for the input of data, where each row contains a subject index i
(subject_index), a multiple measurement index j (multiple_measurement_index), an or-
dinal response (Y) and all the covariates (X1 to Xp)2. This long format data structure is
internally transformed to an n×q matrix of responses Y1 to Yq (which contains NA in the case
of missing entries) and a list of covariate matrices Xj for all j ∈ J . In order to construct these
objects, the subject index i and the multiple measurement index j should be specified. This
can be performed by an optional argument index, a character vector of length two, specifying
the column names of the subject index and the multiple measurement index in data.

R> index <- c("subject_index", "multiple_measurement_index")

R> index

[1] "subject_index" "multiple_measurement_index"

The default value of index is NULL assuming that the first column of data contains the subject
index i and the second column the multiple measurement index j.

If specific constraints are imposed on the threshold parameters and/or on the regression coef-
ficients, it is important to know which level of the multiple measurement index j corresponds
to the first dimension, second dimension and so on. Hence, a well defined index j ∈ J for the
multiple measurements is needed. Therefore, a vector response.names is used to define the
index number of the multiple measurement. If we assume to have q = 4 outcomes Y1 to Y4,
the following response.names are set:

2If the covariates have different scales, numerical instabilities may occur in the estimation procedure. In

such cases we suggest to e.g., standardize the covariates or transform them to have a similar scale.
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R> response.names <- c("Y1", "Y2", "Y3", "Y4")

R> response.names

[1] "Y1" "Y2" "Y3" "Y4"

The default value of response.names is NULL giving the natural ordering of the levels of the
factor variable for all the multiple measurements. The ordering of response.names always
specifies the index of the multiple measurement unit j ∈ J . This ordering is essential when
putting constraints on the parameters and when setting response.levels.

R> response.levels <- list(Y1 = rev(LETTERS[1:6]),

+ Y2 = rev(LETTERS[1:6]),

+ Y3 = rev(LETTERS[7:13]),

+ Y4 = c("O", "N"))

R> response.levels

$Y1

[1] "F" "E" "D" "C" "B" "A"

$Y2

[1] "F" "E" "D" "C" "B" "A"

$Y3

[1] "M" "L" "K" "J" "I" "H" "G"

$Y4

[1] "O" "N"

If the categories differ across multiple measurements (either the number of categories and/or
the category labels) one needs to specify the response.levels explicitly. This is performed
by a list of length q, where each element contains the names of the levels of the ordered
categories in ascending (or if desired descending) order.

3.2. Formula

The ordinal responses Y and the p covariates X1, X2, . . . , Xp are passed by a formula object.
Intercepts can be included or excluded in the model depending on the model parameterization
chosen in order to ensure identifiability:

Model without intercept If the intercept should be removed, the formula has the fol-
lowing form:

R> formula = Y ~ 0 + X1 + ... + Xp

Model with intercept If one wants to include an intercept in the model, there are two
equivalent possibilities to set the model formula. Either the intercept is included explicitly
by:
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R> formula = Y ~ 1 + X1 + ... + Xp

or by

R> formula = Y ~ X1 + ... + Xp

3.3. Link functions

We allow for two different link functions, the multivariate probit link and a multivariate
logit link. For the multivariate probit link a multivariate normal distribution for the errors
is applied. The normal bivariate probabilities which enter the pairwise log-likelihood are
computed with package pbivnorm (Genz and Kenkel 2015). The multivariate probit link can
be specified by:

R> link = mvprobit()

For the multivariate logit link a t copula based multivariate distribution with logistic margins
is used (as explained in Section 2.1) and can be specified by:

R> link = mvlogit(df = 8L)

The mvlogit() function has an optional integer valued argument df which specifies the
degrees of freedom to be used for the t copula. The default value of the degrees of freedom
parameter is 8. When choosing ν ≈ 8, the multivariate logistic distribution in Equation 2 is
well approximated by a multivariate t distribution (O’Brien and Dunson 2004). This is also
the value chosen by Nooraee et al. (2016) and Hirk et al. (2017a) in their analysis. We restrict
the degrees of freedom to be integer valued because the most efficient routines for computing
bivariate t probabilities do not support non-integer degrees of freedom. We use the Fortran

code from Alan Genz (Genz and Bretz 2009) to compute the bivariate t probabilities. As
the degrees of freedom parameter is integer valued, we do not estimate it in the optimization
procedure. If the optimal degrees of freedom are of interest, we leave the task of choosing an
appropriate grid of values of df to the user, who should then estimate a separate model for
each value in the grid. The best model can be chosen by CLAIC or CLBIC.

3.4. Error structures

Depending on the model type different error structures are implemented in mvord:

Basic model

Correlation For the basic model specification the following correlation structures are im-
plemented in mvord:

• corGeneral – A general error structure, where the correlation matrix of the error terms
is unrestricted and constant across all subjects: corr(ǫik, ǫil) = ρkl. This error structure
is among the most common in the literature (e.g., Scott and Kanaroglou 2002; Bhat,
Varin, and Ferdous 2010; Kenne Pagui and Canale 2016).
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R> error.structure = corGeneral(~ 1)

• corEqui – An equicorrelation structure with corr(ǫik, ǫil) = ρ is used.

R> error.structure = corEqui(~ 1)

• corAR1 – An autoregressive error structure of order one with corr(ǫik, ǫil) = ρ|tk−tl| is
used.

R> error.structure = corAR1(~ 1)

Variance A model with variance parameters VAR(ǫij) = σ2
j corresponding to each outcome,

when the identifiability requirements are fulfilled, can be specified in the following way:

• the estimation of σ2
j is only implemented in combination with the general correlation

structure. Hence, the unrestricted covariance matrix of the error terms can be estimated
by:

R> error.structure = covGeneral(~ 1)

Extending the basic model

Correlation

• For the heterogeneous general correlation structure, the current implementation only
allows the use of one factor variable f as covariate. As previously mentioned, this
factor variable should be subject-specific and hence should not vary across the multiple
responses. This implies that a correlation matrix will be estimated for each factor level.

R> error.structure = corGeneral(~ f)

• Estimating an equicorrelation structure depending on subject-specific covariates:

R> error.structure = corEqui(~ S1 + ... + Sm)

• Estimating an AR(1) correlation structure depending on subject-specific covariates:

R> error.structure = corAR1(~ S1 + ... + Sm)

Variance

• As in the basic model, the estimation of the heterogeneous variance parameters can be
performed for the general correlation structure. A subject-specific factor f can be used
as covariate in the log variance equation. This can be specified by:

R> error.structure = covGeneral(~ f)

In addition to the correlation matrices, which are estimated for each factor level of f, a
vector of dimension q of variance parameters will be estimated for each factor level.
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3.5. Constraints on thresholds

The package supports constraints on the threshold parameters. Firstly, the user can specify
whether the threshold parameters should be equal across some or all response dimensions.
Secondly, the values of some of the threshold parameters can be fixed. This feature is impor-
tant for the users who wish to further restrict the parameter space of the thresholds or who
wish to specify values for the threshold parameters other than the default values used in the
package. Note that fixing some of the thresholds is needed for some of the parameterizations
presented in Table 1 in order to ensure identifiability of the model.

Threshold constraints across responses

Such constraints can be imposed by a vector of positive integers threshold.constraints,
where dimensions with equal threshold parameters get the same integer. When restricting
two outcome dimensions to be equal, one has to be careful that the number of categories in
the two outcome dimensions must be the same. In an example with q = 4 different outcomes,
if one wishes to restrict the threshold parameters of the first and second outcomes Y1 and Y2

to be equal (θ1 = θ2). These restrictions can be specified as:

R> threshold.constraints <- c(1, 1, 2, 3)

R> names(threshold.constraints) <- paste0("Y", 1:4)

R> threshold.constraints

Y1 Y2 Y3 Y4

1 1 2 3

Fixing threshold values

Values for the threshold parameters can be specified by the argument threshold.values.
For this purpose the user can pass a list with q elements, where each element is a vector of
length Kj − 1 (where Kj is number of ordered categories for ordinal outcome j). A numeric
value in this vector fixes the corresponding threshold parameter to the specified value while
NA leaves the parameter flexible and indicates it should be estimated.

After specifying the error structure (through the error.structure argument) and whether
an intercept should be estimated or not (in the formula argument), the user can choose
among five possible options for fixing the thresholds:

• leaving all thresholds flexible;

• fixing the first threshold θj,1 to a constant aj for all j ∈ J ;

• fixing the first and second thresholds θj,1 = aj , θj,2 = bj for all outcomes with Kj > 2;

• fixing the first and last thresholds θj,1 = aj , θj,Kj−1 = bj for all outcomes with Kj > 2;

• an extra option is fixing all of the threshold parameters, for all j ∈ J .

Note that the option chosen needs to be consistent across the different outcomes (e.g., it is
not allowed to fix the first and the last threshold for one outcome and the first and the second
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threshold for a different). Table 1 provides information about the options available for each
combination error structure and intercept, as well as about the default values in case the user
does not specify any threshold values.

Error
structure

Intercept

Threshold parameters
all flexible one fixed two fixed two fixed all fixed

θj,1 = aj θj,1 = aj θj,1 = aj

θj,2 = bj θj,Kj−1 = bj

cor
no X X X X X

yes X X X X

cov
no X X X X

yes X X X

Table 1: This table displays different model parameterizations in the presence of ordinal
observations (Kj > 2 ∀j ∈ J). The row cor includes error structures corGeneral, corEqui

and corAR1, while row cov includes the error structure covGeneral. The minimal restrictions
(default) to ensure identifiability are given in green. The default threshold values (in case
threshold.values = NULL) are always aj = 0 and bj = 1.

In the presence of binary observations (Kj = 2), if a covGeneral error structure is used,
the intercept has always to be fixed to some value due to identifiability constraints. In a
correlation structure setting no further restrictions are required.

For example, the following restrictions on the threshold parameters:

• θ11 = −4 ≤ θ12 ≤ θ13 ≤ θ14 ≤ θ15 ≤ θ16;

• θ21 = −4 ≤ θ22 ≤ θ23 ≤ θ24 ≤ θ25 ≤ θ26;

• θ31 = −5 ≤ θ32 ≤ θ33 ≤ θ34 ≤ θ35 ≤ θ36 ≤ θ37;

• θ41 = 0,

are implemented as:

R> threshold.values <- list(c(-4, NA, NA, NA, NA, NA),

+ c(-4, NA, NA, NA, NA, NA),

+ c(-5, NA, NA, NA, NA, NA, NA),

+ c(0))

R> names(threshold.values) <- paste0("Y", 1:4)

R> threshold.values

$Y1

[1] -4 NA NA NA NA NA

$Y2

[1] -4 NA NA NA NA NA

$Y3

[1] -5 NA NA NA NA NA NA
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$Y4

[1] 0

3.6. Constraints on coefficients

Similar to the threshold parameters, the package supports constraints on the regression coef-
ficients. Firstly, the user can specify whether the regression coefficients should be equal across
some or all response dimensions. Secondly, the values of some of the regression coefficients
can be fixed.

Coefficient constraints across responses

Such constraints can be specified by the argument coef.constraints, which can be either
a vector or a matrix of integer values. If vector constraints of the type βk = βl, are desired,
which should hold for all p regression coefficients corresponding to outcome k and l, the easiest
way to specify this is by means of a vector of integers of dimension q, where outcomes with
equal vectors of regression coefficients get the same integer. For example, for q = 4, a model
where the regression coefficients of the first and second outcomes are equal (β1 = β2), while
the coefficients of outcomes three and four are unrestricted, can be specified as:

R> coef.constraints <- c(1, 1, 2, 3)

R> names(coef.constraints) <- paste0("Y", 1:4)

R> coef.constraints

Y1 Y2 Y3 Y4

1 1 2 3

A more flexible framework allows the user to specify such constraints for each of the regression
coefficients of the p covariates, not only for the whole vector. Such constraints will be specified
by means of a matrix of dimension q × p, where each column specifies constraints for one of
the p covariates in the same way as presented above. Moreover, a value of NA indicates that
the corresponding coefficient is fixed (as we will show below) and should not be estimated.

Let us assume we are dealing with seven covariates and four outcomes (as in the example
presented in Section 5.1) and the following constraints on the regression coefficients:

- β12 = β22 = β32;

- β13 = 0, β23 = 0, β33 = 0;

- β14 = β24 = β34, β44 = 0;

- β15 = β25 = β35 = β45 = 2.

These restrictions on the regression coefficients are imposed by:

R> coef.constraints <- cbind(c(1, 2, 3, 4),

+ c(1, 1, 1, 2),
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+ c(NA, NA, NA, 1),

+ c(1, 1, 1, NA),

+ c(NA, NA, NA, NA),

+ c(1, 2, 3, 4),

+ c(1, 2, 3, 4))

R> rownames(coef.constraints) <- paste0("Y", 1:4)

R> colnames(coef.constraints) <- paste0("X", 1:7)

R> coef.constraints

X1 X2 X3 X4 X5 X6 X7

Y1 1 1 NA 1 NA 1 1

Y2 2 1 NA 1 NA 2 2

Y3 3 1 NA 1 NA 3 3

Y4 4 2 1 NA NA 4 4

Specific values of coefficients can be fixed through the coef.values argument, as we will
show in the following.

Fixing coefficient values

In addition, specific values on the regression coefficients can be set in the q × p matrix
coef.values. Again each column corresponds to the regression coefficients of one covariate.
This feature is to be used if some of the covariates have known slopes, but also for excluding
covariates from the mean model of some of the outcomes (by fixing the regression coefficient
to zero).

By default, if no coef.values are passed by the user, all the regression coefficients which
receive an NA in coef.constraints will be set to zero. NA in the coef.values matrix indicates
the regression coefficient ought to be estimated. Setting coef.values in accordance with the
coef.constraints from above:

R> coef.values <- cbind(c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA),

+ c(0, 0, 0, NA),

+ c(NA, NA, NA, 0),

+ c(2, 2, 2, 2),

+ c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA))

R> rownames(coef.values) <- paste0("Y", 1:4)

R> colnames(coef.values) <- paste0("X", 1:7)

R> coef.values

X1 X2 X3 X4 X5 X6 X7

Y1 NA NA 0 NA 2 NA NA

Y2 NA NA 0 NA 2 NA NA

Y3 NA NA 0 NA 2 NA NA

Y4 NA NA NA 0 2 NA NA
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gives the following equations for the latent scores:

Ỹi1 = β11xi1 + β12xi2 + β14xi4+2xi5+β16xi6+β17xi7,

Ỹi2 = β21xi1 + β12xi2 + β14xi4+2xi5+β26xi6+β27xi7,

Ỹi3 = β31xi1 + β12xi2 + β14xi4+2xi5+β36xi6+β37xi7,

Ỹi4 = β41xi1 + β42xi2+β43xi3 +2xi5+β46xi6+β47xi7.

Note on interaction terms and factor covariates When constraints on the regression
coefficients should be specified in models with interaction terms or factor covariates, the
coef.constraints matrix has to be constructed appropriately. If the order of the terms in
the covariate matrix is not clear to the user, it is helpful to call the function model.matrix()

before constructing the coef.constraints and coef.values matrices.

R> formula <- Y ~ 0 + X1 : X2 + X3 + X4 + X5 + X6 * X7

R> colnames(model.matrix(formula, data = data_x))

[1] "X3" "X4" "X5" "X6" "X7" "X1:X2" "X6:X7"

This will provide the names of each column in the covariate matrix and should be used when
setting up the coefficient constraints.

3.7. Additional arguments

weights

Weights on each subject i can be chosen in a way that they are constant across multiple
measurements. Weights should be stored in a column of data. The column name of the
weights in data should be passed to this argument weights. Negative weights are not allowed.

solver

All general purpose optimizers of the R package optimx (Nash and Varadhan 2011;
Nash 2014) can be used for maximization of the composite log-likelihood. These
are "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "nlm", "nlminb", "spg", "ucminf",

"newuoa", "bobyqa", "nmkb", "hjkb", "Rcgmin" and "Rvmmin". The default is the
"BFGS" solver. However, also the "newuoa" solver performed very well in terms of convergence
in our experiments. Moreover, if the user desires a specific solver which is not implemented
in the R package optimx, other applicable solvers can be used by using a wrapper function
with arguments starting.values, objFun, control of the following form:

R> solver = function(starting.values, objFun, control){

+ optRes <- solver.function(...)

+ list(optpar = optRes$optpar,

+ objvalue = optRes$objvalue)

+ }
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The solver.function() should return a list of two elements optpar and objvalue. The
element optpar should be a vector of length equal to number of parameters to optimize
containing the estimated parameters, while the element objvalue should contain the value
of the objective function after the optimization procedure.

se

If se = TRUE standard errors are computed using the Godambe information matrix (see Sec-
tion 2.4).

start.values

A list of starting values for threshold as well as regression coefficients can be passed by
the argument start.values. This list contains a list (with a vector of starting values for
each dimension) theta of all flexible threshold parameters and a list beta of all flexible
regression parameters. All fixed values need to be excluded and in case of constraints on
a whole dimension (e.g., threshold.constraints = c(1,1,2,3) or coef.constraints =

c(1,1,2,3)), the element can be either skipped or a vector of length zero can be set. Starting
values for Example 1 in Section 5 are for example:

R> start.values = list(theta = list(c(-3, -1, 0, 0.5, 2.5),

+ c(-3, -1, 0, 0.5, 2, 3.5),

+ c(0)),

+ beta = list(c(0.05, -0.05, -0.8, 1, 0.2),

+ c(-0.5, 0.2),

+ c(-0.3, 0.3),

+ c(0.5, -1.1, 0.7, 0.3, -1.2)))

Starting values for the error structure parameters cannot be specified by the user because of
the complexity of the different error structure parameterizations and transformations.

PL.lag

In longitudinal studies, where qi is possibly large, the pairwise likelihood estimation can be
time consuming as it is build from all two dimensional combinations of j ∈ Ji. To overcome
this difficulty, one can construct the likelihood using only the bivariate probabilities for pairs
of observations less than lag in “time units” apart. A similar approach was proposed by Varin
and Czado (2009). Assuming that, for each subject i, we have a time-series of consecutive
ordinal observations, the i-th component of the pairwise likelihood has the following form:

pℓlag
i (δ) = wi




qi−1∑

k=1

qi∑

l=k+1

✶{|tk−tl|≤lag} log P(Yik = rik, Yil = ril)


 .

The lag can be fixed by the argument PL.lag and it can only be used along with
error.structure = corAR1(). The use of this argument is however not recommended if
there are missing observations in the time series, i.e., if the ordinal variables are not observed
in consecutive years. Moreover, one should also proceed with care if the observations are not
missing at random.
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control

A list of control arguments that are passed to the function optimx() or to the user-specific
solver.function(). For further details see Nash and Varadhan (2011).

3.8. Methods for class "mvord"

Several methods are implemented for the class "mvord". These methods include a summary()

and a print() function to display the estimation results, a coef() function to extract the re-
gression coefficients, a thresholds() function to extract the threshold coefficients and a func-
tion get.error.struct() to extract the estimated parameters of the correlation/covariance
structure of the errors. In addition, the pairwise log-likelihood can be extracted by logPL()

while functions claic() and clbic() can be used to extract the information criteria CLAIC
and CLBIC. In addition, a predict() function, a marginal.predict() function and a
get.prob() function are availabe to predict probabilities, cumulative probabilities and ordi-
nal outcomes from the fitted model.

3.9. Output

The function mvord() returns an object of class "mvord", which is a list containing the
following components:

beta a named matrix of regression coefficients
theta a named list of threshold parameters
error.struct a named list of correlation (covariance) matrices, or a vector of coef-

ficients in the corEqui or corAR1 setting
sebeta a named matrix of standard errors of the regression coefficients
setheta a named list of standard errors of the threshold parameters
seerror.struct a named list of standard errors of the correlation (covariance) matri-

ces, or a vector of standard errors of the coefficients in the corEqui or
corAR1 setting

rho a list of all objects that are used in mvord()

3.10. Implementation mvord2()

Additionally, a second function mvord2() is implemented, for the setting where the covariates
do not vary between the multiple measurements (xi1 = . . . = xiq):

R> mvord2(formula,

+ data,

+ error.structure = corGeneral(~ 1),

+ link = mvprobit(),

+ coef.constraints = NULL,

+ coef.values = NULL,

+ threshold.constraints = NULL,

+ threshold.values = NULL,

+ weights = NULL,

+ se = TRUE,

+ start.values = NULL,
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+ solver = "BFGS",

+ PL.lag = NULL,

+ control = list(maxit = 200000, trace = 1, kkt = FALSE))

This function uses a slightly simplified data structure, where the multiple ordinal observations
as well as the covariates are stored as columns in a data.frame. Each subject i corresponds
to one row of the data frame, where all outcomes Yi1, . . . , Yiq (with missing observations set
to NA) and all the covariates xi1, . . . , xip are stored in different columns. Each outcome must
be of class ordered factor. In order to specify the model we use a multivariate formula object
of the form:

R> formula <- cbind(Y1, ..., Yq) ~ 0 + X1 + ... + Xp

The error.structure and the constraints on the regression and threshold parameters are
set in analogy to mvord(). However, the ordering of the responses is given by the ordering in
the model formula. In addition, the link, subject weights, se and the solver are chosen
in the same way as in mvord().

4. Description of the illustrative data sets

As previously mentioned, the motivation of the mvord package lies in a credit risk application,
where ordinal credit ratings from different rating sources are available for a sample of firms
over several years. In this application, yearly credit ratings from the big three credit rating
agencies Standard & Poor’s, Moody’s and Fitch were collected for a panel of publicly traded
US companies. Moreover, accounting, stock price and default information on a yearly basis
have been obtained for each firm-year in the sample.

Before proceeding with the multivariate analysis of these credit ratings, the following aspects
of the problem at hand are worth mentioning. Firstly, a feature of the sample is the rather
high number of missing values. Not all firms in the sample are rated by all three raters at the
same point in time. In line with the market share the raters hold in the US ratings market,
the number of rated firms per year differs between the three raters. Secondly, the raters
can employ different rating scales in their rating methodology, e.g., different labeling of their
ordinal rating classes or a different number of rating classes. A perhaps more fundamental
difference between the rating scales appears when the raters employ different rating “philoso-
phies”, i.e., when the central credit risk measure employed in assessing creditworthiness differs
among raters (e.g., probability of default versus recovery in case of default). This also has
implications for the covariates used in the rating models, as the inclusion or importance of
various covariates can differ among the raters. Even though the rating agencies do not fully
disclose their rating process, most likely for keeping their competitive advantage, they do
publish reports on a regular basis where they state what are the main variables considered in
the rating process.

These data have been analyzed in Hirk et al. (2017a), where a multivariate model of cor-
porate credit ratings has been proposed. Unfortunately, this original data set is not freely
redistributable. Therefore, we resort to the simulation of illustrative data sets by taking into
consideration key features of the original data such as the ones mentioned above. The simu-
lated data sets contain ratings from four different rating sources and firm-specific covariates
for a panel of 1665 firms over a sample period of ten years.
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4.1. Covariates

The covariates employed correspond to firm-level and market financial ratios which measure
different aspects of a firm’s financial health:

• ICR – interest coverage ratio, which measures how well the interest expenses can be
covered from the free operating cash-flow of a company;

• LR – liquidity ratio relating the cash held by a company to the current liabilities;

• LEV1 – leverage ratio relating debt to earnings before interest and taxes;

• LEV2 – leverage ratio measuring the percentage of debt in the long-term capital of a
firm;

• PR – profitability ratio measuring return on capital;

• lRSIZE – relative size of the company in the market (in logarithm);

• lSYSR – a measure of systematic risk (in logarithm);

• BSEC – the business sector of a firm.

More information on these covariates can be found in e.g., Campbell, Hilscher, and Szilagyi
(2008) or Puccia, Collett, Kernan, Palmer, Mettrick, and Deslondes (2013). The business
sector variable BSEC has been kept as in the original data set. For the continuous covariates
we resort to simulation. As the distribution of the continuous covariates in the original data
set is rather homogeneous across the ten years, we fit a distribution to each covariate over
the whole sample period using the function fitdistr() of the MASS package. The best
fitting distribution has been chosen by AIC. The parameters and distributions used for the
simulation of the covariates are given in Table 2.

Covariate Bound Distribution Parameters

ICR unbounded t(m, s, df) m = 2.301, s = 2.120, df = 1.163
LR positive log-t(m, s, df) m = −1.472, s = 0.992, df = 2.753
LEV1 positive log-t(m, s, df) m = 1.008, s = 0.596, df = 1.245
LEV2 positive log-t(m, s, df) m = −0.777, s = 0.443, df = 1.289
PR unbounded t(m, s, df) m = 0.12, s = 0.08, df = 4
lRSIZE unbounded N (m, s) m = −9.131, s = 1.475
lSYSR unbounded N (m, s) m = −3.877, s = 0.439

Table 2: Distributions used for the simulation of the covariates.

After simulating the covariates from the distributions presented in Table 2, we winsorize the
simulated ratios at 10% for unbounded ratios and 5% for bounded ratios (by setting for all
ratios the values above the 95%-quantile to the 95%-quantile; for the unbounded ratios we
also winsorize from below, by setting for the values below the 5%-quantile to the 5%-quantile).
This is standard practice in the literature on credit risk estimation based on financial ratios
for reducing the influence of outliers (e.g., Campbell et al. 2008).
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4.2. Cross-sectional data set

For the 1665 firms in the first year of the sample, we generate ratings from four rating sources.
We name the four rating sources R1, R2, R3 and R4. Raters R1, R2 and R3 correspond to the
three rating agencies in the original application. The fourth rating source R4 corresponds to
an indicator variable constructed from the original data set, which indicates if the company
will be in an investment or speculative grade within one year from the rating observations.
In the original data set, this indicator is computed by checking the one-year ahead rating
for each of the three raters. We then follow the US regulation stating that, if two ratings
for a company are available, one investment grade and one speculative grade, the company
is categorized as speculative grade, whereas if three ratings are available the majority rule
applies (Bongaerts, Cremers, and Goetzmann 2012).

Similarly to the original data, we assume that the rating methodology of the raters is het-
erogeneous. Raters R1 and R2 employ a similar credit risk measure when assigning firms on
a six-point ordinal scale (which we label, from best to worst, A, B, C, D, E, F), rater R3 uses
a seven-point scale and different labeling (from best to worst, G, H, I, J, K, L, M) while the
R4 ratings differentiate on a two point scale between speculative grade and investment grade
firms (from best to worst, N, O).

We simulate the latent scores Ỹij from the model in Equation 1 with multivariate logit link
and a constant general correlation structure. The correlation matrix used in the simulation
is

Σ =




1 0.9 0.7 0.5
0.9 1 0.7 0.6
0.7 0.7 1 0.8
0.5 0.6 0.8 1


 .

We use the following coefficients:

• β0j = 0 ∀j ∈ {R1, R2, R3, R4};

• βR1 = (0.3, 0, −0.2, −1.3, 0.5, 0.2, 0)⊤;

• βR2 = (0, 0, −0.2, −1, 0.5, 0.3, 0)⊤;

• βR3 = (0.3, 0, −0.2, −1.4, 0.5, 0.4, 0)⊤;

• βR4 = (0, −0.3, 0, −1.6, 1.9, 0.1, −0.2)⊤.

The threshold parameters are chosen such that the simulated distribution of ratings (the
proportion of observations falling into each rating class) is similar to the distribution of the
ratings in the original data set.

As raters R1 and R2 employ similar rating methodologies and use the same labeling of their
rating classes, we set θR1 = θR2 = (−4.5, −3, −1, 1, 3.5)⊤. The thresholds for rater R3 are:
θR3 = (−6, −3, 0, 1, 2, 4)⊤ and the threshold for rater R4 is θR4 = −1.

The panel of ratings in the original data set is highly unbalanced, as not all firms receive
ratings from all four sources. We therefore keep the missingness pattern and remove the
simulated ratings that correspond to missing observations in the original data. For rater R1

we remove 5.41%, for rater R2 86.13%, and for rater R3 34.23% of the observations.
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The cross-sectional data set is available in the mvord package as data_cr_mvord (in long
format) or data_cr_mvord2 (in short format). More details on the structure of this data set
will be provided in Section 5.

4.3. Longitudinal data set

For the whole panel of firms we simulate ratings corresponding to rater R1 over a period of
ten years (year1, year2, . . . , year10). From the initial 1665 firms which are in the sample
in the first year, 1575 are rated by rater R1.

We simulate the latent scores from the model in Equation 1 with probit link and business
sector-specific AR(1) correlation structure. The dependence of the correlation structure on the
business sector is motivated by the fact that in some sectors such as manufacturing ratings
tend to be more “sticky”, i.e., do not change often over the years, while in more volatile
sectors like IT there is less “stickiness” in the ratings. The sector specific correlations are:
ρBSEC1 = 0.9, ρBSEC2 = 0.7, ρBSEC3 = 0.9, ρBSEC4 = 0.9, ρBSEC5 = 0.9, ρBSEC6 = 0.7, ρBSEC7 = 0.5,
ρBSEC8 = 0.6.

We use no intercepts and two sets of regression coefficients:

• βyear1 = · · · = βyear5 = (0.17, 0, −0.11, −0.72, 0.28, 0.11, 0)⊤;

• βyear6 = · · · = βyear10 = (0.08, −0.2, −0.3, −1.6, 0.4, 0.5, −0.2)⊤.

Such a “break” in the coefficients could be explained by e.g., a change of regimes. Moreover,
we assume the rating methodology of rater R1 does not change over time, hence we use one set
of threshold parameters for all years: θyear1 = · · · = θyear10 = (−4, −1, 0, 1, 3)⊤. The longi-
tudinal panel is unbalanced, as firms can leave the sample for various reasons such as default
or mergers and acquisitions. In addition, credit ratings can be withdrawn. We remove the
simulated ratings that correspond to missing firm-year observations in the original data. The
longitudinal panel of R1 ratings together with the covariates is available in data_cr_panel.

5. Examples

We use the credit risk data sets presented in Section 4 to illustrate some of the features of
package mvord.

5.1. Example 1 – Ratings assigned by multiple raters to a cross-section of

firms

The first example presents a multivariate ordinal regression model with logit link and a general
correlation error structure (corGeneral(~ 1)). The simulated data set contains the credit
risk measure rating (ratings assigned by raters R1, R2, R3 and R4) and 8 covariates for a
cross-section of 1665 firms. The number of firm-ratings is 4566.

R> head(data_cr_mvord, n = 3)

firm_id rater_id rating ICR LR LEV1 LEV2

1 1 R1 D 1.546318 0.2484137 3.782934 0.92053787
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2 2 R1 B 8.723779 0.1506502 1.033042 0.05305052

3 3 R1 D 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3

2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6

R> str(data_cr_mvord, vec.len = 3)

'data.frame': 4566 obs. of 11 variables:

$ firm_id : Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...

$ rater_id: Factor w/ 4 levels "R1","R2","R3",..: 1 1 1 1 1 1 1 1 ...

$ rating : chr "D" "B" "D" ...

$ ICR : num 1.55 8.72 4.73 4.08 ...

$ LR : num 0.248 0.151 0.519 0.168 ...

$ LEV1 : num 3.78 1.03 8.94 2.19 ...

$ LEV2 : num 0.9205 0.0531 0.97 2.8743 ...

$ PR : num 0.2743 0.1183 0.2871 0.0821 ...

$ lRSIZE : num -11.2 -8.82 -9.55 -8.66 ...

$ lSYSR : num -3.69 -4.27 -3.9 -5.13 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 1 6 4 ...

The distribution of the ratings classes for the four raters is:

R> by(data_cr_mvord, data_cr_mvord$rater_id,

+ function(x) table(x$rating))

data_cr_mvord$rater_id: R1

A B C D E F

89 450 605 281 89 61

----------------------------------------------------

data_cr_mvord$rater_id: R2

A B C D E F

12 74 79 51 9 6

----------------------------------------------------

data_cr_mvord$rater_id: R3

G H I J K L M

40 163 169 209 404 88 22

----------------------------------------------------

data_cr_mvord$rater_id: R4

N O

1067 598
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We include 7 financial ratios as covariates in a model without intercept by the formula:

R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

R> formula

rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

The subject index i is stored in the column firm_id and the multiple measurement index j,
which indicates the rater, is given by rater_id:

R> index <- c("firm_id", "rater_id")

R> index

[1] "firm_id" "rater_id"

An optional vector response.names is used to specify all the raters to be included in the
model. The ordering of this vector is essential when constraints on the parameter set want
to be imposed:

R> response.names <- c("R1", "R2", "R3", "R4")

R> response.names

[1] "R1" "R2" "R3" "R4"

Due to the fact that the categories differ across raters we specify the response.levels by:

R> response.levels <- list(rev(LETTERS[1:6]),

+ rev(LETTERS[1:6]),

+ rev(LETTERS[7:13]),

+ rev(LETTERS[14:15]))

R> names(response.levels) <- response.names

R> response.levels

$R1

[1] "F" "E" "D" "C" "B" "A"

$R2

[1] "F" "E" "D" "C" "B" "A"

$R3

[1] "M" "L" "K" "J" "I" "H" "G"

$R4

[1] "O" "N"

If no response.levels are passed, the natural ordering is used and could lead to an incorrect
labeling. The rating classes assigned by the raters are here in order from worst to best
indicating that lower values of the latent variables indicate lower creditworthiness or increased
credit risk.

We fit a model to these data with the following features:
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• We assume that R1 and R2 use the same rating scale by setting the following constraints
on the threshold parameters:

R> threshold.constraints <- c(1, 1, 2, 3)

R> names(threshold.constraints) <- response.names

R> threshold.constraints

R1 R2 R3 R4

1 1 2 3

• We assume that some covariates are equal for some raters. For example, we assume that
the coefficient of ICR is equal for R1 and R3, or that the coefficients of LEV1 and PR are
the same for the raters R1, R2 and R3. In addition, some of the regression coefficients
are set to zero like ICR for R1 and R3, or lSYSR for the raters R1, R2 and R3. All
the constraints above and some additional constraints are performed by the following
restrictions on the regression coefficients by using the more flexible method:

R> coef.constraints <- cbind(c(1, NA, 1, NA),

+ c(NA, NA, NA, 1),

+ c(1, 1, 1, NA),

+ c(1, 2, 3, 4),

+ c(1, 1, 1, 4),

+ c(1, 2, 3, 4),

+ c(NA, NA, NA, 1))

R> rownames(coef.constraints) <- response.names

R> colnames(coef.constraints) <- c("ICR", "LR", "LEV1", "LEV2",

+ "PR", "lRSIZE", "lSYSR")

R> coef.constraints

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

R1 1 NA 1 1 1 1 NA

R2 NA NA 1 2 1 2 NA

R3 1 NA 1 3 1 3 NA

R4 NA 1 NA 4 4 4 1

The NAs in coef.constraints are fixed to specific values. If no matrix coef.values is
provided, the coefficients are set by default to zero automatically. This automatically
generated coef.values matrix, looks like:

R> coef.values <- cbind(c(NA, 0, NA, 0),

+ c(0, 0, 0, NA),

+ c(NA, NA, NA, 0),

+ c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA),

+ c(0, 0, 0, NA))

R> rownames(coef.values) <- response.names

R> colnames(coef.values) <- c("ICR", "LR", "LEV1", "LEV2",
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+ "PR", "lRSIZE", "lSYSR")

R> coef.values

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

R1 NA 0 NA NA NA NA 0

R2 0 0 NA NA NA NA 0

R3 NA 0 NA NA NA NA 0

R4 0 NA 0 NA NA NA NA

The specified coef.constraints together with coef.values give the following model:

Ỹ1 = β11ICR+ β13LEV1+β14LEV2 + β15PR+β16lRSIZE,

Ỹ2 = β13LEV1+β24LEV2 + β15PR+β26lRSIZE,

Ỹ3 = β11ICR+ β13LEV1+β34LEV2 + β15PR+β36lRSIZE,

Ỹ4 = β42LR+ β44LEV2 + β45PR +β46lRSIZE + β47lSYSR.

As a link function we choose the multivariate logit link:

R> link <- mvlogit()

For simplicity, we use a general correlation structure which is constant for all subjects:

R> error.structure <- corGeneral(~ 1)

R> error.structure

$type

[1] "corGeneral"

$formula

~1

In order to avoid numerical instabilities, we standardize our data for each rater:

R> covar_names <- c("ICR", "LR", "LEV1", "LEV2", "PR", "lRSIZE", "lSYSR")

R> data_cr_mvord_scaled <- do.call("rbind.data.frame",

+ by(data_cr_mvord, data_cr_mvord$rater_id,

+ function(x){x[, covar_names] <- scale(x[, covar_names]); x}))

The estimation can now be performed by the function mvord():

R> res_cor_logit <- mvord(

+ formula = rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR,

+ data = data_cr_mvord_scaled,

+ error.structure = corGeneral(~ 1),

+ link = mvlogit(),

+ index = c("firm_id", "rater_id"),

+ response.names = c("R1", "R2", "R3", "R4"),



Rainer Hirk, Kurt Hornik and Laura Vana 29

+ response.levels = list(rev(LETTERS[1:6]),

+ rev(LETTERS[1:6]),

+ rev(LETTERS[7:13]),

+ rev(LETTERS[14:15])),

+ coef.constraints = cbind(c(1, NA, 1, NA),

+ c(NA, NA, NA, 1),

+ c(1, 1, 1, NA),

+ c(1, 2, 3, 4),

+ c(1, 1, 1, 4),

+ c(1, 2, 3, 4),

+ c(NA, NA, NA, 1)),

+ threshold.constraints = c(1, 1, 2, 3),

+ solver = "newuoa")

The results are displayed by the function summary():

R> summary(res_cor_logit, call = FALSE)

Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals

mvlogit flexible 1665 4 -7995.86 16113.53 16443.49 8785

Thresholds:

Estimate Std. Error z value Pr(>|z|) signif

R1 F|E -4.86402172 0.02930083 -166.0028589 0.000000e+00 ***

R1 E|D -3.20844192 0.02429023 -132.0877688 0.000000e+00 ***

R1 D|C -1.10155146 0.03222289 -34.1853762 3.988311e-256 ***

R1 C|B 0.94633334 0.02937005 32.2210306 8.958677e-228 ***

R1 B|A 3.39419668 0.02664730 127.3748834 0.000000e+00 ***

R3 M|L -6.14282312 0.04818046 -127.4961570 0.000000e+00 ***

R3 L|K -3.19489944 0.02653946 -120.3829699 0.000000e+00 ***

R3 K|J 0.02613874 0.03104165 0.8420541 3.997577e-01

R3 J|I 1.06061830 0.03482384 30.4566753 9.773291e-204 ***

R3 I|H 2.04826512 0.03209814 63.8125720 0.000000e+00 ***

R3 H|G 3.97952463 0.03128642 127.1965344 0.000000e+00 ***

R4 O|N -0.98424619 0.02865313 -34.3503890 1.389703e-258 ***

Coefficients:

Estimate Std. Error z value Pr(>|z|) signif

ICR R1 0.3545924 0.01190462 29.786121 5.909886e-195 ***

ICR R2 0.0000000 0.00000000 NA NA <NA>

ICR R3 0.3545924 0.01190462 29.786121 5.909886e-195 ***

ICR R4 0.0000000 0.00000000 NA NA <NA>

LR R1 0.0000000 0.00000000 NA NA <NA>

LR R2 0.0000000 0.00000000 NA NA <NA>

LR R3 0.0000000 0.00000000 NA NA <NA>



30 mvord: An R Package for Fitting Multivariate Ordinal Regression Models

LR R4 -0.3823087 0.02607591 -14.661378 1.139374e-48 ***

LEV1 R1 -0.1813130 0.01659491 -10.925819 8.675409e-28 ***

LEV1 R2 -0.1813130 0.01659491 -10.925819 8.675409e-28 ***

LEV1 R3 -0.1813130 0.01659491 -10.925819 8.675409e-28 ***

LEV1 R4 0.0000000 0.00000000 NA NA <NA>

LEV2 R1 -1.3930109 0.02059372 -67.642501 0.000000e+00 ***

LEV2 R2 -1.0062182 0.03660958 -27.485106 2.645431e-166 ***

LEV2 R3 -1.4657409 0.02233537 -65.624202 0.000000e+00 ***

LEV2 R4 -1.7196172 0.04275497 -40.220287 0.000000e+00 ***

PR R1 0.5533711 0.01427445 38.766530 0.000000e+00 ***

PR R2 0.5533711 0.01427445 38.766530 0.000000e+00 ***

PR R3 0.5533711 0.01427445 38.766530 0.000000e+00 ***

PR R4 2.1773434 0.03264913 66.689164 0.000000e+00 ***

lRSIZE R1 0.2535411 0.01410705 17.972659 3.190496e-72 ***

lRSIZE R2 0.4103694 0.03056553 13.425888 4.264413e-41 ***

lRSIZE R3 0.4754545 0.01513498 31.414269 1.291954e-216 ***

lRSIZE R4 0.1655771 0.02584503 6.406536 1.488626e-10 ***

lSYSR R1 0.0000000 0.00000000 NA NA <NA>

lSYSR R2 0.0000000 0.00000000 NA NA <NA>

lSYSR R3 0.0000000 0.00000000 NA NA <NA>

lSYSR R4 -0.2013633 0.02041021 -9.865811 5.855923e-23 ***

Error Structure:

Estimate Std. Error z value Pr(>|z|) signif

corr R1 R2 0.9036459 0.006281258 143.86384 0.000000e+00 ***

corr R1 R3 0.6932401 0.003210192 215.94975 0.000000e+00 ***

corr R1 R4 0.4935230 0.006310486 78.20682 0.000000e+00 ***

corr R2 R3 0.7340730 0.008726075 84.12408 0.000000e+00 ***

corr R2 R4 0.5984871 0.022917787 26.11452 2.493897e-150 ***

corr R3 R4 0.7703146 0.005597183 137.62540 0.000000e+00 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If the user fixes thresholds or coefficients to specific values, the z values and the corresponding
p values as well as the significance codes are set to NA. Another option to display the results
is the function print():

R> print(res_cor_logit, call = FALSE)

Thresholds:

$R1

F|E E|D D|C C|B B|A

-4.8640217 -3.2084419 -1.1015515 0.9463333 3.3941967

$R2

F|E E|D D|C C|B B|A

-4.8640217 -3.2084419 -1.1015515 0.9463333 3.3941967
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$R3

M|L L|K K|J J|I I|H

-6.14282312 -3.19489944 0.02613874 1.06061830 2.04826512

H|G

3.97952463

$R4

O|N

-0.9842462

Coefficients:

ICR LR LEV1 LEV2 PR lRSIZE

R1 0.3545924 0.0000000 -0.181313 -1.393011 0.5533711 0.2535411

R2 0.0000000 0.0000000 -0.181313 -1.006218 0.5533711 0.4103694

R3 0.3545924 0.0000000 -0.181313 -1.465741 0.5533711 0.4754545

R4 0.0000000 -0.3823087 0.000000 -1.719617 2.1773434 0.1655771

lSYSR

R1 0.0000000

R2 0.0000000

R3 0.0000000

R4 -0.2013633

Sigma:

R1 R2 R3 R4

R1 1.0000000 0.9036459 0.6932401 0.4935230

R2 0.9036459 1.0000000 0.7340730 0.5984871

R3 0.6932401 0.7340730 1.0000000 0.7703146

R4 0.4935230 0.5984871 0.7703146 1.0000000

An extended summary, where all thresholds and regression coefficients are shown, even though
they are duplicated, can be obtained by:

R> summary(res_cor_logit, short = FALSE, call = FALSE)

The threshold coefficients can be extracted by the function thresholds():

R> thresholds(res_cor_logit)

$R1

F|E E|D D|C C|B B|A

-4.8640217 -3.2084419 -1.1015515 0.9463333 3.3941967

$R2

F|E E|D D|C C|B B|A

-4.8640217 -3.2084419 -1.1015515 0.9463333 3.3941967
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$R3

M|L L|K K|J J|I I|H

-6.14282312 -3.19489944 0.02613874 1.06061830 2.04826512

H|G

3.97952463

$R4

O|N

-0.9842462

The regression coefficients are obtained by the function coef():

R> coef(res_cor_logit)

ICR LR LEV1 LEV2 PR lRSIZE

R1 0.3545924 0.0000000 -0.181313 -1.393011 0.5533711 0.2535411

R2 0.0000000 0.0000000 -0.181313 -1.006218 0.5533711 0.4103694

R3 0.3545924 0.0000000 -0.181313 -1.465741 0.5533711 0.4754545

R4 0.0000000 -0.3823087 0.000000 -1.719617 2.1773434 0.1655771

lSYSR

R1 0.0000000

R2 0.0000000

R3 0.0000000

R4 -0.2013633

The error structure is displayed by the function get.error.struct():

R> get.error.struct(res_cor_logit)

R1 R2 R3 R4

R1 1.0000000 0.9036459 0.6932401 0.4935230

R2 0.9036459 1.0000000 0.7340730 0.5984871

R3 0.6932401 0.7340730 1.0000000 0.7703146

R4 0.4935230 0.5984871 0.7703146 1.0000000

Fitting the model with the function mvord2()

Due to the fact that the covariates do not change across the multiple measurements (the
covariates are firm-specific and do not vary across raters), we can alternatively fit the model
by the function mvord2(). In mvord2(), a slightly different format of data is used and
the ordering of the responses is defined by a multivariate formula object. The multiple
measurements are stored in different columns as ordered factors:

R> head(data_cr_mvord2, n = 3)

firm_id R1 R2 R3 R4 ICR LR LEV1 LEV2

1 1 D <NA> K N 1.546318 0.2484137 3.782934 0.92053787
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2 2 B <NA> <NA> N 8.723779 0.1506502 1.033042 0.05305052

3 3 D <NA> <NA> N 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3

2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6

R> str(data_cr_mvord2, vec.len = 2)

'data.frame': 1665 obs. of 13 variables:

$ firm_id: Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 ...

$ R1 : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: 3 5 3 1 5 ...

$ R2 : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: NA NA NA NA NA ...

$ R3 : Ord.factor w/ 7 levels "M"<"L"<"K"<"J"<..: 3 NA NA 1 NA ...

$ R4 : Ord.factor w/ 2 levels "O"<"N": 2 2 2 1 2 ...

$ ICR : num 1.55 8.72 ...

$ LR : num 0.248 0.151 ...

$ LEV1 : num 3.78 1.03 ...

$ LEV2 : num 0.9205 0.0531 ...

$ PR : num 0.274 0.118 ...

$ lRSIZE : num -11.2 -8.82 ...

$ lSYSR : num -3.69 -4.27 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 ...

Again, we standardize the data to avoid numerical instabilities:

R> data_cr_mvord2[, covar_names] <- scale(data_cr_mvord2[, covar_names])

The estimation is performed by calling the function mvord2():

R> res_cor_logit <- mvord2(

+ formula = cbind(R1, R2, R3, R4) ~ 0 + ICR + LR + LEV1 + LEV2 + PR +

+ lRSIZE + lSYSR,

+ error.structure = corGeneral(~ 1),

+ link = mvlogit(),

+ data = data_cr_mvord_scaled,

+ coef.constraints = cbind(c(1, NA, 1, NA),

+ c(NA, NA, NA, 1),

+ c(1, 1, 1, NA),

+ c(1, 2, 3, 4),

+ c(1, 1, 1, 4),

+ c(1, 2, 3, 4),

+ c(NA, NA, NA, 1)),

+ threshold.constraints = c(1, 1, 2, 3))

yielding equivalent results to the fit of mvord().



34 mvord: An R Package for Fitting Multivariate Ordinal Regression Models

5.2. Example 2 – Ratings assigned by one rater to a panel of firms

In a second example we present a longitudinal multivariate ordinal probit regression model
with a covariate dependent AR(1) error structure. The simulated data set contains the credit
risk measure rating (ratings assigned by rater R1) and 8 covariates for a panel of 1575 firms
over ten years. The number of firm-year observations is 11037:

R> str(data_cr_panel, vec.len = 3)

'data.frame': 11037 obs. of 11 variables:

$ firm_id: Factor w/ 1575 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...

$ year : Factor w/ 10 levels "year1","year2",..: 1 1 1 1 1 1 1 1 ...

$ rating : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: 4 3 4 5 4 6 3 4 ...

$ ICR : num 2.9281 3.9104 3.1522 -0.0483 ...

$ LR : num 0.6433 0.3154 0.1471 0.0162 ...

$ LEV1 : num 3.5 6.84 0.26 21.98 ...

$ LEV2 : num 0.392 0.409 0.414 0.442 ...

$ PR : num 0.2075 0.05 0.0968 0.1764 ...

$ lRSIZE : num -10.69 -8.07 -8.64 -9.4 ...

$ lSYSR : num -4.18 -3.22 -4.16 -4.21 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 1 6 4 ...

R> head(data_cr_panel, n = 3)

firm_id year rating ICR LR LEV1 LEV2

1 1 year1 C 2.928058 0.6433189 3.5040486 0.3919582

2 2 year1 D 3.910441 0.3154287 6.8438839 0.4089648

3 3 year1 C 3.152185 0.1471216 0.2595343 0.4141279

PR lRSIZE lSYSR BSEC

1 0.20746812 -10.687212 -4.182475 BSEC3

2 0.05000904 -8.069681 -3.221042 BSEC3

3 0.09679941 -8.636322 -4.157882 BSEC6

The panel is highly unbalanced. The distribution of the number of ratings per firm assigned
by rater R1 over the 10 years is given by:

R> summary(rowSums(with(data_cr_panel, table(firm_id, year))))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.000 9.000 7.008 10.000 10.000

Per year the number of ratings in the data set decreases:

R> with(data_cr_panel, table(year))

year

year1 year2 year3 year4 year5 year6 year7 year8 year9 year10

1575 1424 1327 1208 1101 1020 924 867 811 780
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We include the 7 financial ratios as covariates in a model without intercept by the formula:

R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

R> formula

rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

The subject index i is stored in the column firm_id while the multiple measurement index j
is given in the column year:

R> index <- c("firm_id", "year")

R> index

[1] "firm_id" "year"

If we wish to estimate the model only for the last eight years of the sample, this can be done
by specifying the names of each ordered response which should enter the model:

R> response.names <- paste0("year", 3:10)

R> response.names

[1] "year3" "year4" "year5" "year6" "year7" "year8" "year9"

[8] "year10"

The rating classes assigned by rater R1 are:

R> levels(data_cr_panel$rating)

[1] "F" "E" "D" "C" "B" "A"

with the sixth rating class F being the worst class and the first rating class A being the best
rating class. We specify the response levels, in the order from worst to best, for each of the
eight outcome dimensions through the response.level argument. Ordering the classes from
worst to best indicates that lower values of the latent variables indicate lower creditworthiness
or increased credit risk. The rating classes and labels do not change over the eight years:

R> response.levels <- rep(list(levels(data_cr_panel$rating)),

+ length(response.names))

R> names(response.levels) <- response.names

R> response.levels

$year3

[1] "F" "E" "D" "C" "B" "A"

$year4

[1] "F" "E" "D" "C" "B" "A"
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$year5

[1] "F" "E" "D" "C" "B" "A"

$year6

[1] "F" "E" "D" "C" "B" "A"

$year7

[1] "F" "E" "D" "C" "B" "A"

$year8

[1] "F" "E" "D" "C" "B" "A"

$year9

[1] "F" "E" "D" "C" "B" "A"

$year10

[1] "F" "E" "D" "C" "B" "A"

Additionally, the model has the following features:

• We assume that the rating agencies do not change their methodology over the sample
period. This means the threshold parameters are constant over the years. This can be
specified through the argument threshold.constraints:

R> threshold.constraints <- rep(1, length(response.names))

R> names(threshold.constraints) <- response.names

R> threshold.constraints

year3 year4 year5 year6 year7 year8 year9 year10

1 1 1 1 1 1 1 1

• We assume that there is a break-point in the regression coefficients after year5 in the
sample. This break-point could correspond to the beginning of a crisis in a real case
application. Hence, we use one set of regression coefficients for years year3, year4 and
year5 and a different set for year6, year7, year8, year9, year10. This can be specified
through the argument coef.constraints:

R> coef.constraints <- c(rep(1, 3), rep(2, 5))

R> names(coef.constraints) <- response.names

R> coef.constraints

year3 year4 year5 year6 year7 year8 year9 year10

1 1 1 2 2 2 2 2

• We allow for different correlation parameters in the AR(1) structure for the different
business sectors:

R> error.structure <- corAR1(~ BSEC)

R> error.structure
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$type

[1] "corAR1"

$formula

~BSEC

As before, we standardize our covariates on a yearly basis:

R> data_cr_panel_scaled <- do.call("rbind.data.frame",

+ by(data_cr_panel, data_cr_panel$year,

+ function(x){x[, covar_names] <- scale(x[, covar_names]); x}))

The estimation is performed by calling the function mvord():

R> res_AR1_probit <- mvord(

+ formula = rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR,

+ index = c("firm_id", "year"),

+ data = data_cr_panel_scaled,

+ response.levels = rep(list(levels(data_cr_panel$rating)), 8),

+ response.names = paste0("year", 3:10),

+ link = mvprobit(),

+ error.structure = corAR1(~ BSEC),

+ coef.constraints = c(rep(1, 3), rep(2, 5)),

+ threshold.constraints = rep(1, 8),

+ solver = "BFGS")

The results are displayed either by the function summary():

R> summary(res_AR1_probit, short = TRUE, call = FALSE, digits = 6)

Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals

mvprobit flexible 1341 8 -51412.22 103130.38 103926 207

Thresholds:

Estimate Std. Error z value Pr(>|z|) signif

year3 F|E -3.9410757 0.0996021 -39.568193 0.00000e+00 ***

year3 E|D -0.9898296 0.0334147 -29.622621 7.64179e-193 ***

year3 D|C 0.0116947 0.0280591 0.416789 6.76833e-01

year3 C|B 1.0457466 0.0328362 31.847349 1.43237e-222 ***

year3 B|A 3.0796484 0.0670293 45.944843 0.00000e+00 ***

Coefficients:

Estimate Std. Error z value Pr(>|z|) signif

ICR year3 0.14111610 0.0132252 10.6702226 1.40290e-26 ***

ICR year6 0.07371915 0.0123160 5.9856478 2.15530e-09 ***

LR year3 0.00130569 0.0133583 0.0977438 9.22136e-01
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LR year6 -0.20506920 0.0135524 -15.1316199 1.00198e-51 ***

LEV1 year3 -0.13694928 0.0131809 -10.3900053 2.75338e-25 ***

LEV1 year6 -0.29689650 0.0144849 -20.4969583 2.29178e-93 ***

LEV2 year3 -0.68577009 0.0221636 -30.9413351 3.32288e-210 ***

LEV2 year6 -1.63481055 0.0353756 -46.2128892 0.00000e+00 ***

PR year3 0.26289965 0.0142387 18.4637647 4.04164e-76 ***

PR year6 0.40383580 0.0145240 27.8047991 3.79525e-170 ***

lRSIZE year3 0.13070785 0.0136838 9.5520073 1.27207e-21 ***

lRSIZE year6 0.51983711 0.0161197 32.2484983 3.69270e-228 ***

lSYSR year3 -0.00940876 0.0128649 -0.7313496 4.64566e-01

lSYSR year6 -0.20253167 0.0129320 -15.6613211 2.78061e-55 ***

Error Structure:

Estimate Std. Error z value Pr(>|z|) signif

(Intercept) 1.329792 0.0573956 23.16890 9.37600e-119 ***

BSECBSEC2 -0.571238 0.0767097 -7.44674 9.56734e-14 ***

BSECBSEC3 0.175537 0.0715536 2.45323 1.41580e-02 *

BSECBSEC4 0.163095 0.0678496 2.40377 1.62268e-02 *

BSECBSEC5 0.145882 0.0822284 1.77411 7.60449e-02 .

BSECBSEC6 -0.494303 0.0844049 -5.85633 4.73216e-09 ***

BSECBSEC7 -0.771783 0.0741335 -10.41071 2.21563e-25 ***

BSECBSEC8 -0.759152 0.0853433 -8.89528 5.82723e-19 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

or by the function print():

R> print(res_AR1_probit, call = FALSE, digits = 4)

Thresholds:

$year3

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year4

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year5

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year6

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year7
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F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year8

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year9

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

$year10

F|E E|D D|C C|B B|A

-3.94108 -0.98983 0.01169 1.04575 3.07965

Coefficients:

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

year3 0.14112 0.001306 -0.1369 -0.6858 0.2629 0.1307 -0.009409

year4 0.14112 0.001306 -0.1369 -0.6858 0.2629 0.1307 -0.009409

year5 0.14112 0.001306 -0.1369 -0.6858 0.2629 0.1307 -0.009409

year6 0.07372 -0.205069 -0.2969 -1.6348 0.4038 0.5198 -0.202532

year7 0.07372 -0.205069 -0.2969 -1.6348 0.4038 0.5198 -0.202532

year8 0.07372 -0.205069 -0.2969 -1.6348 0.4038 0.5198 -0.202532

year9 0.07372 -0.205069 -0.2969 -1.6348 0.4038 0.5198 -0.202532

year10 0.07372 -0.205069 -0.2969 -1.6348 0.4038 0.5198 -0.202532

alpha parameters error.structure:

(Intercept) BSECBSEC2 BSECBSEC3 BSECBSEC4 BSECBSEC5

1.3298 -0.5712 0.1755 0.1631 0.1459

BSECBSEC6 BSECBSEC7 BSECBSEC8

-0.4943 -0.7718 -0.7592

An extended summary, where all thresholds and regression coefficients are shown, even though
they are duplicated, can be obtained by:

R> summary(res_AR1_probit, short = FALSE, call = FALSE)

The threshold coefficients can be extracted by the function thresholds():

R> thresholds(res_AR1_probit)

$year3

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year4

F|E E|D D|C C|B B|A
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-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year5

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year6

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year7

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year8

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year9

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

$year10

F|E E|D D|C C|B B|A

-3.94107573 -0.98982958 0.01169472 1.04574661 3.07964844

The regression coefficients are obtained by the function coef():

R> coef(res_AR1_probit)

ICR LR LEV1 LEV2 PR

year3 0.14111610 0.001305694 -0.1369493 -0.6857701 0.2628996

year4 0.14111610 0.001305694 -0.1369493 -0.6857701 0.2628996

year5 0.14111610 0.001305694 -0.1369493 -0.6857701 0.2628996

year6 0.07371915 -0.205069200 -0.2968965 -1.6348106 0.4038358

year7 0.07371915 -0.205069200 -0.2968965 -1.6348106 0.4038358

year8 0.07371915 -0.205069200 -0.2968965 -1.6348106 0.4038358

year9 0.07371915 -0.205069200 -0.2968965 -1.6348106 0.4038358

year10 0.07371915 -0.205069200 -0.2968965 -1.6348106 0.4038358

lRSIZE lSYSR

year3 0.1307079 -0.009408759

year4 0.1307079 -0.009408759

year5 0.1307079 -0.009408759

year6 0.5198371 -0.202531669

year7 0.5198371 -0.202531669

year8 0.5198371 -0.202531669

year9 0.5198371 -0.202531669

year10 0.5198371 -0.202531669
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The error structure is displayed by the function get.error.struct():

R> get.error.struct(res_AR1_probit)

(Intercept) BSECBSEC2 BSECBSEC3 BSECBSEC4 BSECBSEC5

1.3297921 -0.5712375 0.1755374 0.1630952 0.1458822

BSECBSEC6 BSECBSEC7 BSECBSEC8

-0.4943028 -0.7717828 -0.7591522

In addition, the correlation parameters ρi for each firm are obtained by:

R> head(get.error.struct(res_AR1_probit, type = "corr"), n = 3)

Correlation

1 0.9061067

2 0.9061067

3 0.6834125

Moreover, the correlation matrices for each specific firm are obtained by:

R> head(get.error.struct(res_AR1_probit, type = "sigmas"), n = 1)

$`1`

year3 year4 year5 year6 year7 year8

year3 1.0000000 0.9061067 0.8210294 0.7439402 0.6740892 0.6107968

year4 0.9061067 1.0000000 0.9061067 0.8210294 0.7439402 0.6740892

year5 0.8210294 0.9061067 1.0000000 0.9061067 0.8210294 0.7439402

year6 0.7439402 0.8210294 0.9061067 1.0000000 0.9061067 0.8210294

year7 0.6740892 0.7439402 0.8210294 0.9061067 1.0000000 0.9061067

year8 0.6107968 0.6740892 0.7439402 0.8210294 0.9061067 1.0000000

year9 0.5534470 0.6107968 0.6740892 0.7439402 0.8210294 0.9061067

year10 0.5014821 0.5534470 0.6107968 0.6740892 0.7439402 0.8210294

year9 year10

year3 0.5534470 0.5014821

year4 0.6107968 0.5534470

year5 0.6740892 0.6107968

year6 0.7439402 0.6740892

year7 0.8210294 0.7439402

year8 0.9061067 0.8210294

year9 1.0000000 0.9061067

year10 0.9061067 1.0000000

6. Conclusion

The present paper is meant to provide a general overview on the R package mvord, which
implements the estimation of multivariate ordered probit and logit regression models using
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the pairwise likelihood approach. Different error structures like a general correlation and
covariance structures, a covariate dependent equicorrelation structure and an AR(1) structure
can be imposed. In addition, the flexible modeling framework allows imposing constraints on
threshold as well as regression coefficients. Two different data formats can be used either by
applying mvord() or mvord2() to estimate the model parameters.

Further research and possible extensions of mvord could be addressed to the implementation
of variable selection procedures in multivariate ordinal regression models and the inclusion of
multivariate semi- or nonparametric ordinal models.
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