library(msgl)
Load data containing N samples and p features (covariates):
x <- # load design matrix (of size N x p)
classes <- # load class labels (a vector of size N)
Choose lambda.min
and alpha
. With alpha = 1
for lasso, alpha = 0
for group lasso and alpha
in the range (0,1) for spares group lasso.
lambda <- msgl.lambda.seq(x, classes, alpha = 0.25, lambda.min = 1e-4)
The user specified lambda min should be less than the compute lambda max. Lambda max is the lambda at which the first penalized parameter becomes non-zero. A smaller lambda.min
will take longer to fit and include more features.
lambda[1] # lambda.max
Use msgl.cv
to estimate the error for each lambda value and for finding an optimal lambda. The following command will run a 10 fold cross validation for each lambda value in the lambda sequence using 5 parallel units (using the foreach and doParallel packages.
cl <- makeCluster(5)
registerDoParallel(cl)
fit.cv <- msgl.cv(x, classes, fold = 10, alpha = 0.25, lambda = lambda, use_parallel = TRUE)
stopCluster(cl)
the output (while the algorithm is running) look something like this:
Running msgl 10 fold cross validation (dense design matrix)
Samples: Features: Classes: Groups: Parameters:
119 22.284k 13 22.284k 289.692k
(for the current version no progress bar will be shown)
Get a summery of the validated models. We have now cross validated the models corresponding to the lambda values, one model for each lambda value. We may get a summery of this validation by doing:
fit.cv
this would give something like this:
Call:
msgl.cv(x = x, classes = classes, alpha = 0.25, lambda = lambda,
fold = 10, use_parallel = TRUE)
Models:
Index: Lambda: Features: Parameters: Error:
20 0.03084 65.5 605.75 0.34
40 0.00736 111 1.077k 0.23
60 0.00176 133 1.301k 0.21
80 0.00042 143.5 1.403k 0.21
100 0.00010 152 1.48k 0.23
Best model:
Index: Lambda: Features: Parameters: Error:
44 0.0055 116.5 1.132k 0.21
Hence, the best model is obtained using lambda index 44 and it has a cross validation error of 0.21. The expected number of features is 116.5 and the expected number of parameters is 1.132k.
Use msgl to fit a final model.
fit <- msgl(x, classes, alpha = 0.25, lambda = lambda)
Get a summery of the estimated models
fit
this would look like this:
Call:
msgl(x = x, classes = classes, alpha = 0.25, lambda = lambda)
Models:
Index: Lambda: Features: Parameters:
20 0.03084 63 583
40 0.00736 122 1.18k
60 0.00176 147 1.444k
80 0.00042 163 1.609k
100 0.00010 167 1.648k
Take a look at the estimated models. As we saw in the previous step the model with index 44 had the best cross validation error, we may take a look at the included features using the command:
features(fit)[[44]] # Non-zero features in model 44
this would look something like this (with the feature names given as the column names of the design matrix):
[1] "Intercept" "200003_s_at" "200061_s_at" "200076_s_at" "200089_s_at"
[6] "200650_s_at" "200666_s_at" "201105_at" "201224_s_at" "201275_at"
...
[126] "37966_at" "39854_r_at" "AFFX-BioC-5_at" "AFFX-r2-Ec-bioC-3_at" "AFFX-r2-Ec-bioD-3_at"
[131] "AFFX-r2-Hs18SrRNA-5_at"
Hence 131 features are included in the model, a bit more than expected based on the cross validation estimate.
We may also take a look at the estimate parameters (or coefficients)
coef(fit, 44) # Non-zero parameters of model 44
the first 5 columns of this matrix will look something like this (in this case the classes where muscle diseases)
Intercept 200003_s_at 200061_s_at 200076_s_at 200089_s_at
Acute quadriplegic myopathy -0.7595439 8.605595e-03 0.001195788 -0.025151838 .
AD Emery Dreifuss muscular dystrophy -0.2768372 -1.231456e-02 . -0.104154016 -0.004651455
Amyotrophic lateral sclerosis -3.7515211 4.580069e-02 -0.044087480 0.003927752 0.148530249
Becker muscular dystrophy -4.6062349 -6.996638e-03 -0.005433472 0.148216836 .
Duchenne muscular dystrophy 2.3884725 2.203010e-02 0.025693941 . 0.019274633
Fascioscapulohumeral muscular dystrophy -1.0911442 -5.787912e-03 . -0.002919087 -0.026420157
Hereditary spastic paraplegia (SPG4) 5.3661992 7.262152e-05 -0.055266485 -0.002127937 -0.019862967
Juvenile dermatomyositis -0.8852379 4.006304e-03 -0.005916141 -0.012541976 -0.025205457
LGMD2A 4.2178767 -1.439988e-02 . . -0.010690382
LGMD2B -0.9687094 . 0.015766030 0.164538540 -0.006691633
LGMD2I (FKRP) -5.0716302 . 0.037353123 0.045332682 0.009983035
Normal volunteer 5.9397066 -2.024757e-02 0.030672820 -0.032569708 0.004009700
XR Emery Dreifuss muscular dystrophy 1.4807772 -1.975693e-02 . -0.140377634 -0.049209029
If we count the total number of non-zero parameters in the model we get, in this case, 1.278k, which is slightly higher than the expected based on the cross validation estimate.
Load test data containing M samples and p features.
x.test <- # load matrix with test data (of size M x p)
Use the final model to predict the classes of the M samples in x.test.
res <- predict(fit, x.test)
res$classes[,44] # Classes predicted by model 44
We may also get the estimated probabilities for each of the classes
res$response[[44]]
the first 5 columns of this matrix will look something like this
Test1 Test2 Test3 Test4 Test5
Acute quadriplegic myopathy 0.001885606 0.0016630587 0.0021536369 0.002416934 0.003365350
AD Emery Dreifuss muscular dystrophy 0.002486874 0.0008263667 0.0015181437 0.002503996 0.004323145
Amyotrophic lateral sclerosis 0.002888782 0.0012546621 0.0016423193 0.005565814 0.002591027
Becker muscular dystrophy 0.003976607 0.0024990435 0.0015403003 0.004675525 0.001710981
Duchenne muscular dystrophy 0.003232716 0.0033314734 0.0019272194 0.001995846 0.005322838
Fascioscapulohumeral muscular dystrophy 0.039077792 0.0083523952 0.0103045595 0.059832533 0.056302114
Hereditary spastic paraplegia (SPG4) 0.001406169 0.0020898848 0.0034977865 0.001520512 0.001634795
Juvenile dermatomyositis 0.005931747 0.0019943092 0.0023673906 0.002307952 0.005480081
LGMD2A 0.002498256 0.0026520844 0.0032747764 0.004248402 0.025764920
LGMD2B 0.001558425 0.0007249773 0.0003026516 0.006859840 0.006717150
LGMD2I (FKRP) 0.003497491 0.0012573832 0.0033873250 0.004249424 0.006976693
Normal volunteer 0.920058602 0.9671300490 0.9612278633 0.889420176 0.871759173
XR Emery Dreifuss muscular dystrophy 0.011500932 0.0062243124 0.0068560276 0.014403048 0.008051732
all 5 “Normal volunteer”.