
Randall Pruim
Nicholas J. Horton
Daniel T. Kaplan

Start

Teaching
 with

 R
 Preliminary Edition

Project MOSAIC

Contents

1 Some Advice on Getting Started With R 10

2 Getting Started with RStudio 15

3 Using R Early in the Course 23

4 Less Volume, More Creativity 33

5 What Students Need to Know about R 63

6 What Instructors Need to Know about R 76

7 Getting Interactive with manipulate and shiny 120

8 Bibliography 126

9 Index 127

About These Notes

These materials were initially created for a workshop entitled Teach-

ing Statistics Using R prior to the 2011 United States Conference on

Teaching Statistics and revised for USCOTS 2011 and eCOTS 2014.

We organized these workshops to help instructors integrate R (as well

as some related technologies) into their statistics courses at all levels.

We received great feedback and many wonderful ideas from the par-

ticipants and those that we’ve shared this with since the workshops.

We present an approach to teaching introductory and intermediate

statistics courses that is tightly coupled with computing generally

and with R and RStudio in particular. These activities and examples

are intended to highlight a modern approach to statistical education

that focuses on modeling, resampling based inference, and multivari-

ate graphical techniques. A secondary goal is to facilitate computing

with data through use of small simulation studies and appropriate

statistical analysis workflow. This follows the philosophy outlined by

Nolan and Temple Lang1. 1 D. Nolan and D. Temple Lang. Com-
puting in the statistics curriculum. The
American Statistician, 64(2):97–107, 2010

Throughout this book (and its companion volumes), we introduce

multiple activities, some appropriate for an introductory course,

others suitable for higher levels, that demonstrate key concepts in

statistics and modeling while also supporting the core material of

more traditional courses.

A Work in Progress
Caution!

Despite our best efforts, you WILL find
bugs both in this document and in our
code. Please let us know when you
encounter them so we can call in the
exterminators.

Consider these notes to be a work in progress. We appreciate any

feedback you are willing to share as we continue to work on these

materials and the accompanying mosaic package. Drop us an email

at pis@mosaic.org with any comments, suggestions, corrections, etc.

Updated versions will be posted at http://mosaic-web.org.

What’s Ours Is Yours – To a Point

This material is copyrighted by the authors under a Creative Com-

mons Attribution 3.0 Unported License. You are free to Share (to

copy, distribute and transmit the work) and to Remix (to adapt the

pis@mosaic.org
http://mosaic-web.org

4 randall pruim, nicholas j. horton, and daniel kaplan

work) if you attribute our work. More detailed information about the

licensing is available at this web page: http://www.mosaic-web.org/

go/teachingRlicense.html.

Two Audiences

The primary audience for these materials is instructors of statistics at

the college or university level. A secondary audience is the students

these instructors teach. Some of the sections, examples, and exercises

are written with one or the other of these audiences more clearly at

the forefront. This means that

1. Some of the materials can be used essentially as is with students.

2. Some of the materials aim to equip instructors to develop their

own expertise in R and RStudio to develop their own teaching

materials.

Although the distinction can get blurry, and what works “as is"

in one setting may not work “as is" in another, we’ll try to indicate

which parts fit into each category as we go along.

R, RStudio and R Packages

R can be obtained from http://cran.r-project.org/. Download

and installation are quite straightforward for Mac, PC, or linux ma-

chines.

RStudio is an integrated development environment (IDE) that facili-

tates use of R for both novice and expert users. We have adopted it as

our standard teaching environment because it dramatically simplifies

the use of R for instructors and for students. There are several things

we use that can only be done in RStudio (mainly things that make use

manipulate() or RStudio’s support for reproducible research). RStudio

is available from http://www.rstudio.org/. RStudio can be installed

as a desktop (laptop) application or as a server application that is

accessible to users via the Internet.

In addition to R and RStudio, we will make use of several packages

that need to be installed and loaded separately. The mosaic package

(and its dependencies) will be used throughout. Other packages

appear from time to time as well.

http://www.mosaic-web.org/go/teachingRlicense.html
http://www.mosaic-web.org/go/teachingRlicense.html
http://cran.r-project.org/
http://www.rstudio.org/

start teaching with r 5

Marginal Notes

Marginal notes appear here and there. Sometimes these are side Have a great suggestion for a marginal
note? Pass it along.comments that we wanted to say, but we didn’t want to interrupt the

flow to mention them in the main text. Others provide teaching tips

or caution about traps, pitfalls and gotchas.

Document Creation

Digging Deeper

If you know LATEX as well as R, then
knitr provides a nice solution for
mixing the two. We used this system
to produce this book. We also use it
for our own research and to introduce
upper level students to reproducible
analysis methods. For beginners, we
introduce knitr with RMarkdown,
which produces PDF, HTML, or Word
files using a simpler syntax.

This document was created on July 1, 2014, using knitr and R ver-

sion 3.1.0 Patched (2014-06-19 r65979).

Project MOSAIC

This book is a product of Project MOSAIC, a community of educators

working to develop new ways to introduce mathematics, statistics,

computation, and modeling to students in colleges and universities.

The goal of the MOSAIC project is to help share ideas and re-

sources to improve teaching, and to develop a curricular and assess-

ment infrastructure to support the dissemination and evaluation of

these approaches. Our goal is to provide a broader approach to quan-

titative studies that provides better support for work in science and

technology. The project highlights and integrates diverse aspects of

quantitative work that students in science, technology, and engineer-

ing will need in their professional lives, but which are today usually

taught in isolation, if at all.

In particular, we focus on:

Modeling The ability to create, manipulate and investigate useful

and informative mathematical representations of a real-world

situations.

Statistics The analysis of variability that draws on our ability to

quantify uncertainty and to draw logical inferences from obser-

vations and experiment.

Computation The capacity to think algorithmically, to manage data

on large scales, to visualize and interact with models, and to auto-

mate tasks for efficiency, accuracy, and reproducibility.

Calculus The traditional mathematical entry point for college and

university students and a subject that still has the potential to

provide important insights to today’s students.

Drawing on support from the US National Science Foundation

(NSF DUE-0920350), Project MOSAIC supports a number of initia-

tives to help achieve these goals, including:

Faculty development and training opportunities, such as the USCOTS

2011, USCOTS 2013, eCOTS 2014, and ICOTS 9 workshops on

start teaching with r 7

Teaching Statistics Using R and RStudio, our 2010 Project MOSAIC

kickoff workshop at the Institute for Mathematics and its Applica-

tions, and our Modeling: Early and Often in Undergraduate Calculus

AMS PREP workshops offered in 2012, 2013, and 2015.

M-casts, a series of regularly scheduled webinars, delivered via the

Internet, that provide a forum for instructors to share their in-

sights and innovations and to develop collaborations to refine and

develop them. Recordings of M-casts are available at the Project

MOSAIC web site, http://mosaic-web.org.

The construction of syllabi and materials for courses that teach the MO-

SAIC topics in a better integrated way. Such courses and materials

might be wholly new constructions, or they might be incremental

modifications of existing resources that draw on the connections

between the MOSAIC topics.

We welcome and encourage your participation in all of these initia-

tives.

http://mosaic-web.org

Statistical Computation, Computational Statistics, and

Data Science

There are at least two ways in which statistical software can be in-

troduced into a statistics course. In the first approach, the course

is taught essentially as it was before the introduction of statistical

software, but using a computer to speed up some of the calculations

and to prepare higher quality graphical displays. Perhaps the size of

the data sets will also be increased. We will refer to this approach as

statistical computation since the computer serves primarily as a com-

putational tool to replace pencil-and-paper calculations and drawing

plots manually.

In the second approach, more fundamental changes in the course

result from the introduction of the computer. Some new topics are

covered, some old topics are omitted. Some old topics are treated in

very different ways, and perhaps at different points in the course.

We will refer to this approach as computational statistics because

the availability of computation is shaping how statistics is done and

taught. This is a key capacity of data science, defined as the ability to

use data to answer questions and communicate those results.
Our students need to see aspects of
computation and data science early
and often to develop deeper skills.
Establishing precursors in introductory
courses will help them get started.

In practice, most courses will incorporate elements of both sta-

tistical computation and computational statistics, but the relative

proportions may differ dramatically from course to course. Where on

the spectrum a course lies will be depend on many factors including

the goals of the course, the availability of technology for student use,

the perspective of the text book used, and the comfort-level of the

instructor with both statistics and computation.

Among the various statistical software packages available, R is

becoming increasingly popular. The recent addition of RStudio has

made R both more powerful and more accessible. Because R and

RStudio are free, they have become widely used in research and in-

dustry. Training in R and RStudio is often seen as an important ad-

ditional skill that a statistics course can develop. Furthermore, an

increasing number of instructors are using R for their own statistical

work, so it is natural for them to use it in their teaching as well. At

start teaching with r 9

the same time, the development of R and of RStudio (an optional in-

terface and integrated development environment for R) are making it

easier and easier to get started with R.

Nevertheless, those who are unfamiliar with R or who have never

used R for teaching are often cautious about using it with students.

If you are in that category, then this book is for you. Our goal is to

reveal some of what we have learned teaching with R and to make

teaching statistics with R as rewarding and easy as possible – for both

students and faculty. We will cover both technical aspects of R and

RStudio (e.g., how do I get R to do thus and such?) as well as some

perspectives on how to use computation to teach statistics. The latter

will be illustrated in R but would be equally applicable with other

statistical software.

Others have used R in their courses, but have perhaps left the

course feeling like there must have been better ways to do this or that

topic. If that sounds more like you, then this book is for you, too. As

we have been working on this book, we have also been developing

the mosaic R package (available on CRAN) to make certain aspects

of statistical computation and computational statistics simpler for

beginners. You will also find here some of our favorite activities,

examples, and data sets, as well as answers to questions that we

have heard frequently from both students and faculty colleagues. We

invite you to scavenge from our materials and ideas and modify them

to fit your courses and your students.

1

Some Advice on Getting Started With R

Learning R is a gradual process, and getting off to a good start goes

a long way toward ensuring success. In this chapter we discuss some

strategies and tactics for getting started teaching statistics with R. In

subsequent chapters we provide more details about the (relatively

few) R commands that students need to know and some additional The mosaic package includes a vignette
outlining a possible minimalist set of R

commands for teaching an introductory
course.

information about R that is useful for instructors to know. Along the

way we present some of our favorite examples that highlight the use

of R, including some that can be used very early in a course.

1.1 Strategies

Each instructor will choose to start his or her course differently, but

we offer the following strategies (followed by some tactics and exam-

ples) that can serve as a guide for starting the course in a way that

prepares students for success with R.

1. Start right away.

Do something with R on day 1. Do something else on day 2. Have

students do something by the end of week 1 at the latest.

2. Illustrate frequently. Teaching Tip

RMarkdown provides a easy way to
create handouts or slides for your
students. See R Markdown: Integrat-
ing a Reproducible Analysis Tool into
Introductory Statistics by B Baumer et
al for more about integrating RMark-
down into your course. For those
already familiar with LATEX, there is also
knitr/LATEXintegration in RStudio.

Have R running every class period and use it as needed through-

out the course so students can see what R does. Preview topics by

showing before asking students to do things.

3. Teach R as a language. (But don’t overdo it.)

There is a bit of syntax to learn – so teach it explicitly.

• Emphasize that capitalization (and spelling) matter.

• Explain carefully (and repeatedly) the syntax of functions.

Fortunately, the syntax is very straightforward. It consists of a
function name followed by an opening parenthesis, followed by
a comma-separated list of arguments (which may be named),
followed by a closing parenthesis.

http://arxiv.org/abs/1402.1894
http://arxiv.org/abs/1402.1894
http://arxiv.org/abs/1402.1894

start teaching with r 11

functionname(name1 = arg1, name2 = arg2, ...)

Get students to think about what a function does and what

it needs to know to do its job. Generally, the function name

indicates what the function does. The arguments provide the

function with the necessary information to do the task at hand.

• Every object in R has a type (class). Ask frequently: What type of

thing is this?

Students need to understand the difference between a variable

and a data frame and also that there are different kinds of vari-

ables (factor for categorical data and numeric for numerical

data, for example). Instructors and more advanced students will

want to know about vector and list objects.

Give more details in higher level courses.

Upper level students should learn more about user-defined

functions and language control structures such as loops and con-

ditionals. Students in introductory courses don’t need to know as

much about the language.

4. “Less volume, more creativity." [Mike McCarthy, head coach,

Green Bay Packers] Note

This is one of the primary motivations
behind our mosaic package, which
seeks to make more things simpler
and more similar to each other so
that students can more easily become
independent, creative users of R. But
even if you don’t choose to do things
exactly the way we do, we recommend
using “Less Volume, More Creativity"
as a guideline.

Use a few methods frequently and students will learn how to

use them well, flexibly, even creatively.

Focus on a small number of data types: numerical vectors,

character strings, factors, and data frames. Choose functions that

employ a similar framework and style to increase the ability of

students to transfer knowledge from one situation to another.

5. Find a way to have computers available for tests.

It makes the test match the rest of the course and is a great

motivator for students to learn R. It also changes what you can ask

for and about on tests.

One of us first did this at the request of students in an introduc-

tory statistics course who asked if there was a way to use comput-

ers during the test “since that’s how we do all the homework." He now

has students bring laptops to class for tests. Another of us has

both in-class (without computer) and out-of-class (with computer)

components to his assessment.

12 randall pruim, nicholas j. horton, and daniel kaplan

6. Rethink your course.

If you have taught computer-free or computer-light courses in

the past, you may need to rethink some things. With ubiquitous

computing, some things disappear from your course:

• Reading statistical tables. Note

One of the main uses of calculators
on the AP Statistics exams is for the
calculation of p-values and related
quantiles.

Does anyone still consult a table for values of sin, or log?

All three of us have sworn off the use of tabulations of critical

values of distributions (since none of us use them in our profes-

sional work, why would we teach this to students?)

• “Computational formulas".

Replace them with computation. Teach only the most intu-

itive formulas. Focus on how they lead to intuition and under-

standing, not computation.

• (Almost all) hand calculations.

At the same time, other things become possible that were not

before:

• Large data sets

• Beautiful plots

• Simulations and methods based on randomization and resam-

pling

• Quick computations

• Increased focus on concepts rather than calculations

Get your students to think that using the computer is just part of

how statistics is done, rather than an add-on.

7. This may change some over the course of the semester. It is impor-

tant not to get too complicated too quickly. Early on, we typically

use default settings and focus on the main ideas. Later, we may

introduce fancier options as students become comfortable with

simpler things (and often demand more). Keep the message as

simple as possible and keep the commands accordingly simple.

Particularly when doing graphics, beware of distracting students

with the sometimes intricate details of beautifying for publication.

If the default behavior is good enough, go with it.

8. Anticipate computationally challenged students, but don’t give in.

Some students pick up R very easily. In every course there will

be a few students who struggle. Be prepared to help them, but

don’t spend time listening to their complaints. Focus on diagnos-

ing what they don’t know and how to help them “get it”.

In our experience, the computer is often a fall guy for other

things the student does not understand. Because the computer

gives immediate feedback, it reveals these misunderstandings. For

start teaching with r 13

exapmle, if students are confused about the distinctions among

variables, statistics, and observational units, they will have a diffi-

cult time providing the correct information to a plotting function.

The student may blame R, but that is not the primary source of the

difficulty. If you can diagnose the true problem, you will improve

their understanding of statistics and fix R difficulties simultane-

ously.

Teaching Tip

When introducing R code to students,
we emphasize the following questions:
What do you want R to do for you? and
What information must you provide, if R

is going to do that? The first question
generally determines the function that
will be used. The second determines
the inputs to that function.

But even students with a solid understanding of the statistical

concepts you are teaching will encounter R errors that they cannot

eliminate. Tell students to copy and paste R code and error mes-

Teaching Tip

Tell your students to copy and paste
error messages into email rather than
describe them vaguely. It’s a big time
saver for everyone

sages into email when they have trouble. When you reply, explain

how the error message helped you diagnose their problem and

help them generalize your solution to other situations. See Chap-

ter 6 for some of the common error messages and what they might

indicate.

1.2 Tactics

1. Introduce Graphics Early.

Introduce graphics very early, so that students see that they can

get impressive output from simple commands. Try to break away

from their prior expectation that there is a “steep learning curve."

Accept the defaults – don’t worry about the niceties (good labels,

nice breaks on histograms, colors) too early. Let them become

comfortable with the basic graphics commands and then play

(make sure it feels like play!) with fancying things up. Students must learn to see before they can
see to learn.Keep in mind that just because the graphs are easy to make on

the computer doesn’t mean your students understand how to read

the graphs. Use examples that will help students develop good

habits for visualizing data.

2. Introduce Sampling and Randomization Early.

Since sampling drives much of the logic of statistics, introduce

the idea of a random sample very early, and have students con-

struct their own random samples. The phenomenon of a sampling

distribution can be introduced in an intuitive way, setting it up as

a topic for later discussion and analysis.

1.3 Scope of this book

In keeping with this advice, most of the examples in this book fall

in the area of exploratory data analysis. The organization is chosen

to develop gradually an understanding of R. See the companion

volume A Compendium of Commands to Teach Statistics with R for a

14 randall pruim, nicholas j. horton, and daniel kaplan

tour of commands used in the primary sorts analyses used in the

first two undergraduate statistics courses. This companion volume is

organized by types of data analyses and presumes some familiarity

wit the R language.

2

Getting Started with RStudio

RStudio is an integrated development environment (IDE) for R that

provides an alternative interface to R that has several advantages over

other the default R interfaces:

• RStudio runs on Mac, PC, and Linux machines and provides a

simplified interface that looks and feels identical on all of them.

The default interfaces for R are quite different on the various plat-

forms. This is a distractor for students and adds an extra layer of

support responsibility for the instructor.

• RStudio can run in a web browser.

In addition to stand-alone desktop versions, RStudio can be set up

as a server application that is accessed via the internet. Installation

is straightforward for anyone with experience administering a

Linux system. Once set up at your institution, students can start

using RStudio by simply opening a website from a browser and

logging in. No additional installation or configuration is required.

The web interface is nearly identical to the desktop version. As Caution!
The desktop and server version of
RStudio are so similar that if you run
them both, you will have to pay careful
attention to make sure you are working
in the one you intend to be working in.

with other web services, users login to access their account. If stu-

dents logout and login in again later, even on a different machine,

their session is restored and they can resume their analysis right

where they left off. With a little advanced set up, instructors can

save the history of their classroom R use and students can load

those history files into their own environment. Note

Using RStudio in a browser is like
Facebook for statistics. Each time the
user returns, the previous session is
restored and they can resume work
where they left off. Users can login
from any device with internet access.

• RStudio provides support for reproducible research.

RStudio makes it easy to include text, statistical analysis (R code

and R output), and graphical displays all in the same document.

The RMarkdown system provides a simple markup language and

renders the results in HTML. The knitr/LATEX system allows users

to combine R and LATEX in the same document. The reward for

learning this more complicated system is much finer control over

16 randall pruim, nicholas j. horton, and daniel kaplan

the output format. Depending on the level of the course, students

can use either of these for homework and projects. To use Markdown or knitr/LATEX
requires that the knitr package be in-
stalled on your system. See Section 5.3
for instructions on installing packages.

We typically introduce students to RMarkdown very early, re-

quiring students to use it for assignments and reports. Handouts,

exams, and books like this one are produced using knitr/LATEX,

and it is relatively easy for interested students to migrate to knitr

from RMarkdown if they are interested.

• RStudio provides an integrated support for editing and executing R

code and documents.

• RStudio provides some useful functionality via a graphical user

interface.

RStudio is not a GUI for R, but it does provide a GUI that sim-

plifies things like installing and updating packages; monitoring,

saving and loading environments; importing and exporting data;

browsing and exporting graphics; and browsing files and docu-

mentation.

• RStudio provides access to the manipulate package.

The manipulate package provides a way to create simple inter-

active graphical applications quickly and easily.

While one can certainly use R without using RStudio, RStudio makes

a number of things easier and we highly recommend using RStudio.

Furthermore, since RStudio is in active development, we fully expect

more useful features in the future.

2.1 Setting up R and RStudio

R can be obtained from http://cran.r-project.org/. Download

and installation are pretty straightforward for Mac, PC, or Linux

machines. RStudio is available from http://www.rstudio.org/. RStu-

dio can be installed as a desktop (laptop) application or as a server

application that is accessible to others via the Internet.

2.1.1 RStudio in the cloud

We primarily use an online version of RStudio. RStudio is a innovative

and powerful interface to R that runs in a web browser or on your

local machine. Running in the browser has the advantage that you

don’t have to install or configure anything. Just login and you are

good to go. Futhermore, RStudio will “remember” what you were

doing so that each time you login (even on a different machine) you

can pick up right where you left off. This is “R in the cloud" and

works a bit like GoogleDocs or Facebook for R.

http://cran.r-project.org/
http://www.rstudio.org/

start teaching with r 17

Your system administrator will likely need to set up your own

installation of RStudio for your institution, but we can attest that the

process is straightforward and greatly facilitates student and faculty

use.

2.1.2 RStudio on your computer

There is also a stand-alone version of the RStudio environment that

you can install on your desktop or laptop machine. This can be

downloaded from http://www.rstudio.org/. This assumes that

you have a version of R installed on your computer (see below for

instructions to download this from CRAN). Even if your students

are primarily or exclusively using the server version of RStudio in a

browser, instructors may like to have the security blanket of a ver-

sion that does not require access to the internet. But be warned, the

two version look so similar that you may occasionally find yourself

working in one of them when you intend to be in the other.

2.1.3 Getting R from CRAN

CRAN is the Comprehensive R Archive Network (http://cran.

r-project.org/). You can download free versions of R for PC, Mac,

and Linux from CRAN. (If you use the RStudio stand-alone version,

you also need to install R this way first.) All the instructions for

downloading and installing are on CRAN. Just follow the appro-

priate instructions for your platform.

2.1.4 Running RStudio the first time

Once you have launched the desktop version of RStudio or logged in

to an RStudio server, you will see something like Figure 2.1.

Figure 2.1: Welcome to RStudio.

http://www.rstudio.org/
http://cran.r-project.org/
http://cran.r-project.org/

18 randall pruim, nicholas j. horton, and daniel kaplan

Notice that RStudio divides its world into four panels. Several of

the panels are further subdivided into multiple tabs. Which tabs

appear in which panels can be customized by the user.

session in class.

2.2 Using R as a Calculator in the Console

R can do much more than a simple calculator, and we will introduce

additional features in due time. But performing simple calculations

in R is a good way to begin learning the features of RStudio.

Commands entered in the Console tab are immediately executed

by R. A good way to familiarize yourself with the console is to do

some simple calculator-like computations. Most of this will work

just like you would expect from a typical calculator. Try typing the

following commands in the console panel.

5 + 3

[1] 8

15.3 * 23.4

[1] 358

sqrt(16) # square root

[1] 4

This last example demonstrates how functions are called within R

as well as the use of comments. Comments are prefaced with the #

character. Comments can be very helpful when writing scripts with

multiple commands or to annotate example code for your students.

You can save values to named variables for later reuse. Teaching Tip

It’s probably best to settle on using
one or the other of the right-to-left
assignment operators rather than to
switch back and forth. The authors have
different preferences: two of us find the
equal sign to be simpler for students
and more intuitive, while the other
prefers the arrow operator because it
represents visually what is happening
in an assignment, because it can also
be used in a left to right manner, and
because it makes a clear distinction
between the assignment operator, the
use of = to provide values to arguments
of functions, and the use of == to test
for equality.

product = 15.3 * 23.4 # save result

product # display the result

[1] 358

product <- 15.3 * 23.4 # <- can be used instead of =

product

[1] 358

Once variables are defined, they can be referenced in other opera-

tions and functions.

start teaching with r 19

0.5 * product # half of the product

[1] 179

log(product) # (natural) log of the product

[1] 5.881

log10(product) # base 10 log of the product

[1] 2.554

log2(product) # base 2 log of the product

[1] 8.484

log(product, base=2) # base 2 log of the product, another way

[1] 8.484

The semi-colon can be used to place multiple commands on one

line. One frequent use of this is to save and print a value all in one

go:

product <- 15.3 * 23.4; product # save result and show it

[1] 358

2.3 Working with Files

2.3.1 Working with R Script Files

As an alternative, R commands can be stored in a file. RStudio pro-

vides an integrated editor for editing these files and facilitates exe-

cuting some or all of the commands. To create a file, select File, then

New File, then R Script from the RStudio menu. A file editor tab will

open in the Source panel. R code can be entered here, and buttons

and menu items are provided to run all the code (called sourcing the

file) or to run the code on a single line or in a selected section of the

file.

2.3.2 Working with RMarkdown, and knitr/LATEX

A third alternative is to take advantage of RStudio’s support for re-

producible research. If you already know LATEX, you will want to

investigate the knitr/LATEX capabilities. For those who do not al-

ready know LATEX, the simpler RMarkdown system provides an easy

20 randall pruim, nicholas j. horton, and daniel kaplan

entry into the world of reproducible research methods. It also pro-

vides a good facility for students to create homework and reports

that include text, R code, R output, and graphics.

To create a new RMarkdown file, select File, then New File, then

RMarkdown. The file will be opened with a short template document

that illustrates the mark up language. Click on Compile HTML to con-

vert this to an HTML file. There is a button the provides a brief de-

scription of the mark commands supported, and the RStudio web site

includes more extensive tutorials on using RMarkdown. Caution!
RMarkdown, and knitr/LATEX files
do not have access to the console
environment, so the code in them must
be self-contained.

It is important to remember that unlike R scripts, which are ex-

ecuted in the console and have access to the console environment,

RMarkdown and knitr/LATEX files do not have access to the console

environment This is a good feature because it forces the files to be

self-contained, which makes them transferable and respects good re-

producible research practices. But beginners, especially if they adopt

a strategy of trying things out in the console and copying and pasting

successful code from the console to their file, will often create files

that are incomplete and therefore do not compile correctly.

One good strategy for getting student to use RMarkdown is to

provide them with a template that includes the boiler plate you want

them to use, loads any R packages that they will need, sets any knitr

or R settings they way you prefer them, and has placeholders for the

work you want them to do.

2.4 The Other Panels and Tabs

2.4.1 The History Tab

As commands are entered in the console, they appear in the History

tab. These histories can be saved and loaded, there is a search feature

to locate previous commands, and individual lines or sections can

be transfered back to the console. Keeping the History tab open will

allow students to look back and see the previous several commands.

This can be especially useful when commands produce a fair amount

of output and so scroll off the screen rapidly. History files can be

saved and distributed to students so that they can rerun the code

illustrated in class. (Before saving the history, you can remove any

lines that you don’t want saved to spare your students repeating all

of your typing errors.)

An alternative is to produce RMarkdown files in class and make

those available. This provides a better mechanism for adding addi-

tional comments or instructions.

start teaching with r 21

2.4.2 Communication between tabs

RStudio provides several ways to move R code between tabs. Pressing

the Run button in the editing panel for an R script or RMarkdown or

other file will copy lines of code into the Console and run them.

2.4.3 The Files Tab

The Files tab provides a simple file manager. It can be navigated in

familiar ways and used to open, move, rename, and delete files. In

the browser version of RStudio, the Files tab also provides a file up-

load utility for moving files from the local machine to the server. In

RMarkdown and knitr files one can also run the code in a particular

chunk or in all of the chunks in a file. Each of these features makes

it easy to try out code “live” while creating a document that keeps a

record of the code.

In the reverse direction, code from the history can be copied either

back into the console to run them again (perhaps after editing) or

into one of the file editing tabs for inclusion in a file.

2.4.4 The Help Tab

The Help tab is where RStudio displays R help files. These can be
searched and navigated in the Help tab. You can also open a help file
using the ? operator in the console. For example

?log

Will provide the help file for the logarithm function.

2.4.5 The Environment Tab

The Environment tab shows the objects available to the console. These

are subdivided into data, values (non-data frame, non-function ob-

jects) and functions. The broom icon can be used to remove all ob-

jects from the environment, and it is good to do this from time to

time, especially when running in RStudio server or if you choose to

save the environment when shutting down RStudio since in these

cases objects can stay in the environment essentially indefinitely.

2.4.6 The Plots Tab

Plots created in the console are displayed in the Plots tab. For exam-
ple,

this will make lattice graphics available to the session

require(mosaic)

xyplot(births ~ dayofyear, data = Births78)

22 randall pruim, nicholas j. horton, and daniel kaplan

dayofyear

bi
rt

hs

7000

8000

9000

10000

0 100 200 300

●●

●●
●●

●

●

●●●●●

●

●

●●
●●
●

●
●

●●●
●
●

●
●

●●●●●

●
●

●●●●
●

●
●

●

●

●●●

●

●

●
●●●
●

●
●

●
●

●●
●

●
●

●
●
●●
●

●
●

●

●
●●
●

●
●

●

●
●●●

●
●

●
●●
●
●

●
●

●
●

●●
●

●
●

●●
●●
●

●
●

●

●

●●
●

●

●

●●●●
●

●

●

●

●
●
●
●

●
●

●
●●
●●

●
●

●●
●●●

●

●

●●●●
●

●
●●

●●●●

●

●

●

●
●
●
●

●

●

●●●●●

●
●

●●
●●
●

●●

●

●●●
●

●
●

●

●

●

●●

●

●

●●●
●
●

●
●

●
●
●
●●

●

●

●
●
●●
●

●
●

●
●
●
●●

●
●

●
●
●●●

●
●

●
●
●
●●

●
●

●
●
●
●●

●
●

●
●
●
●
●

●
●●

●

●
●●

●
●

●
●
●●●

●

●

●
●
●●●

●●

●●●●
●

●●

●
●
●●●

●
●

●

●

●●●

●

●

●
●

●●
●

●

●

●●●●
●

●
●

●●●●

●

●
●

●
●
●●●

●
●

●
●

●●
●

●

●

●
●
●

●

●

●
●

●●
●●
●

●
●

●●

●●●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●●●

●

●
●
●

●
●

will display the number of births in the United States for each day in

1978. From the Plots tab, you can navigate to previous plots and also

export plots in various formats after interactively resizing them.

2.4.7 The Packages Tab

Much of the functionality of R is located in packages, many of which

can be obtained from a central clearing house called CRAN (Compre-

hensive R Archive Network). The Packages tab facilitates installing

and loading packages. It will also allow you to search for packages

that have been updated since you installed them.

3

Using R Early in the Course

This chapter includes some of our favorite activities for early in the

course. These activities simultaneously provide the students with a

first glimpse of R and an introduction to some major themes of the

course. Used this way, it is not necessary for students to understand

the details of the R code. Instead have them focus on the questions

being asked on how the results presented shed light on the answers

to these questions.

3.1 Coins and Cups: The Lady Tasting Tea

This section is a slightly modified
version of a handout one of the authors
has given Intro Stats students on Day
1 after going through the activity as a
class discussion.

There is a famous story about a lady who claimed that tea with milk

tasted different depending on whether the milk was added to the

tea or the tea added to the milk. The story is famous because of the

setting in which she made this claim. She was attending a party in

Cambridge, England, in the 1920s. Also in attendance were a num-

ber of university dons and their wives. The scientists in attendance

scoffed at the woman and her claim. What, after all, could be the

difference?

All the scientists but one, that is. Rather than simply dismiss the

woman’s claim, he proposed that they decide how one should test

the claim. The tenor of the conversation changed at this suggestion,

and the scientists began to discuss how the claim should be tested.

Within a few minutes cups of tea with milk had been prepared and

presented to the woman for tasting.

At this point, you may be wondering who the innovative scientist

was and what the results of the experiment were. The scientist was R.

A. Fisher, who first described this situation as a pedagogical example

in his 1925 book on statistical methodology 1. Fisher developed sta- 1 R. A. Fisher. Statistical Methods for
Research Workers. Oliver & Boyd, 1925tistical methods that are among the most important and widely used

methods to this day, and most of his applications were biological.

You might also be curious about how the experiment came out.

How many cups of tea were prepared? How many did the woman

24 randall pruim, nicholas j. horton, and daniel kaplan

correctly identify? What was the conclusion?

Fisher never says. In his book he is interested in the method, not

the particular results. But we can use this setting to introduce some

key ideas in statistics.

Let’s suppose we decide to test the lady with ten cups of tea. We’ll

flip a coin to decide which way to prepare the cups. If we flip a head,

we will pour the milk in first; if tails, we put the tea in first. Then we

present the ten cups to the lady and have her state which ones she

thinks were prepared each way.

It is easy to give her a score (9 out of 10, or 7 out of 10, or what-

ever it happens to be). It is trickier to figure out what to do with Teaching Tip

The score is setting up the idea of a test
statistic for later, but there is no need to
introduce that terminology on day 1.

her score. Even if she is just guessing and has no idea, she could get

lucky and get quite a few correct – maybe even all 10. But how likely

is that?

Let’s try an experiment. I’ll flip 10 coins. You guess which are

heads and which are tails, and we’ll see how you do. Have each student make a guess by
writing down a sequence of 10 H’s or
T’s while you flip the coin behind a
barrier so that the students cannot see
the results.

Comparing with your classmates, we will undoubtedly see that

some of you did better and others worse.

Now let’s suppose the lady gets 9 out of 10 correct. That’s not

perfect, but it is better than we would expect for someone who was

just guessing. On the other hand, it is not impossible to get 9 out

of 10 just by guessing. So here is Fisher’s great idea: Let’s figure

out how hard it is to get 9 out of 10 by guessing. If it’s not so hard

to do, then perhaps that’s just what happened, so we won’t be too

impressed with the lady’s tea tasting ability. On the other hand, if it

is really unusual to get 9 out of 10 correct by guessing, then we will

have some evidence that she must be able to tell something.

But how do we figure out how unusual it is to get 9 out of 10 just

by guessing? We’ll learn another method later, but for now, let’s just

flip a bunch of coins and keep track. If the lady is just guessing, she

might as well be flipping a coin.

So here’s the plan. We’ll flip 10 coins. We’ll call the heads correct

guesses and the tails incorrect guesses. Then we’ll flip 10 more coins, There is a subtle switch here. Before we
were asking how many of the students
H’s and T’s matched the flipped coin.
Now we are using H to simulate a
correct guess and T to simulate an
incorrect guess. This makes simulating
easier.

and 10 more, and 10 more, and That would get pretty tedious.

Fortunately, computers are good at tedious things, so we’ll let the

computer do the flipping for us.

The rflip() function can flip one coin

require(mosaic)

rflip()

[1] 0

attr(,"n")

[1] 1

start teaching with r 25

attr(,"prob")

[1] 0.5

attr(,"sequence")

[1] "T"

attr(,"verbose")

[1] TRUE

attr(,"class")

[1] "cointoss"

or a number of coins

rflip(10)

[1] 7

attr(,"n")

[1] 10

attr(,"prob")

[1] 0.5

attr(,"sequence")

[1] "H" "T" "H" "H" "T" "H" "H" "H" "T" "H"

attr(,"verbose")

[1] TRUE

attr(,"class")

[1] "cointoss"

Typing rflip(10) a bunch of times is almost as tedious as flipping

all those coins. But it is not too hard to tell R to do() this a bunch of

times. Notice that do() is clever about what
information it records. Rather than
recording all of the individual tosses, it
is only recording the number of flips,
the number of heads, and the number
of tails.

do(3) * rflip(10)

Loading required package: parallel

n heads tails prop

1 10 3 7 0.3

2 10 5 5 0.5

3 10 5 5 0.5

Let’s get R to do() it for us 10,000 times

and make a table of the results. Teaching Tip

There is always the question of how
many simulations to perform. This is a
trade-off between speed and accuracy.
For simple things, one can easily
perform 10,000 or more simulations live
in class. For more complicated things
(that might require fitting a model and
extracting information from it at each
iteration) you might prefer a smaller
number for live demonstrations.

When you cover inference for a
proportion, it is a good idea to use
those methods to revisit the question of
how many replications are required in
that context.

store the results of 10000 simulated ladies

random.ladies <- do(10000) * rflip(10)

26 randall pruim, nicholas j. horton, and daniel kaplan

tally(~heads, data=random.ladies)

0 1 2 3 4 5 6 7 8 9 10

8 98 428 1184 2052 2480 1991 1222 430 95 12

We can also display table using percentages

tally(~heads, data=random.ladies, format="prop")

0 1 2 3 4 5 6 7

0.0008 0.0098 0.0428 0.1184 0.2052 0.2480 0.1991 0.1222

8 9 10

0.0430 0.0095 0.0012

We can display this table graphically using a plot called a his-

togram with bins of width 1. The mosaic package adds some ad-
ditional features to histogram(). In
particular, the width and center argu-
ments, which make it easier to control
the bins, are only available if you are
using the mosaic package.

histogram(~heads, data = random.ladies, width = 1)

heads

D
en

si
ty

0.00
0.05
0.10
0.15
0.20
0.25

0 2 4 6 8 10

You might be surprised to see that the number of correct guesses

is exactly 5 (half of the 10 tries) only 25% of the time. But most of the

results are quite close to 5 correct. For example, 66% of the results are

4, 5, or 6, for example. About 90% of the results are between 3 and 7

(inclusive). But getting 8 correct is a bit unusual, and getting 9 or 10

correct is even more unusual.

So what do we conclude? It is possible that the lady could get 9 or

10 correct just by guessing, but it is not very likely (it only happened

in about 1.1% of our simulations). So one of two things must be true:

• The lady got unusually “lucky", or

• The lady is not just guessing.

Although Fisher did not say how the experiment came out, others

have reported that the lady correctly identified all 10 cups! 2 2 D. Salsburg. The Lady Tasting Tea:
How statistics revolutionized science in the
twentieth century. W.H. Freeman, New
York, 2001A different design

start teaching with r 27

Suppose instead that we prepare five cups each way (and that

the woman tasting knows this). We give her five cards labeled “milk

first”, and she must place them next to the cups that had the milked

poured first. How does this design change things?

We could simulate this by shuffling a deck of 10 cards and dealing

five of them.

cards <- factor(c("M", "M", "M", "M", "M", "T", "T", "T", "T",

"T"))

tally(~deal(cards, 5))

M T

2 3

The use of factor() here lets R know
that the possible values are ‘M’ and
‘T’, even when only one or the other
appears in a given random sample.results <- do(10000) * tally(~deal(cards, 5))

tally(~M, data = results)

0 1 2 3 4 5

38 1030 3954 3962 971 45

tally(~M, data = results, format = "prop")

0 1 2 3 4 5

0.0038 0.1030 0.3954 0.3962 0.0971 0.0045

tally(~M, data = results, format = "perc")

0 1 2 3 4 5

0.38 10.30 39.54 39.62 9.71 0.45

3.2 Births by Day

The Births78 data set contains the number of births in the United

States for each day of 1978. A scatter plot of births by day of year The use of the phrase “depends on” is
intentional. Later we will emphasize
how ˜ can often be interpreted as
“depends on”.

reveals some interesting patterns. Let’s see how the number of births

depends on the day of the year.

xyplot(births ~ dayofyear, data = Births78)

28 randall pruim, nicholas j. horton, and daniel kaplan

dayofyear

bi
rt

hs

7000

8000

9000

10000

0 100 200 300

●●

●●
●●

●

●

●●●●●

●

●

●●
●●
●

●
●

●●●
●
●

●
●

●●●●●

●
●

●●●●
●

●
●

●

●

●●●

●

●

●
●●●
●

●
●

●
●

●●
●

●
●

●
●
●●
●

●
●

●

●
●●
●

●
●

●

●
●●●

●
●

●
●●
●
●

●
●

●
●

●●
●

●
●

●●
●●
●

●
●

●

●

●●
●

●

●

●●●●
●

●

●

●

●
●
●
●

●
●

●
●●
●●

●
●

●●
●●●

●

●

●●●●
●

●
●●

●●●●

●

●

●

●
●
●
●

●

●

●●●●●

●
●

●●
●●
●

●●

●

●●●
●

●
●

●

●

●

●●

●

●

●●●
●
●

●
●

●
●
●
●●

●

●

●
●
●●
●

●
●

●
●
●
●●

●
●

●
●
●●●

●
●

●
●
●
●●

●
●

●
●
●
●●

●
●

●
●
●
●
●

●
●●

●

●
●●

●
●

●
●
●●●

●

●

●
●
●●●

●●

●●●●
●

●●

●
●
●●●

●
●

●

●

●●●

●

●

●
●

●●
●

●

●

●●●●
●

●
●

●●●●

●

●
●

●
●
●●●

●
●

●
●

●●
●

●

●

●
●
●

●

●

●
●

●●
●●
●

●
●

●●

●●●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●●●

●

●
●
●

●
●

When shown this image, students should readily be able to de-

scribe two patterns in the data; they should notice both the rise and

fall over the course of the year and the two “parallel waves". Many Teaching Tip

This can make a good “think-pair-
share” activity. Have students come up
with possible explanations, then discuss
these explanations with a partner.
Finally, have some of the pairs share
their explanations with the entire class.

students will be able to come up with conjectures about the peaks

and valleys, but they often struggle to correctly interpret the parallel

waves. Having them make conjectures about this will quickly reveal

whether they are correctly interpreting the plot.

One conjecture about the parallel waves can be checked using the

data at hand. If we display each day of the week with a different

symbol or color, we see that there are fewer births on weekends –

likely because scheduled births are less likely on weekends. There are

a handful of exceptions which are readily seen to be holidays.

xyplot(births ~ dayofyear, data=Births78, groups=dayofyear%%7,

auto.key=list(space="right"))

dayofyear

bi
rt

hs

7000

8000

9000

10000

0 100 200 300

0
1
2
3
4
5
6

A discussion of this or some other data set that can be explored

through graphical displays is a good way to demonstrate “statistical

curiosity", to illustrate the power of R for creating graphs, and to

introduce the importance of covariates in statistical analysis. Visualization has been called the “gate-
way drug” to statistics. It can be a
great way to lure students into statis-
ticcs – and away from their graphing
calculators.

start teaching with r 29

3.3 SAT and Confounding

The SAT data set contains information about the link between SAT
scores and measures of educational expenditures. Students are often
surprised to see that states that spend more on education do worse
on the SAT.

xyplot(sat ~ expend, data = SAT)

expend

sa
t

850

900

950

1000

1050

1100

4 5 6 7 8 9 10

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●●

●●

●

●

The problem is that expenditures are confounded with the propor-
tion of students who take the exam, and scores are higher in states
where fewer students take the exam.

xyplot(expend ~ frac, data = SAT)

xyplot(sat ~ frac, data = SAT)

frac

ex
pe

nd

4

5

6

7

8

9

10

20 40 60 80

●

●

●
●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●●

●

●

● ●●
●

●

●

●

●

●●

●

●

●
●
●

●●
●

●

●

●

●
●●

●
●

frac

sa
t

850

900

950

1000

1050

1100

20 40 60 80

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●● ●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

It is interesting to look at the original plot if we place the states
into two groups depending on whether more or fewer than 40% of
students take the SAT:

SAT <- mutate(SAT, fracGroup = derivedFactor(hi = (frac > 40),

lo = (frac <= 40)))

xyplot(sat ~ expend | fracGroup, data = SAT, type = c("p", "r"))

xyplot(sat ~ expend, groups = fracGroup, data = SAT, type = c("p",

"r"))

30 randall pruim, nicholas j. horton, and daniel kaplan

expend

sa
t

850
900
950

1000
1050
1100

4 5 6 7 8 9 10

●
● ●●●
●

●● ● ●●
●

●●
●

●

●●

●

● ●●
●

hi

4 5 6 7 8 9 10

●

●

●
●●

●

●
●

●
● ●

●

● ●
●
●

●

●

●

●

●
●

●
●

●

●

●

lo

expend

sa
t

850

900

950

1000

1050

1100

4 5 6 7 8 9 10

This example can be used to warn against interpreting relation-

ships causally and to illustrate the importance of considering covari-

ates.

3.4 Mites and Wilt Disease

This example shows how to build up to statistical inference from first princi-

ples.

Researchers suspect that attack of a plant by one organism induces

resistance to subsequent attack by a different organism. Individually

potted cotton plants were randomly allocated to two groups: infes-

tation by spider mites or no infestation. After two weeks the mites

were dutifully removed by a conscientious research assistant, and

both groups were inoculated with Verticillium, a fungus that causes

Wilt disease. The researchers were hoping the data would shed light

on the following big question:

Is there a relationship between infestation and Wilt disease?

The accompanying table shows a cross tabulation the number of

plants that developed symptoms of Wilt disease.

Mites <- data.frame(

mites = c(rep("Yes", 11), rep("No", 17),

rep("Yes", 15), rep("No", 4)),

wilt = c(rep("Yes", 28), rep("No", 19))

)

tally(~ wilt + mites, Mites)

mites

wilt No Yes

No 4 15

Yes 17 11

Students can begin exploring this data by answering the following

questions.

start teaching with r 31

1. Here, what do you think is the explanatory variable? Response

variable?

2. What proportion of the plants in the study with mites developed

Wilt disease?

3. What proportion of the plants in the study with no mites devel-

oped Wilt disease?

4. Relative risk is the ratio of two risk proportions. What is the rela-

tive risk of developing Wilt disease, comparing mites to no mites?

5. If there were no association between mites and Wilt disease, what

would the relative risk be (in the population as a whole)? How

close is the relative risk computed from the data to this value?

6. Let X be the number of plants in the no mites group that did not

develop Wilt disease. What are the possible values for X?

7. Assuming a population relative risk of 1, give two possible values

for X that would be more unusual than the value for these data?

Now we can set up a randomization simulation using some cards.

Physical Simulation

1. Select 47 cards from your deck: 26 red (mites!) and 21 black

2. Shuffle the cards well

3. Deal out 19 cards, these represent the 19 plants without Wilt

disease.

4. Count the number of black cards among those 19. What do

these represent?

5. Repeat steps 2 –4, five times.

Students can pool their results by recording them in a table on the

board at the front of the room. Then have students process the results

by answering the following questions.

8. How many black cards would we expect (on average)? Why?

9. What did we observe?

10. How would we summarize these results? What is the big idea?

Once the simulation with cards has been completed, we can use R

to do many more simulations very quickly.

32 randall pruim, nicholas j. horton, and daniel kaplan

Computational Simulation

tally(~ wilt + mites, data=Mites)

mites

wilt No Yes

No 4 15

Yes 17 11

X <- tally(~ wilt + mites, data=Mites)["No","No"]

X

[1] 4

nullDist <- do(1000) *

tally(~ wilt + shuffle(mites), data=Mites)["No","No"]

Loading required package: parallel

histogram(~ result, data=nullDist,

width=1, type="density", fit="normal")

result

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25

4 6 8 10 12

4

Less Volume, More Creativity

A lot of times you end up putting in a lot more volume, because you

are teaching fundamentals and you are teaching concepts that you

need to put in, but you may not necessarily use because they are build-

ing blocks for other concepts and variations that will come off of that

... In the offseason you have a chance to take a step back and tailor it

more specifically towards your team and towards your players.

– Mike McCarthy, Head Coach, Green Bay Packers

Perfection is achieved, not when there is nothing more to add, but

when there is nothing left to take away.

– Antoine de Saint-Exupery, writer, poet, pioneering aviator

One key to successfully introducing R is finding a set of commands

that is

• small,

• coherent, and

• powerful.

This chapter provides an extensive example of this “Less Volume,

More Creativity" approach. The mosaic package (combined with the

lattice package and other core R functionality) provides a simple

yet powerful framework that equips students to produce all of the

• numerical summaries,

• graphical summaries, and

• linear models

needed in an introductory course. By presenting this as one master

template with variations, we emphasize the similarity among these

commands and reduce the cognitive load for students. In our expe-

rience, this has made R much more approachable and enjoyable for

students and their instructors.

34 randall pruim, nicholas j. horton, and daniel kaplan

4.1 The mosaic package and the formula template

Much of the early work on the mosaic package centered on produc-

ing a minimal set of R commands that could provide students with

everything need for introductory statistics without overwhelming

students with too many commands. One of the mosaic package vi-

gnettes includes a document describing just such a set of commands.

Much of this is built off the following template that is used repeat-

edly

(

∼ , data =

)

The template is used by filling in the boxes. It helps to give each box

a name:

goal

(

y ∼ x , data = mydata

)

Teaching Tip

After introducing this template, you
might quiz students to make sure
they have learned it. This will also
emphasize its importance.

The template has a bit more flexibility than we have indicated.
Sometimes the y is not needed:

goal(~x, data = mydata)

The formula may also include a third part

goal(y ~ x | z, data = mydata)

We can unify all of these into one form:

goal(formula, data = mydata)

The template can be applied to create numerical summaries,

graphical summaries, or model fits by answering two questions and

using the answers to fill in the slots of the template:

1. What do you want R to do?

This is the goal.

2. What must R know to do that?

These are the inputs to the function. For numerical summaries,

graphical summaries, and model fits, we typically need to specify

the variables involved and the data frame in which they are stored.

4.2 Graphical summaries of data

Teaching Tip

We recommend showing some plots
on the first day and having student
generate their own graphs before the
end of the first week.

Graphical summaries are an important and eye-catching way to

demonstrate the power and flexibility of our template. We like to

start teaching with r 35

introduce students to graphical summaries early in the course. This

gives the students access to functionality where R really shines (and

is certainly much better than a hand-held calculator). It also begins to

develop their ability to interpret graphical representations of data, to

think about distributions, and to pose statistical questions. More Info

We are often asked about the other
graphics systems, especially ggplot2

graphics. In our experience, lattice
makes it easier for beginners to create a
wide variety of more or less “standard”
plots – including the ability to represent
multiple variables at once. ggplot2,
on the other hand, makes it easier to
generate custom plots or to combine
plot components. Each has their place,
and we use both systems. But for
beginners, we typically emphasize
lattice.

Coming soon is a new player in the
visualization arena: ggvis. This pack-
age, by the same author as ggplot2 is
already available in a developmental
version and promises to add interac-
tivity and speed to the strengths of
ggplot2.

There are several ways to make graphs in R. One approach is a

system called lattice graphics. Whenever the mosaic package is

loaded, the lattice package is also loaded. One of the attractive

aspects of lattice plots is that they make use of the same template

we will use for numerical summaries and linear models.

4.2.1 Graphical summaries of two variables

A first example: Making a scatter plot

As an example, let’s create the following plot, which shows the

number of births in the United States for each day in 1978.

Teaching Tip

This plot can make an interested
discussion starter early in a course.
Ask students to conjecture explanations
for the patterns they observe in the
plots. Their answers will reveal whether
they are interpreting the plot correctly.

dayofyear

bi
rt

hs

7000

8000

9000

10000

0 100 200 300

●●

●●
●●

●

●

●●●●●

●

●

●●
●●
●

●
●

●●●
●
●

●
●

●●●●●

●
●

●●●●
●

●
●

●

●

●●●

●

●

●
●●●
●

●
●

●
●

●●
●

●
●

●
●
●●
●

●
●

●

●
●●
●

●
●

●

●
●●●

●
●

●
●●
●
●

●
●

●
●

●●
●

●
●

●●
●●
●

●
●

●

●

●●
●

●

●

●●●●
●

●

●

●

●
●
●
●

●
●

●
●●
●●

●
●

●●
●●●

●

●

●●●●
●

●
●●

●●●●

●

●

●

●
●
●
●

●

●

●●●●●

●
●

●●
●●
●

●●

●

●●●
●

●
●

●

●

●

●●

●

●

●●●
●
●

●
●

●
●
●
●●

●

●

●
●
●●
●

●
●

●
●
●
●●

●
●

●
●
●●●

●
●

●
●
●
●●

●
●

●
●
●
●●

●
●

●
●
●
●
●

●
●●

●

●
●●

●
●

●
●
●●●

●

●

●
●
●●●

●●

●●●●
●

●●

●
●
●●●

●
●

●

●

●●●

●

●

●
●

●●
●

●

●

●●●●
●

●
●

●●●●

●

●
●

●
●
●●●

●
●

●
●

●●
●

●

●

●
●
●

●

●

●
●

●●
●●
●

●
●

●●

●●●

●
●

●
●

●●
●

●
●

●
●

●

●
●

●●●

●

●
●
●

●
●

1. What is the goal?

We want a scatter plot. The function that creates scatter plots is

called xyplot(), so this will go into the goal slot of our template.

2. What does R need to know?

R needs to know which variable goes where and where to find
the variables. In this case, the data are stored in the Births78 data
frame:

head(Births78)

date births dayofyear

1 1/1/78 7701 1

2 1/2/78 7527 2

3 1/3/78 8825 3

4 1/4/78 8859 4

36 randall pruim, nicholas j. horton, and daniel kaplan

5 1/5/78 9043 5

6 1/6/78 9208 6

We want to put the number of births (births) along the y-axis and

the day of the year (dayofyear) along the x-axis.

Putting this all together, we get the following command

xyplot(births ~ dayofyear, data = Births78)

Another Example: Boxplots

Now let’s create this plot, which shows boxplots of age for each of

three substances abused by participants in the Health Evaluation and

Linkage to Primary Care randomized clinical trial. More Info

You can find out more about the

HELPrct data set using the command

?HELPrct

ag
e

20

30

40

50

60

alcohol cocaine heroin

●
● ●

●

●

●

●●

The data we need are in the HELPrct data frame, from which we

want to display variables age and substance on the y- and x-axes.

According to our template, the command to create this plot has the

form

goal(age ~ substance, data = HELPrct)

The only additional information we need is the name of the function
that creates boxplots. That function is bwplot(). So we can create the
plot with

bwplot(age ~ substance, data = HELPrct)

If we want the boxplots to be horizontal instead of vertical, we
obtain that by reversing the roles of age and substance:

bwplot(substance ~ age, data = HELPrct)

start teaching with r 37

age

alcohol

cocaine

heroin

20 30 40 50 60

●

●

●

● ●● ●●

More Info

You may be wondering about plots for
two categorical variables. A commonly
used plot for this is a segmented
bar graph. We will treat this as a
augmented version of a simple bar
graph, which is a graphical summary of
one categorical variable.

Another plot that can be used to
display two (or more) categorical
variables is a mosaic plot. The lattice

package does not include mosaic
plots, but the vcd package provides a
mosaic() function that creates mosaic
plots.

4.2.2 Graphical summaries of one variable

If we want to make a plot that involves only one variable, we simply

omit the y-part of the formula. For example, a histogram like

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

20 30 40 50 60

can be made with Caution!
It is important to note that when there
is only one variable it is on the right
side of the formula.

Teaching Tip

Tell students that because R is com-
puting the y values, we don’t need to
provide them. This isn’t exactly the
reason why things are this way, but it
helps them remember.

histogram(~age, data = HELPrct)

Introducing width and center here
is perhaps a violation of our usual
policy of accepting defaults and saving
options for later. But it is important that
histogram bins be chosen appropriately,
and no algorithmic default works well
for all data sets. We encourage students
to make several histograms and to
experiment with center and especially
width.

The mosaic package adds some extra functionality to histogram()

to make it easier to specify the bins used. In particular, the options
width and center (default is 0) can be used to define the width of
the bins and the center of one of the bins. For example, to create a
histogram with bins that are 5 years wide we can use width=5, and
we can shift the bins left and right by providing a value for center.

Note

center need not be contained in the
bins that are displayed. So to get bins
with edges “on the 0’s and 5’s”, we can
set the center to 2.5, regardless of the
range of the data.

histogram(~age, data = HELPrct, width = 5)

histogram(~age, data = HELPrct, width = 5, center = 2.5)

38 randall pruim, nicholas j. horton, and daniel kaplan

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

20 30 40 50 60

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

20 30 40 50 60

There is enough data here to use a bin for each integer if we like.
Because the default value of center is 0, setting width to 1 centers the
bins on the integers, avoiding potential confusion about which edge
is included in the bin.

histogram(~age, data = HELPrct, width = 1)

age

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

20 30 40 50 60

Additional plots of a single quantitative variable are illustrated in

Section sec:paletteOfPlots.
For a single categorical variable, we can make a bar graph for

a categorical variable using bargraph() in place of histogram().
Since formulas are required to have a right-hand side, horizontal bar
graphs are produced using horizontal = TRUE. More Info

The bargraph() function is not in the
lattice package but in the mosaic

package. The lattice function
barchart() creates bar graphs from
summarized data; bargraph() takes care
of creating this summary data and then
uses barchart() to create the plot.

bargraph(~substance, data = HELPrct)

bargraph(~substance, data = HELPrct, horizontal = TRUE)

F
re

qu
en

cy

0

50

100

150

alcohol cocaine heroin

Frequency

alcohol

cocaine

heroin

0 50 100 150

4.2.3 A palette of plots

The power of the template is that we can now make many different

kinds of plots by mimicking the examples above but replacing the

start teaching with r 39

goal.

histogram(~age, data=HELPrct)

densityplot(~age, data=HELPrct)

freqpolygon(~age, data=HELPrct)

dotPlot(~age, data=HELPrct, width=1)

bwplot(~age, data=HELPrct)

qqmath(~age, data=HELPrct)

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

20 30 40 50 60

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

20 30 40 50 60

●●● ●● ●●● ●●● ●●●●● ●●●● ●●●● ●●●●● ● ●●● ●● ●● ● ● ●● ●●● ●● ●●● ●●● ● ●●●● ●● ●●● ● ●● ●● ●●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ● ●●● ● ●● ●● ●● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ● ●●●● ● ●●●● ●●●●●● ●● ●● ●●● ● ●● ●●● ●●●● ●● ●● ●● ● ●● ●●● ●●● ●●● ●● ●● ● ●●●● ● ● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ● ●●●● ●● ● ● ●● ●●● ● ● ●●● ● ●●● ●● ●●● ●● ●● ●● ●● ●● ●●●●●● ●● ● ●●●● ● ● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●●●● ● ●●●● ●●● ●● ●●● ●●● ●● ●● ● ●●●●● ●● ●● ●● ●● ●●● ●● ● ●●● ●●● ●●● ●●● ●● ● ● ●● ● ●●● ● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ● ● ●●●● ●● ●●● ●●● ●●● ●●● ●●● ● ● ●● ●●● ●●●●● ●●● ●●● ●● ● ●● ●● ● ●● ●● ● ●●● ●●●●● ●● ● ●● ●●

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

20 30 40 50 60

●●● ●● ● ●● ●●● ●● ●●● ●●●● ●●●● ●●●●● ● ●●● ●● ●● ● ● ●● ●●● ● ● ●●● ●● ● ● ●●●● ●● ●●● ● ●● ●● ● ●● ● ●● ●●●● ● ●● ●● ●● ●● ●● ●●● ●●●●● ●● ● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ● ● ●● ● ●●●● ● ●●●● ●●●●●● ●● ●● ●●● ● ●● ●●● ●●●● ●● ●● ●● ● ●● ●●● ●●● ●●● ● ● ●● ● ●●●● ● ● ●● ● ●●● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ● ●●●● ●● ● ● ●● ●●● ● ● ●●● ● ●●● ●● ●●● ●● ●● ●● ●● ●● ●●●●●● ●● ● ●●●● ● ● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ●●● ●●● ●● ●● ● ●●●●● ●● ●● ●● ●● ●●● ●● ● ●●● ●●● ●●● ●●● ●● ● ● ●● ● ●●● ● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ● ● ●●●● ●● ●●● ●●● ● ●● ●●● ●●● ● ● ●● ●●● ●●●●● ●●● ●●● ●● ● ●● ●● ● ●● ●● ● ●●● ●●●●● ●● ● ●● ●●

age

C
ou

nt

0

10

20

30

20 30 40 50 60

● ●
●

●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●

● ● ●
●
●

● ●
●

● ●
●

●
●

●
●

●

age

20 30 40 50 60

● ●● ●●●● ●●

qnorm

ag
e

20

30

40

50

60

−3 −2 −1 0 1 2 3

● ●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●
●●●●●●●

●●●●●● ●

For one categorical variable, we can use a bar graph. Note

The lattice package does not supply a
function for creating pie charts. This is
no great loss since it is generally harder
to make comparisons using a pie chart.

bargraph(~sex, data = HELPrct) # categorical variable

F
re

qu
en

cy

0

100

200

300

female male

xyplot(width ~ length, data=KidsFeet) # 2 quantitative vars

plotPoints(width ~ length, data=KidsFeet) # mosaic alternative

bwplot(length ~ sex, data=KidsFeet) # 1 cat; 1 quant

bwplot(sex ~ length, data=KidsFeet) # reverse roles

40 randall pruim, nicholas j. horton, and daniel kaplan

length

w
id

th

8.0

8.5

9.0

9.5

22 23 24 25 26 27

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

● ●

●

●
●

●

●

●

length

w
id

th

8.0

8.5

9.0

9.5

22 23 24 25 26 27

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

● ●

●

●
●

●

●

●

le
ng

th

22

23

24

25

26

27

B G

●
●

length

B

G

22 23 24 25 26 27

●

●

Caution!
Note that dotplot() produces a very
different kind of plot from the plot
produced by dotPlot(), which is what
students will more commonly think of
as a dot plot.

The lattice package also provides the stripplot() and dotplot()

functions which can be used for one-dimensional scatter plots. These
work reasonably well for small data sets but are of limited utility for
larger data sets.

stripplot(~length, data = KidsFeet)

dotplot(~length, data = KidsFeet)

length

22 23 24 25 26 27

● ●● ●● ● ●● ●● ●● ● ●●● ● ● ●●● ●● ●● ●●●●●●● ●● ●● ●● ●

length

22 23 24 25 26 27

● ●● ●● ● ●● ●● ●● ● ●●● ● ● ●●● ●● ●● ●●●●●●● ●● ●● ●● ●

These and xyplot() or plotPoints() can also be used with one Teaching Tip

We generally don’t introduce dotplot()

and stripplot() to students but simply
use xyplot() or plotPoints().

quantitative variable and one categorical variable.

xyplot(sex ~ length, data=KidsFeet)

plotPoints(sex ~ length, data=KidsFeet)

stripplot(sex ~ length, data=KidsFeet)

dotplot(sex ~ length, data=KidsFeet)

length

se
x

B

G

22 23 24 25 26 27

● ●● ●● ● ●

● ●

● ●● ● ●

●● ● ● ●●

● ●

● ●●

●

●

●●●

●● ●

● ●

● ●● ●

length

se
x

B

G

22 23 24 25 26 27

● ●● ●● ● ●

● ●

● ●● ● ●

●● ● ● ●●

● ●

● ●●

●

●

●●●

●● ●

● ●

● ●● ●

start teaching with r 41

length

B

G

22 23 24 25 26 27

● ●● ●● ● ●

● ●

● ●● ● ●

●● ● ● ●●

● ●

● ●●

●

●

●●●

●● ●

● ●

● ●● ●

length

B

G

22 23 24 25 26 27

● ●● ●● ● ●

● ●

● ●● ● ●

●● ● ● ●●

● ●

● ●●

●

●

●●●

●● ●

● ●

● ●● ●

4.2.4 Groups and sub-plots

We can add additional variables to our plots either by overlaying

multiple plots or by placing multiple plots next to each other in a

grid. To overlay plots, we add an extra argument to our template

using groups = , and to create sub-plots (called panels in lattice

and facets in ggplot2 graphics) using a formula of the form

y ~ x | z

For example, we can overlay density plots of age for each sub-

stance group in separate panels for each sex as follows:

densityplot(~ age | sex, data=HELPrct,

groups=substance,

auto.key=TRUE)

age

D
en

si
ty

0.00
0.02
0.04
0.06

10 20 30 40 50 60 70

female

10 20 30 40 50 60 70

male

alcohol
cocaine
heroin

auto.key=TRUE adds a simple legend so we can tell which of the

overlaid curves is which.

4.3 Numerical Summaries

Note

The important thing to notice in this
section is how little there is to learn
once you know how to make plots.
Simply change the plot name to a
summary statistic name and your done.

Numerical summaries can be created in the same way, we simply

replace the plot name with the name of the numerical summary we

42 randall pruim, nicholas j. horton, and daniel kaplan

desire. Nothing else changes; a mean and a histogram each sum-

marise a single variable, so exchanging histogram() for mean() gives

us the numerical summary we desire.

histogram(~age, data = HELPrct)

mean(~age, data = HELPrct)

[1] 35.65

age

D
en

si
ty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

20 30 40 50 60

More Info

To see the full list of these formula-

aware numerical summary functions,

use

?favstats

The mosaic package includes formula-aware versions of several
numerical summaries, including mean(), sd(), var(), min(), max(),
sum(), IQR(). In addition, the favstats() function computes many of
our favorite statistics all at once:

favstats(~age, data = HELPrct)

min Q1 median Q3 max mean sd n missing

19 30 35 40 60 35.65 7.71 453 0

And the tally() function can be used to tally counts.

tally(~sex, data = HELPrct)

female male

107 346

tally(~substance, data = HELPrct)

alcohol cocaine heroin

177 152 124

Sometimes it is more convenient to display proportions or percents.

tally(~substance, data = HELPrct, format = "percent")

alcohol cocaine heroin

39.07 33.55 27.37

start teaching with r 43

tally(~substance, data = HELPrct, format = "proportion")

alcohol cocaine heroin

0.3907 0.3355 0.2737

Summary statistics can be computed separately for multiple sub-

sets of a data set. This is analogous to plotting multiple variables and

can be thought about in three ways. Each of these computes the same

value.

age dependant on substance

sd(age ~ substance, data = HELPrct)

alcohol cocaine heroin

7.652 6.693 7.986

age separately for each substance

sd(~age | substance, data = HELPrct)

alcohol cocaine heroin

7.652 6.693 7.986

age grouped by substance

sd(~age, groups = substance, data = HELPrct)

alcohol cocaine heroin

7.652 6.693 7.986

The favstats() function can compute several numerical summaries
for each subset

favstats(age ~ substance, data = HELPrct)

.group min Q1 median Q3 max mean sd n missing

1 alcohol 20 33 38.0 43.00 58 38.20 7.652 177 0

2 cocaine 23 30 33.5 37.25 60 34.49 6.693 152 0

3 heroin 19 27 33.0 39.00 55 33.44 7.986 124 0

Similarly, we can create two-way tables that display either as

counts or proportions.

tally(sex ~ substance, data = HELPrct)

substance

sex alcohol cocaine heroin

female 0.2034 0.2697 0.2419

male 0.7966 0.7303 0.7581

tally(~sex + substance, data = HELPrct)

44 randall pruim, nicholas j. horton, and daniel kaplan

substance

sex alcohol cocaine heroin

female 36 41 30

male 141 111 94

Marginal totals can be added with margins=TRUE

tally(sex ~ substance, data = HELPrct, margins = TRUE)

substance

sex alcohol cocaine heroin

female 0.2034 0.2697 0.2419

male 0.7966 0.7303 0.7581

Total 1.0000 1.0000 1.0000

tally(~sex + substance, data = HELPrct, margins = TRUE)

substance

sex alcohol cocaine heroin Total

female 36 41 30 107

male 141 111 94 346

Total 177 152 124 453

4.4 Linear models

Although we have not mentioned linear models yet, they are an

important motivation for the template approach to graphical and

numerical summaries. The lattice graphics system already makes

use of the same template as linear models, and the mosaic package

makes it possible to do numerical summaries with the same template.

By introducing students to the template for graphical and numerical

summaries, there is very little new to learn when they are ready to fit

a model.
Perhaps you are thinking this means
that we don’t need to wait so long to
introduce modeling in the introductory
statistics course. We’re thinking the
same thing.

For example, suppose we want to know how the width of kids’
feet depends on the length of the their feet. We could make a scatter
plot and we can construct a linear model using the same template

xyplot(width ~ length, data = KidsFeet)

lm(width ~ length, data = KidsFeet)

Call:

lm(formula = width ~ length, data = KidsFeet)

Coefficients:

(Intercept) length

2.862 0.248

start teaching with r 45

length

w
id

th

8.0

8.5

9.0

9.5

22 23 24 25 26 27

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

● ●

●

●
●

●

●

●

We’ll have more to say about modeling elsewhere. For now, the im-

portant point is that our use of the template for graphing and numer-

ical summaries prepares students to ask how does y depend on x and

to formalize models of two or more variables when the time comes.

4.5 A few other tests

Many introductory statistics classes introduce students to one- and
two-sample tests for means and proportions. The mosaic package
brings these into the template as well. More Info

For a more thorough treatment of
how to use R for the core topics of
a traditional introductory statistics
course, see A Compendium of Commands
to Teach Statistics with R.

t.test(~ length, data=KidsFeet)

One Sample t-test

data: data$length

t = 117.2, df = 38, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

24.30 25.15

sample estimates:

mean of x

24.72

The output from these functions also includes more than we really
need. The mosaic package provides pval() and confint() for ex-
tracting p-values and confidence intervals: More Info

Chi-squared tests can be performed
using chisq.test(). This function is
a little different in that it operates on
tabulated data of the sort produced
by tally() rather than on the data
itself. So the use of the template hap-
pens inside tally() rather than in
chisq.test().

pval(t.test(~length, data = KidsFeet))

p.value

3.064e-50

confint(t.test(~length, data = KidsFeet))

mean of x lower upper level

24.72 24.30 25.15 0.95

46 randall pruim, nicholas j. horton, and daniel kaplan

confint(t.test(length ~ sex, data = KidsFeet))

mean in group B mean in group G lower

25.10500 24.32105 -0.04502

upper level

1.61292 0.95000

using Binomial distribution

confint(binom.test(~sex, data = HELPrct))

probability of success lower

0.2362 0.1978

upper level

0.2781 0.9500

using normal approximation to the binomial distribution

confint(prop.test(~sex, data = HELPrct))

p lower upper level

0.2362 0.1984 0.2786 0.9500

confint(prop.test(sex ~ homeless, data = HELPrct))

prop 1 prop 2 lower upper level

0.191388 0.274590 -0.164978 -0.001428 0.950000

4.6 lattice bells and whistles

In the plots we have shown so far, we have focused on creating a

variety of useful plots and (for the most part) accepted the default

presentation of them. The lattice graphics system provides many

bells and whistles that can be introduced once the graphics template

has been mastered. Optional arguments to the graphics functions can

be used to add or modify

• the viewing window

• titles,

• axis labels,

• colors, shapes, sizes, and line types,

• transparency,

• fonts

and many other features of a plot. Our advice is to hold off on such

bells and whistles until students ask or an analysis demands them.

start teaching with r 47

4.6.1 Example: Number of births per day

We have seen the Births78 data set in Section 3.2. The plots below
take advantage of additional arguments to improve the plot. The Note

%% performs modular arithmetic, in this
case giving seven groups, one for each
day of the week.

first plot below illustrates one of the important features of this data
set – there are usually fewer births on two days of the week and more
on the other five. From this we can be quite certain that 1978 began

More Info

Some of the arguments here use lists.
Lists are one of the fundamental “con-
tainer types” in R. We will have more to
say about them in Chapter ??.

on a Sunday.

xyplot(births ~ dayofyear, data=Births78,

groups=dayofyear %% 7,

auto.key=list(columns=4),

main="Number of US births each day in 1978",

xlab="day of year",

ylab="# of births",

par.settings=list(

superpose.symbol=list(pch=16, cex=.8, alpha=.8))

)

Number of US births each day in 1978

day of year

of

 b
ir

th
s

7000

8000

9000

10000

0 100 200 300

0
1

2
3

4
5

6

Here we have used

• auto.key to control the layout of the legend (4 columns instead of

1)

• main to set the title for the plot

• xlab and ylab to set the axis labels

• par.settings to set the plot character (pch), character expansion

(cex), and opacity (alpha) for overlaid plots (superpose.symbol).

The following plot uses lines instead of points which makes it
easier to locate the handful of unusual observations.

xyplot(births ~ dayofyear, data=Births78,

groups=dayofyear %% 7, type='l',

main="Number of US births each day in 1978",

auto.key=list(columns=4, lines=TRUE, points=FALSE),

xlab="day of year",

48 randall pruim, nicholas j. horton, and daniel kaplan

ylab="# of births"

)

Number of US births each day in 1978

day of year

of

 b
ir

th
s

7000

8000

9000

10000

0 100 200 300

0
1

2
3

4
5

6

4.6.2 Themes

Settings that are used repeatedly can be collected into a theme. The

mosaic package provides such a theme called theme.mosaic(). The

show.settings() function displays the settings of the currently active

theme.
trellis.par.set(col.whitebg())

show.settings()

superpose.symbol superpose.line strip.background strip.shingle dot.[symbol, line]

●

●

●

●

●

box.[dot, rectangle, umbrella]

●

add.[line, text]

Hello

World

reference.line plot.[symbol, line]

● ●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

plot.shingle[plot.polygon]

histogram[plot.polygon] barchart[plot.polygon] superpose.polygon regions

start teaching with r 49

trellis.par.set(theme.mosaic(bw = TRUE))

show.settings()

superpose.symbol superpose.line strip.background strip.shingle dot.[symbol, line]

●

●

●

●

●

box.[dot, rectangle, umbrella]

●

add.[line, text]

Hello

World

reference.line plot.[symbol, line]

● ●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

plot.shingle[plot.polygon]

histogram[plot.polygon] barchart[plot.polygon] superpose.polygon regions

trellis.par.set(theme.mosaic())

show.settings()

superpose.symbol superpose.line strip.background strip.shingle dot.[symbol, line]

●

●

●

●

●

box.[dot, rectangle, umbrella]

●

add.[line, text]

Hello

World

reference.line plot.[symbol, line]

● ●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

plot.shingle[plot.polygon]

histogram[plot.polygon] barchart[plot.polygon] superpose.polygon regions

50 randall pruim, nicholas j. horton, and daniel kaplan

Themes can also be assigned to par.settings if we want them to
affect only one plot:

xyplot(births ~ dayofyear, data=Births78,

groups=dayofyear %% 7, type='l',

main="Number of US births each day in 1978",

auto.key=list(columns=4, lines=TRUE, points=FALSE),

par.settings=theme.mosaic(bw=TRUE),

xlab="day of year",

ylab="# of births"

)

Number of US births each day in 1978

day of year

of

 b
ir

th
s

7000

8000

9000

10000

0 100 200 300

0
1

2
3

4
5

6

4.7 Some additional examples

4.7.1 Dot plots

Dotplots are not as commonly seen in the statistical literature as they

are in statistics education, where they can serve an important role

in helping students learn to interpret histograms (and frequency

polygons and density plots). A dot plot represents each value of

a quantitative variable with a dot. The values are rounded a bit so

that the dots line up neatly, and dots are stacked up into little towers

when the data values cluster near each other. Dot plots are primarily

used with modestly sized data sets and can be used as a bridge to the

other plots, where there is no longer a direct connection between a

component of the plot and an individual observation. Teaching Tip

Using dot plots for sampling distri-
butions and bootstrap distributions
is useful for testing purposes since
probabilities can be easily estimated
by counting dots – especially if the
total number of dots is chosen to be
something simple like 1000.

Here is an example using the sepal lengths recorded in the iris

data set.

dotPlot(~ Sepal.Length, data=iris,

n=30, # approx. 30 bins/columns

alpha=.6) # partially transparent

start teaching with r 51

Sepal.Length

C
ou

nt

0

2

4

6

8

10

12

5 6 7 8

We can use a conditional variable to give us separate dot plots for
each of the three species in this data set.

dotPlot(~ Sepal.Length | Species, data=iris, n=20,

layout=c(3,1)) # 3 columns (x) and 1 row (y)

Sepal.Length

C
ou

nt

0

2

4

6

8

5 6 7 8

●●
●
●

●●
●
●
●

●
●
●
●
●
●
●

●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●

●●
●
●
●
●

●
●

●
●
●

setosa

5 6 7 8

●●
●
●● ●●

●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●
●
●

●
●
●
●

●
●
●
●
●

●
●
●●
●
●
●
●

●
●
●

versicolor

5 6 7 8

● ●●●
●
●
●

●
●

●
●
●
●

●
●
●
●
●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●

●
●
●

●●
●
●
●

●●●
●
●
●

●

virginica

The connection between histograms and dot plots can be visual-
ized by overlaying one on top of the other

Sepal.Length

C
ou

nt

0

5

10

15

5 6 7 8

52 randall pruim, nicholas j. horton, and daniel kaplan

4.7.2 Frequency polygons: freqpolygon()

Frequency polygons and density plots provide alternatives to his-

tograms that make it easier to overlay the representations of multiple

subsets of the data. A frequency polygon is created from the same

data summary (bins and counts) as a histogram, but instead of repre-

senting each bin with a bar, it is represented by a point (at the center

of the where the top of the histogram bar would have been). These Caution!
The faithful data set contains similar
data, but the variable names in that
data frame are poorly chosen. The
geyser data set in the MASS package has
better names and more data.

points are then connected with line segments. Here is an example

that shows the distribution of Old Faithful eruptions times from a

sequence of observations

require(MASS)

freqpolygon(~duration, data = geyser, n = 15)

duration

D
en

si
ty

0.0

0.2

0.4

0.6

1 2 3 4 5 6

●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ● ●● ●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●● ●● ●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●

Numerically, the data are being summarized and represented in

Teaching Tip

Point out that an interesting feature of
this distribution is its clear bimodality.
In particular, the mean and median
eruption time are not a good measures
of the duration of a “typical” eruption
since almost none of the eruption
durations are near the mean and
median.

exactly the same way as for histograms, but visually the horizontal
and vertical line segments of the histogram are replaced by sloped
line segments.

start teaching with r 53

duration

D
en

si
ty

0.0

0.2

0.4

0.6

1 2 3 4 5 6

duration

D
en

si
ty

0.0

0.2

0.4

0.6

1 2 3 4 5 6

●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ● ●● ●●●● ●●●● ●● ●● ●●● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●● ●● ●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●

This may give a more accurate visual representation in some situa-
tions (since the distribution can “taper off” better). More importantly,
it makes it much easier to overlay multiple distributions.

freqpolygon(~ Sepal.Length, data=iris,

groups=Species,

ylim=c(0,1.5) # manually choose the range for the y-axis

)

Sepal.Length

D
en

si
ty

0.5

1.0

4 5 6 7 8

4.7.3 Density plots: densityplot()

Density plots are similar to frequency polygons, but the piecewise
linear representation is replaced by a smooth curve.

54 randall pruim, nicholas j. horton, and daniel kaplan

densityplot(~Sepal.Length, data = iris, groups = Species)

Sepal.Length

D
en

si
ty

0.0

0.5

1.0

4 5 6 7 8

Beginners do not need to know the details of how that smooth curve
is generated, but should be introduced to the adjust argument which
controls the degree of smoothing. It is roughly equivalent to choosing
wider or narrower bins for a histogram or frequency polygon. The
default value is 1. Higher values smooth more heavily; lower values,
less so.

densityplot(~ Sepal.Length, data=iris, groups=Species,

adjust=3, main="adjust=3")

densityplot(~ Sepal.Length, data=iris, groups=Species,

adjust=1/3, main="adjust=1/3")

adjust=3

Sepal.Length

D
en

si
ty

0.0

0.2

0.4

0.6

0.8

4 6 8 10

adjust=1/3

Sepal.Length

D
en

si
ty

0.0

0.5

1.0

1.5

4 5 6 7 8

4.7.4 The Density Scale

There are three scales that can be used for the plots in the preceding

section: count, percent, and density. Beginning students will be

most familiar with the count scale and perhaps also the percent

scale, but most will not have seen the density scale. The density

scale captures the most important aspect of all of these plots:

Area is proportional to frequency.

start teaching with r 55

The density scale is chosen so that the constant of proportionality is

1, in which case we have

Area equals proportion.

Teaching Tip

Create some histograms or frequency
polygons with a density scale and see
if your students can determine what
the scale is. Choosing convenient bin
widths (but not 1) and comparing plots
with different bin widths and different
scale types can help them reach a good
conjecture about the density scale.

This is the only scale available for densityplot() and is the most
suitable scale if one is primarily interested in the shape of the distri-
bution. The vertical scale is affected very little by the choice of bin
widths or adjust multipliers. It is also the appropriate scale to use
when overlaying a density function onto a histogram, something the
mosaic package makes easy to do.

histogram(~ Sepal.Length | Species, data=iris, fit="normal")

Sepal.Length

D
en

si
ty

0.0
0.2
0.4
0.6
0.8
1.0

5 6 7 8

setosa

5 6 7 8

versicolor

5 6 7 8

virginica

The other scales are primarily of use when one wants to be able to

read off bin counts or percents from the plot.

4.7.5 Groups or panels?

The following examples using the iris data set provide a compari-

son of using groups or panels to separate subsets of the data. First we

put the three species into three separate panels.

xyplot(Sepal.Length ~ Sepal.Width | Species, data=iris,

layout=c(3,1)) # layout controls number of columns and rows

Sepal.Width

S
ep

al
.L

en
gt

h

5

6

7

8

2.0 2.5 3.0 3.5 4.0 4.5

●● ●●
●

●

●
●

●
●

●

●●
●

● ●
●

●

●

●
●

●
●

●
●● ● ●●

●●

● ●
●

●●
●

●
●

●●
● ●

● ●
●

●
●

●
●

setosa

2.0 2.5 3.0 3.5 4.0 4.5

●

●
●

●

●

●

●

●

●

●●

●● ●
●

●

●●
●

●
●●● ●

●●● ●

●
●●●

●●

●

●

●
●

●●●

●
●

●

● ●●
●

●

●

versicolor

2.0 2.5 3.0 3.5 4.0 4.5

●
●

●

●●

●

●

●

●
●

●●
●

● ●

●●

●●

●

●

●

●

●
●

●

● ●
●

●●
●

●●●

●

●●
●

●●●

●

●●●
● ●

●
●

virginica

Alternatively, we can use the groups argument to indicate the differ-
ent species using different symbols on the same panel.

56 randall pruim, nicholas j. horton, and daniel kaplan

xyplot(Sepal.Length ~ Sepal.Width, groups=Species,

auto.key=list(columns=3), data=iris)

Sepal.Width

S
ep

al
.L

en
gt

h

5

6

7

8

2.0 2.5 3.0 3.5 4.0 4.5

setosa versicolor virginica

Sometimes it is useful to do both at once.

xyplot(Sepal.Length ~ Sepal.Width | Species, groups=Species,

auto.key=list(columns=3), data=iris)

Sepal.Width

S
ep

al
.L

en
gt

h

5

6

7

8

2.0 3.0 4.0

setosa

2.0 3.0 4.0

versicolor

2.0 3.0 4.0

virginica

setosa versicolor virginica

4.7.6 Dealing with long labels

Suppose we want to display the following table (based on data from
the 1985 Current Population Survey) using bar graph.

tally(~sector, data = CPS85)

clerical const manag manuf other prof

97 20 55 68 68 105

sales service

38 83

The mosaic function bargraph() can display these tables as bar
graphs, but there isn’t enough room for the labels.

start teaching with r 57

bargraph(~ sector, data=CPS85)

F
re

qu
en

cy

0

20

40

60

80

100

clericalconstmanagmanufother prof salesservice

One solution would be to use horizontal bars

horizontal bars

bargraph(~sector, data = CPS85, horizontal = TRUE)

Frequency

clerical
const

manag
manuf
other

prof
sales

service

0 20 40 60 80 100

Another is to rotate the labels.

bargraph(~ sector, data=CPS85,

scales=list(x=list(rot=45)))

F
re

qu
en

cy

0

20

40

60

80

100

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r

pr
of

sa
les

se
rv

ice

As with the other lattice plots, we can add grouping or condition-
ing to our plot.

58 randall pruim, nicholas j. horton, and daniel kaplan

bargraph(~ sector, data=CPS85, groups=race,

auto.key=list(space="right"),

scales=list(x=list(rot=45)))

bargraph(~ sector | race, data=CPS85,

scales=list(x=list(rot=45)))

F
re

qu
en

cy

0

20

40

60

80

100

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r
pr

of

sa
les

se
rv

ice

NW
W

F
re

qu
en

cy

0

20

40

60

80

100

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r
pr

of

sa
les

se
rv

ice

NW

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r
pr

of

sa
les

se
rv

ice

W

4.8 Saving Your Plots

There are several ways to save plots in RStudio, but the easiest is

probably the following: You can save all of this exporting
and copying and pasting if you use
RMarkdown, or knitr/LATEX to prepare
your documents.1. In the Plots tab, click the “Export” button.

2. Copy the image to the clipboard using right click.

3. Go to your document (e.g. Microsoft Word) and paste in the im-

age.

4. Resize or reposition your image as needed.

The pdf() function can be used to save plots as pdf files. See the

documentation of this function for details and links to functions that

can be used to save graphics in other file formats.

4.9 mplot()

The mplot() function does a number of different things, depending

on what information it is provided. When mplot() is given a data More Info

mplot() is a generic function. R includes
many generic functions (like print()

and plot() and summary()). These
functions inspect the objects passed as
arguments (at least the first one) and
decide what to do based on the class of
the argument(s).

frame in RStudio, it opens up an interactive plot with controls that

allow the user to select variables and create plots of various sorts.

start teaching with r 59

The plots can be made using lattice or ggplot2, and there is a

“Show expression” button that displays the code used to create the

plot. This can be used to learn how to make the plot and can be

copied and pasted into the console or documents. Caution!
This feature of mplot() only works
within RStudio because it takes ad-
vantage of the manipulate package
which only works within RStudio. See
Chapter ?? for more about manipulate.

The use of mplot() makes it easy to explore a number of plots

quickly and can facilitate learning either lattice or ggplot2 by

showing the code used to create the plots.

60 randall pruim, nicholas j. horton, and daniel kaplan

4.10 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

require(mosaic) # load the mosaic package

tally(~ sector, data=CPS85) # frequency table

tally(~ sector + race, data=CPS85) # cross tabulation of sector by race

mean(~ age, data = HELPrct) # mean age of HELPrct subjects

mean(~ age | sex, data = HELPrct) # mean age of male and female HELPrct subjects

mean(age ~ sex, data = HELPrct) # mean age of male and female HELPrct subjects

median(x); var(x); sd(x); # more numerical summaries

quantile(x); sum(x); cumsum(x) # still more summaries

favstats(~ Sepal.Length, data=iris) # compute favorite numerical summaries

histogram(~ Sepal.Length | Species, data=iris) # histograms (with extra features)

dotPlot(~ Sepal.Length | Species, data=iris) # dot plots for each species

freqpolygon(~ Sepal.Length, groups = Species, data=iris) # overlaid frequency polygons

densityplot(~ Sepal.Length, groups = Species, data=iris) # overlaid densityplots

qqmath(~ age | sex, data=CPS85) # quantile-quantile plots

bwplot(Sepal.Length ~ Species, data = iris) # side-by-side boxplots

xyplot(Sepal.Length ~ Sepal.Width | Species, data=iris) # scatter plots for each species

bargraph(~ sector, data=CPS85) # bar graph

mplot(HELPrct) # interactive plot (RStudio only)

start teaching with r 61

4.11 Exercises

4.1 The Utilities2 data set in the mosaic package contains informa-

tion about the bills for various utilities at a residence in Minnesota

collected over a number of years. Since the number of days in a

billing cycle varies from month to month, variables like gasbillpday

(elecbillpday, etc.) contain the gas bill (electric bill, etc.) divided by

the number of days in the billing cycle.

a) Use the documentation to determine what the kwh variables con-

tains.

b) Make a scatter plot of gasbillpday vs. monthsSinceY2K using the
command

xyplot(gasbillpday ~ monthsSinceY2K, data=Utilities2,

type='l') # the letter l

What pattern(s) do you see?

c) What does type=’l’ do? Make your plot with and without it.

Which is easier to read in this situation?

d) What happens if we replace type=’l’ with type=’b’?

e) Make a scatter plot of gasbillpday by month. What do you notice?

f) Make side-by-side boxplots of gasbillpday by month using the

Utilities2 data frame. What do you notice?

Your first try probably won’t give you what you expect. The rea-

son is that month is coded using numbers, so R treats it as numeri-

cal data. We want to treat it as categorical data. To do this in R use

factor(month) in place of month. R calls categorical data a factor.

g) Make any other plot you like using this data. Include both a copy

of your plot and a discussion of what you can learn from it.

4.2 The table below is from a study of nighttime lighting in infancy

and eyesight (later in life).

no myopia myopia high myopia

darkness 155 15 2

nightlight 153 72 7

full light 34 36 3

62 randall pruim, nicholas j. horton, and daniel kaplan

a) Recreate the table in R.

b) What percent of the subjects slept with a nightlight as infants?

There are several ways to do this. You could use R as a calculator

to do the arithmetic. You can save some typing if you use the

function tally(). See ?tally for documentation.

c) Create a graphical representation of the data. What does this plot

reveal?

5

What Students Need to Know About R

& How to Teach It

In Chapter 2, we give a brief orientation to the RStudio IDE and what

happens in each of its tabs and panels. In Chapter 4, we show how to

make use of a common template for graphical summaries, numerical

summaries, and modeling. In this chapter we cover some additional

things that are important for students to know about the R language.

5.1 Two Questions

When we introduced the formula template in Chapter 4, we pre-

sented two important questions to ask before constructing an R com-

mand. These questions are useful in contexts beyond the formula

template, and indeed for computer systems beyond R, so we repeat

them here. Teaching Tip

When students have difficulty accom-
plishing a task in R, make sure they
can answer these questions before you
show them what to do. If they cannot
answer these questions, then the pri-
mary problem is not with R. If you do
this consistently, eventually, you will
find your students presenting their R

questions to you by answering these
two questions and then asking “So
how do I get R to do that?" More likely,
once they have answered these two
questions, they will already know how
to get R to do what they want – unless
they are asking about functionality that
you have not yet presented.

1. What do you want R to do?

This will generally determine which R function to use.

2. What must R know to do that?

This will determine the inputs to the function.

5.2 Four Things to Know About R

As is true for most computer languages, R has to be used on its

terms. R does not learn the personality and style of its users. Get-

ting along with R is much easier if you keep in mind (and remind

your students about) a few key features of the R language.

1. R is case-sensitive Teaching Tip

Some students will be slow to catch on
to the importance of capitalization. So
you may have to remind them several
times early on.

If you mis-capitalize something in R it won’t do what you want.

Unfortunately, there is not a consistent convention about how

64 randall pruim, nicholas j. horton, and daniel kaplan

capitalization should be used, so you just have to pay attention

when encountering new functions and data sets.

2. Functions in R use the following syntax:

functionname(argument1, argument2, ...)

Teaching Tip

Introduce functions by emphasizing the
questions What do we want the computer
to do? and What information does the
computer need to compute this? The
answer to the first question determines
the function to use. The answer to the
second question determines what the
arguments must be.

• The arguments are always surrounded by (round) parentheses and

separated by commas.

Some functions (like data()) have no required arguments, but

you still need the parentheses.

• If you type a function name without the parentheses, you will

see the code for that function (this generally isn’t what you want

unless you are curious about how something is implemented).

3. TAB completion and arrows can improve typing speed and accu-

racy.

If you begin a command and hit the TAB key, R and RStudio will

show you a list of possible ways to complete the command. If you

hit TAB after the opening parenthesis of a function, RStudio will

display the list of arguments it expects.

The up and down arrows can be used to retrieve past com-

mands when working in the console.

4. If you see a + prompt, it means R is waiting for more input. Caution!
Your students will sometimes find
themselves in a syntactic hole from
which they cannot dig out. Teach them
about the ESC key early.

Often this means that you have forgotten a closing parenthesis

or made some other syntax error. If you have messed up and just

want to get back to the normal prompt, press the escape key and

start the command fresh.

5.3 Installing and Using Packages

Teaching Tip

If you set up an RStudio server, you can
install all of the packages you want
to use. You can even configure the
server to autoload packages you use
frequently. Students who use R on their
desktop machines will need to know
how to install and load these packages,
however.

R is open source software. Its development is supported by a team of

core developers and a large community of users. One way that users

support R is by providing packages that contain data and functions

for a wide variety of tasks. As an instructor, you will want to select a

few packages that support the way you want to teach your course.

If you need to install a package, most likely it will be on CRAN,

the Comprehensive R Archive Network. Before a package can be

used, it must be installed (once per computer or account) and loaded

(once per R session). Installing downloads the package software

and prepares it for use by compiling (if necessary) and putting its

components in the proper location for future use. Loading makes a

previously installed package available for use in an R session.
For example, to use the mosaic package, we must first install it:

http://www.R-project.org/

start teaching with r 65

install.packages("mosaic") # fetch package from CRAN

Once the package has been installed it must be loaded to make it
available in the current session or file using Teaching Tip

Although the use of library() is more
common in this situation, we find that
students remember the word require()

better. For their purposes, the two
are essentially the same. The biggest
difference is how they respond when
a package cannot be loaded (usually
because it has not been installed).
require() generates a warning message
and returns a logical value that can be
used when programming. library()
generates an error when the package
cannot be loaded.

library(mosaic) # load the package before use

or

require(mosaic) # alternative way to load

More Info

Although the command is called
library(), the thing loaded is a package,
not a library.

Caution!
Remember that in RMarkdown and
Rnw files, any packages you use must
be loaded within the file.

The Packages tab in RStudio makes installing and loading packages

particularly easy and avoids the need for install.packages() for

packages on CRAN, and makes loading packages into the console as

easy as selecting a check box. The require() (or library()) function

is still needed to load packages within RMarkdown, knitr/LATEX,

and script files.

If you are running on a machine where you don’t have privileges

to write to the default library location, you can install a personal copy

of a package. If the location of your personal library is first in R_LIBS,

this will probably happen automatically. If not, you can specify the

location manually:

install.packages("mosaic", lib = "~/R/library")

CRAN is not the only repository of R packages. Bioconductor
is another large and popular repository, especially for biological
applications, and increasingly authors are making packages available
via github. For example, you can also install the mosaic package
using

if you haven't already installed this package

install.packages("devtools")

require(devtools)

install_github("mosaic", "rpruim")

Occasionally you might find a package of interest that is not avail-

able via a repository like CRAN or Bioconductor. Typically, if you

find such a package, you will also find instructions on how to install

it. If not, you can usually install directly from the zipped up package

file.

repos = NULL indicates to use a file, not a repository

install.packages("some-package.tar.gz", repos = NULL)

http://www.R-project.org/

66 randall pruim, nicholas j. horton, and daniel kaplan

From this point on, we will assume that the mosaic package has

been installed and loaded.

5.4 Getting Help

If something doesn’t go quite right, or if you can’t remember some-

thing, it’s good to know where to turn for help. In addition to asking

your friends and neighbors, you can use the R help system.

5.4.1 ?

To get help on a specific function or data set, simply precede its name

with a ?:

?log # help for the log function

?HELPrct # help on a data set in the mosaic package

This will give you the documentation for the object you are interested

in.

5.4.2 apropos()

If you don’t know the exact name of a function, you can give part of

the name and R will find all functions that match. Quotation marks

are mandatory here.

apropos("tally") # must include quotes. single or double.

[1] "statTally" "tally" "tally"

5.4.3 ?? and help.search()

If that fails, you can do a broader search using ?? or help.search(),

which will find matches not only in the names of functions and data

sets, but also in the documentation for them. Quotation marks are

optional here.

5.4.4 Examples and Demos

Many functions and data sets in R include example code demonstrat-
ing typical uses. For example, Not all package authors are equally

skilled at creating examples. Some of
the examples are nonexistent or next to
useless, others are excellent.

start teaching with r 67

example(histogram)

will generate a number of example plots (and provide you with the

commands used to create them). Examples such as this are intended

to help you learn how specific R functions work. These examples also

appear at the end of the documentation for functions and data sets.
The mosaic package (and some other packages as well) also in-

cludes demos. Demos are bits of R code that can be executed using
the demo() command with the name of the demo. To see how demos
work, give this a try:

demo(lattice)

Demos are intended to illustrate a concept or a method and are inde-

pendent of any particular function or data set.
You can get a list of available demos using

demo() # all demos

demo(package = "mosaic") # just demos from mosaic package

5.5 Data

5.5.1 Data Frames

Data sets are usually stored in a special structure called a data frame. Teaching Tip

Students who collect their own data,
especially if they store it in Excel, are
unlikely to put data into the correct
format unless explicitly taught to do so.

Data frames have a 2-dimensional structure.

• Rows correspond to observational units (people, animals,

plants, or other objects we are collecting data about).

• Columns correspond to variables (measurements collected on

each observational unit).

Teaching Tip

To help students keep variables and
data frames straight, and to make it
easier to remember the names, we
have adopted the convention that
data frames in the mosaic package are
capitalized and variables (usually) are
not. This convention has worked well,
and you may wish to adopt it for your
data sets as well.

Births78 The Births78 data frame contains three variables mea-

sured for each day in 1978. There are several ways we can get some

idea about what is in the Births78 data frame.

head(Births78) # show the first few rows

date births dayofyear

1 1/1/78 7701 1

2 1/2/78 7527 2

3 1/3/78 8825 3

4 1/4/78 8859 4

5 1/5/78 9043 5

6 1/6/78 9208 6

68 randall pruim, nicholas j. horton, and daniel kaplan

sample(Births78, 4) # show 4 randomly selected rows

date births dayofyear orig.ids

105 4/15/78 7527 105 105

287 10/14/78 8554 287 287

149 5/29/78 7780 149 149

320 11/16/78 9568 320 320

summary(Births78) # provide summary info about each variable

date births dayofyear

1/1/78 : 1 Min. : 7135 Min. : 1

1/10/78: 1 1st Qu.: 8554 1st Qu.: 92

1/11/78: 1 Median : 9218 Median :183

1/12/78: 1 Mean : 9132 Mean :183

1/13/78: 1 3rd Qu.: 9705 3rd Qu.:274

1/14/78: 1 Max. :10711 Max. :365

(Other):359

str(Births78) # show the structure of the data frame

'data.frame': 365 obs. of 3 variables:

$ date : Factor w/ 365 levels "1/1/78","1/10/78",..: 1 12 23 26 27 28 29 30 31 2 ...

$ births : int 7701 7527 8825 8859 9043 9208 8084 7611 9172 9089 ...

$ dayofyear: int 1 2 3 4 5 6 7 8 9 10 ...

The output from str() is also available in the Environment tab.
In interactive mode, you can also try

?Births78

to access the documentation for the data set. This is also available in
the Help tab. Finally, the Environment tab provides a list of data in the
workspace. Clicking on one of the data sets brings up the same data
viewer as

View(Births78)

We can gain access to a single variable in a data frame using the $

operator or using the with() function. An alternative is to use the with()

function.

dataframe$variable

with(dataframe, variable)

For example, either of

start teaching with r 69

Births78$births

with(Births78, births)

will show the contents of the births variable in Births78 data set. As we will see, there are relatively few
instances where one needs to use the $

operator.
Listing the entire set of values for a particular variable isn’t very

useful for a large data set. We would prefer to compute numerical or

graphical summaries. We’ll do that shortly.

5.5.2 The Perils of attach()
Caution!

Avoid the use of attach().The attach() function in R can be used to make objects within data

frames accessible in R with fewer keystrokes, but we strongly dis-

courage its use, as it often leads to name conflicts and other compli-

cations. The Google R Style Guide1 echoes this advice, stating that 1 http://google-styleguide.

googlecode.com/svn/trunk/

google-r-style.htmlThe possibilities for creating errors when using attach() are numerous.

Avoid it.

It is far better to directly access variables using the $ syntax or to use

functions that allow you to avoid the $ operator.

5.5.3 Data in Packages

Data sets in R packages are the easiest to deal with. In section 5.5.4, Teaching Tip

Start out using data in packages and
show students how to import their own
data once they understand how to work
with data.

we’ll describe how to load your own data into R and RStudio, but we

recommend starting with data in packages, and that is what we will

do here, too. Once students know how to work with data and what

data in R are supposed to look like, they will be better prepared to

import their own data sets.

Many packages contain data sets. You can see a list of all data sets

in all loaded packages using

data()

You can optionally choose to restrict the list to a single package:

data(package = "mosaic")

Typically you can use data sets by simply typing their names. But Note

This depends on the package. Most
package authors set up their packages
with “lazy loading” of data. If they
do not, then you need to use data()

explicitly.

if you have already used that name for something or need to refresh

the data after making some changes you no longer want, you can

explicitly load the data using the data() function with the name of

the data set you want.

data(Births78)

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

70 randall pruim, nicholas j. horton, and daniel kaplan

There is no visible effect of this command, but the Births78 data Caution!

If two packages include data sets

with the same name, you may need to

specify which package you want the

data from like this:

data(Births78,

packag

=

"mosaic")

Warning:

data

set

’mosaic’

not

found

frame has now been reloaded from the mosaic package and is ready

for use. Anything you may have previously stored in a variable with

this same name is replaced by the version of the data set stored with

in the mosaic package.

5.5.4 Using Your Own Data
Teaching Tip

Start out using data from packages and
focusing on what R can do with the
data. Later, once students are familiar
with R and understand the format
required for data, teach students how to
import their own data.

Eventually, students will want to move from using example data sets

in R packages to using data they find or collect themselves. When

this happens will depend on the type of students you have and the

type of course you are teaching.

R provides the functions read.csv() (for comma separated values

files), read.table() (for white space delimited files) and load() (for

loading data in R’s native format). The mosaic package includes

a function called read.file() that uses slightly different default

settings and infers whether it should use read.csv(), read.table(),

or load() based on the file name.

Since most software packages can export to csv format, this has be-

come a sort of lingua franca for moving data between packages. Data

in excel, for example, can be exported as a csv file for subsequent

reading in R. If you have python installed on your system, you can Caution!
There is a conflict between the
resample() functions in gdata and
mosaic. If you want to use mosaic’s
resample(), be sure to load mosaic after
you load gdata.

also use read.xls() from the gdata package to read read directly

from Excel files without this extra step.
Each of these functions accepts a URL as well as a file name, which

provides an easy way to distribute data via the Internet:

births <-

read.table('http://www.calvin.edu/~rpruim/data/births.txt',

header=TRUE)

head(births) # live births in the US each day of 1978.

date births datenum dayofyear

1 1/1/78 7701 6575 1

2 1/2/78 7527 6576 2

3 1/3/78 8825 6577 3

4 1/4/78 8859 6578 4

5 1/5/78 9043 6579 5

6 1/6/78 9208 6580 6

We can omit the header=TRUE if we use read.file()

births <-

read.file('http://www.calvin.edu/~rpruim/data/births.txt')

start teaching with r 71

5.5.5 Importing Data in RStudio

Even if you use RStudio GUI for inter-
active work, you will want to know
how to use functions like read.csv()

for working in RMarkdown, or
knitr/LATEX files.

The RStudio interface provides some GUI tools for loading data. If

you are using the RStudio server, you will first need to upload the

data to the server (in the Files tab), and then import the data into

your R session (in the Workspace tab). If you are running the desktop Teaching Tip

Remind students that the 2-step process
(upload, then import) works much like
images in Facebook. First you upload
them to Facebook, and once they are
there you can include them in posts,
etc.

version, the upload step is not needed.

5.5.6 Working with Pretabulated Data

Because categorical data is so easy to summarize in a table, often

the frequency or contingency tables are given instead. You can en-

ter these tables manually using a combination of c(), rbind() and

cbind(): Teaching Tip

This is an important technique if you
use a text book that presents categorical
data in tables.

myrace <- c(NW = 67, W = 467) # c for combine or concatenate

myrace

NW W

67 467

mycrosstable <- rbind(

NW = c(clerical=15, const=3, manag=6, manuf=11,

other=5, prof=7, sales=3, service=17),

W = c(82,17,49,57,63,98,35,66)

)

mycrosstable

clerical const manag manuf other prof sales service

NW 15 3 6 11 5 7 3 17

W 82 17 49 57 63 98 35 66

Replacing rbind() with cbind() will allow you to give the data

column-wise instead. Teaching Tip

If plotting pre-tabulated categorical
data is important, you probably want to
provide your students with a wrapper
function to simplify all this. We gen-
erally avoid this situation by provided
the data in raw format or by presenting
an analysing the data in tables without
using graphical summaries.

This arrangement of the data would be sufficient for applying the
Chi-squared test, but it is not in a format suitable for plotting with
lattice. Our cross table is still missing a bit of information – the
names of the variables being stored. We can add this information if
we convert it to a table

class(mycrosstable)

[1] "matrix"

mycrosstable <- as.table(mycrosstable)

mycrosstable now has dimnames, but they are unnamed

dimnames(mycrosstable)

72 randall pruim, nicholas j. horton, and daniel kaplan

[[1]]

[1] "NW" "W"

[[2]]

[1] "clerical" "const" "manag" "manuf" "other"

[6] "prof" "sales" "service"

let's add meaninful dimnames

names(dimnames(mycrosstable)) <- c("race", "sector")

mycrosstable

sector

race clerical const manag manuf other prof sales service

NW 15 3 6 11 5 7 3 17

W 82 17 49 57 63 98 35 66

We can use barchart() instead of bargraph() to plot data already
tabulated in this way, but first we need yet one more transformation.

head(as.data.frame(mycrosstable))

race sector Freq

1 NW clerical 15

2 W clerical 82

3 NW const 3

4 W const 17

5 NW manag 6

6 W manag 49

barchart(Freq ~ sector | race,

data=as.data.frame(mycrosstable),

auto.key=list(space='right'),

scales=list(x=list(rot=45))

)

F
re

q

0

20

40

60

80

100

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r
pr

of

sa
les

se
rv

ice

NW

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r
pr

of

sa
les

se
rv

ice

W

start teaching with r 73

barchart(Freq ~ sector, groups=race,

data=as.data.frame(mycrosstable),

auto.key=list(space='right'),

scales=list(x=list(rot=45))

)
F

re
q

0

20

40

60

80

100

cle
ric

al

co
ns

t

m
an

ag

m
an

uf
ot

he
r
pr

of

sa
les

se
rv

ice

NW
W

5.5.7 Developing Good Data Habits

However you teach students to collect and import their data, students

will need to be trained to follow good data organization practices:

• Choose good variables names.

• Put variables names in the first row.

• Use each subsequent row for one observational unit.

• Give the resulting data frame a good name.

Scientists may be disappointed that R data frames don’t keep track of

additional information, like the units in which the observations are

recorded. This sort of information should be recorded, along with

a description of the protocols used to collect the data, observations

made during the data recording process, etc. This information should

be maintained in a lab notebook or a codebook.

74 randall pruim, nicholas j. horton, and daniel kaplan

5.6 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

require(mosaic) # load the mosaic package

answer <- 42 # store the number 42 in a variable named answer

log(123); log10(123); sqrt(123) # some standard numerical functions

x <- c(1,2,3) # make a vector containing 1, 2, 3 (in that order)

data(iris) # (re)load the iris data set

names(iris) # see the names of the variables in the iris data

head(iris) # first few rows of the iris data set

sample(iris, 3) # 3 randomly selected rows of the iris data set

summary(iris) # summarize each variables in the iris data set

str(iris) # show the structure of the iris data set

mydata <- read.table("file.txt") # read data from a text file

mydata <- read.csv("file.csv") # read data from a csv file

mydata <- read.file("file.txt") # read data from a text or csv file

start teaching with r 75

5.7 Exercises

5.1 Enter the following small data set in an Excel or Google spread-

sheet and import the data into RStudio.

6

What Instructors Need to Know about R

You may find that some of these things
are useful for your students to know
as well. That will depend on the goals
for your course and the abilities of your
students. In higher level courses, much
of the material in this chapter is also
appropriate for students.

We recommend keeping the amount of R that students need to learn

to a minimum, and choosing functions that support a formula in-

terface whenever possible to keep the required functions syntacti-

cally similar. But there are some additional things that instructors

(and some students) should know about R. We outline some of these

things in this chapter.

6.1 Some Workflow Suggestions

Our workflow advice can be summarized in one short sentence:

Think like a programmer.

We don’t really think of our classroom use of R as programming

since we use R in a mostly declarative rather than algorithmic way.It

doesn’t take sophisticated programming skills to be good at using R.

In fact, most uses of R for teaching statistics can be done working one

step at a time, where each line of code does one complete and useful

task. After inspecting the output (and perhaps saving it for further

computation later), one can proceed to the next operation.

Nevertheless, we can borrow from the collective wisdom of the

programming community and adopt some practices that will make

our experience more pleasurable, more efficient, and less error-prone.

• Store your code in a file.

It can be tempting to do everything in the console. But the con-

sole is ephemeral. It is better to get into the habit of storing code

in files. Get in the habit (and get your students in the habit) of

working with R scripts and especially RMarkdown files.

You can execute all the code in an R script file using More Info

R can be used to create executable
scripts. Option parsing and handling is
supported with the optparse package.

start teaching with r 77

source("file.R")

RStudio has additional options for executing some or all lines in

a file. See the buttons in the tab for any R script, RMarkdown or

Rnw file. (You can create a new file in the main File menu.)

If you work at the console’s interactive prompt and later wish

you had been putting your commands into a file, you can save

your past commands with

savehistory("someRCommandsIalmostLost.R")

In RStudio, you can selectively copy portions of your history to a

script file (or the console) using the History tab.

• Use meaningful names.

Rarely should objects be named with a single letter.

Adopt a personal convention regarding case of letters. This will

mean you have one less thing to remember when trying to recall

the name of an object. For example, in the mosaic package, all

data frames begin with a capital letter. Most variables begin with

a lower case letter (a few exceptions are made for some variables

with names that are well-known in their capitalized form).

• Adopt reusable idioms.
Computer programmers refer to the little patterns that recur

throughout their code as idioms. For example, here is a “compute,
save, display” idiom.

compute, save, display idiom

footModel <- lm(length ~ width, data=KidsFeet); footModel

Call:

lm(formula = length ~ width, data = KidsFeet)

Coefficients:

(Intercept) width

9.82 1.66

alternative that reflects the order of operations

lm(length ~ width, data=KidsFeet) -> footModel; footModel

Call:

lm(formula = length ~ width, data = KidsFeet)

Coefficients:

(Intercept) width

9.82 1.66

78 randall pruim, nicholas j. horton, and daniel kaplan

Often there are multiple ways to do the same thing in R, but

if you adopt good programming idioms, it will be clearer to both

you and your students what you are doing.

• Write reusable functions.

Learning to write your own functions (see Section ??) will

greatly increase your efficiency and also help you understand bet-

ter how R works. This, in turn, will help you debug your students

error messages. (More on error messages in ??.) It also makes it

possible for you to simplify tasks you want your students to be

able to do in R. That is how the mosaic package originated – as a

collection of tools we had assembled over time to make teaching

and learning easier.

• Comment your code.

It’s amazing what you can forget. The comment character in R

is #. If you are working in RMarkdown or Rnw files, you can also

include nicely formatted text to describe what you are doing and

why.

6.2 Primary R Data Structures

Everything in R is an object of a particular kind and understanding

the kinds of objects R is using demystifies many of the messages R

produces and unexpected behavior when commands do not work the

way you (or your students) were expecting. We won’t attempt to give

a comprehensive description of R’s object taxonomy here, but will

instead focus on a few important features and examples.

6.2.1 Objects and Classes

In R, data are stored in objects. Each object has a name, contents, and

a class. The class of an object tells what kind of a thing it is. The class

of an object can be queried using class() More Info

Many objects also have attributes which
contain additional information about
the object, but unless you are doing
programming with these objects, you
probably don’t need to worry too much
about them.

class(KidsFeet)

[1] "data.frame"

class(KidsFeet$birthmonth)

[1] "integer"

class(KidsFeet$length)

[1] "numeric"

class(KidsFeet$sex)

start teaching with r 79

[1] "factor"

str(KidsFeet) # show the class for each variable

'data.frame': 39 obs. of 8 variables:

$ name : Factor w/ 36 levels "Abby","Alisha",..: 10 24 36 20 23 34 13 4 14 8 ...

$ birthmonth: int 5 10 12 1 2 3 2 6 5 9 ...

$ birthyear : int 88 87 87 88 88 88 88 88 88 88 ...

$ length : num 24.4 25.4 24.5 25.2 25.1 25.7 26.1 23 23.6 22.9 ...

$ width : num 8.4 8.8 9.7 9.8 8.9 9.7 9.6 8.8 9.3 8.8 ...

$ sex : Factor w/ 2 levels "B","G": 1 1 1 1 1 1 1 2 2 1 ...

$ biggerfoot: Factor w/ 2 levels "L","R": 1 1 2 1 1 2 1 1 2 2 ...

$ domhand : Factor w/ 2 levels "L","R": 2 1 2 2 2 2 2 2 2 1 ...

From this we see that KidsFeet is a data frame and that the vari-

ables are of different types (integer, numeric, and factor). These are

the kinds of variables you are most likely to encounter, although

you may also see variables that are logical (true or false) or character

(text) as well. Factors are the most common way for categorical data

to be stored in R, but sometimes the character class is better. The More Info

One difference between a factor and
a character is that a factor knows the
possible values, even if some them do
not occur. Sometimes this is an advan-
tage (tallying empty cells in a table) and
sometimes it is a disadvantage (when
factors are used as unique identifiers).

class of an object determines what things can be done with it and

how it appears when printed, plotted, or displayed in the console.

6.2.2 Containers

The situation is actually a little bit more complicated. The birthmonth

variable in KidsFeet is not a single integer but a collection of inte-

gers. So we can think of birthmonth as a kind of container holding a

number of integers. There is more than one kind of container in R. More Info

Even when we only have a single
integer, R will treat it like a container of
integers with only one integer in it.

The containers used for variables in a data frame are called vectors.

The items in a vector are ordered (starting with 1) and must all be of

the same type. Digging Deeper

In fact, they must all be of the same
atomic type. Atomic types are are the
basic building blocks for R. It is not
possible to store more complicated
objects (like data frames) in a vector.

Vectors can be created using the c() function:

c(2, 3, 5, 7)

[1] 2 3 5 7

c("Abe", "Betty", "Chan")

[1] "Abe" "Betty" "Chan"

c(1.2, 3.2, 4.5)

[1] 1.2 3.2 4.5

If you attempt to put different types of objects into a vector, R will
attempt to convert them all to the same type of object. If it is unable Caution!

When reading data created in other
software (like Excel) or stored in CSV
files, it is important to know how
missing data were indicated, otherwise,
the code for missing data may be
interpreted as a character, causing all
the other items in that column to be
converted to character values as well,
and losing the important information
that some of the data were missing.

to do so, it will generate an error.

80 randall pruim, nicholas j. horton, and daniel kaplan

x <- c(1, 1.1, 1.2); x # convert integer to numeric

[1] 1.0 1.1 1.2

class(x)

[1] "numeric"

y <- c(TRUE, FALSE, 0, 1, 2); y # logicals converted to numeric

[1] 1 0 0 1 2

class(y)

[1] "numeric"

z <- c(1, TRUE, 1.2, "vector"); z # all converted to character

[1] "1" "TRUE" "1.2" "vector"

class(z)

[1] "character"

Digging Deeper

A factor can be ordered or unordered
(which can affect how statistics tests
are performed but otherwise does
not matter much). The default is for
factors to be unordered. Whether the
factors are ordered or unordered, the
levels will appear in a fixed order –
alphabetical by default. The distinction
between ordered and unordered factors
has to do with whether this order is
meaningful or arbitrary.

Factors can be created by wrapping a vector with factor():

w <- factor(x); w

[1] 1 1.1 1.2

Levels: 1 1.1 1.2

class(w)

[1] "factor"

Notice how factors display the levels (possible values) as well as the

values themselves. When categorical data are coded as integers, it

is important to remember to convert them to factors in this way for

certain statistical procedures and some plots.
Patterned integer or numeric vectors can be created using the :

operator or the seq() function.

1:10

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, by = 0.5)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

[12] 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

start teaching with r 81

Individual items in a vector can be accessed or assigned using the
square bracket operator:

w[1]

[1] 1

Levels: 1 1.1 1.2

x[2]

[1] 1.1

y[3]

[1] 0

z[5] # this is not an error, but returns NA (missing)

[1] NA

Missing values are coded as NA (not available). Asking for an entry
“off the end” of a vector returns NA. Assigning a value “off the end”
of a vector results in the vector being lengthened so that the new
value can be stored in the appropriate location.

q <- 1:5

q

[1] 1 2 3 4 5

q[10] <- 10

q

[1] 1 2 3 4 5 NA NA NA NA 10

R also provides some more unusual (but very useful) features for
accessing elements in a vector. More Info

letters is a built-in character vector
containing the lower case letters.
LETTERS contains capitals.

letters # alphabet

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"

[15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

x <- letters[1:10]

x # first 10 letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

x[2:4] # select items 2 through 4

[1] "b" "c" "d"

x[2:4] <- c("X", "Y", "Z")

x # change items 2 through 4

82 randall pruim, nicholas j. horton, and daniel kaplan

[1] "a" "X" "Y" "Z" "e" "f" "g" "h" "i" "j"

y <- (1:10)^2

y # first 10 squares

[1] 1 4 9 16 25 36 49 64 81 100

y[y > 20] # select the items greater than 20

[1] 25 36 49 64 81 100

The last item deserves a bit of comment. The expression inside the
brackets evaluates to a vector of logical values.

y > 20

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

[10] TRUE

The logical values are then used to select (true) or deselect (false) the
items in the vector, producing a new (and potentially shorter) vector.
If the number of logical supplied is less than the length of the vector,
the values are recycled (repeated).

y[c(TRUE, FALSE)] # every other

[1] 1 9 25 49 81

y[c(TRUE, FALSE, FALSE)] # every third

[1] 1 16 49 100

A matrix is a 2-dimensional table of values that all have the same
type. As with vectors, all of the items in a matrix must be of the same
type. But matrices are two-dimensional – each item is located in a
row and column. An array is a multi-dimensional version of a matrix.
Matrices and arrays are important containers for statistical work, but
less likely to be encountered by beginners.

M <- matrix(1:15, nrow = 3)

M # a 3 x 5 matrix

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

The dimensions of an array, matrix or data frame can be obtained
using dim() or nrow() and ncol().

start teaching with r 83

dim(M)

[1] 3 5

dim(KidsFeet)

[1] 39 8

nrow(KidsFeet)

[1] 39

ncol(KidsFeet)

[1] 8

Another commonly used container in R is a list. We have already

seen a few examples of lists used as arguments to lattice plotting

functions. Lists are also ordered, but the items in a list can be objects

of any type (they need not all be the same type). Behind the scenes,

a data frame is a list of vectors with the restriction that each vector

must have the same length (contain the same number of items).
Lists can be created using the list() function.

l <- list(1, "two", 3.2, list(1, 2))

l

[[1]]

[1] 1

[[2]]

[1] "two"

[[3]]

[1] 3.2

[[4]]

[[4]][[1]]

[1] 1

[[4]][[2]]

[1] 2

length(l) # Note: l has 4 elements, not 5

[1] 4

Items in a list can be accessed with the double square bracket ([[]]).

84 randall pruim, nicholas j. horton, and daniel kaplan

l[[1]]

[1] 1

Using a single square bracket ([]) instead returns a sublist rather
than an element. So l[[1]] is a vector, but l[1] is a list containing a
vector.

l[1]

[[1]]

[1] 1

Both vectors and lists can be named. The names can be created
when the vector or list is created or they can be added later. Elements
of vectors and lists can be accessed by name as well as by position.

x <- c(one = 1, two = 2, three = 3)

x

one two three

1 2 3

y <- list(a = 1, b = 2, c = 3)

y

$a

[1] 1

$b

[1] 2

$c

[1] 3

x["one"]

one

1

y["a"]

$a

[1] 1

names(x)

[1] "one" "two" "three"

names(x) <- c("A", "B", "C")

x

A B C

1 2 3

start teaching with r 85

The access operators – [] and [[]] for lists – are actually func-

tions in R. This has some important consequences:

• Accessing elements in a vector is slower than in a language like

C/C++ where access is done by pointer arithmetic.

• These functions also have named arguments, so you can see code

like the following

M

[,1] [,2] [,3] [,4] [,5]

[1,] 1 4 7 10 13

[2,] 2 5 8 11 14

[3,] 3 6 9 12 15

M[5]

[1] 5

M[, 2] # this is 1-d (a vector)

[1] 4 5 6

M[, 2, drop = FALSE] # this is 2-d (still a matrix)

[,1]

[1,] 4

[2,] 5

[3,] 6

Data frames can be constructed by supplying data.frame() with
the variables (as vectors):

ddd <- data.frame(number = 1:5, letter = letters[1:5])

6.2.3 Vectorized functions

Vectors are so important in R that they deserve some additional dis-

cussion. Many R functions and operations are “vectorized” and can

be applied not just to an individual value but to an entire vector,

in which case they are applied componentwise and return a vector

of transformed values. Most of the commonly used functions from

mathematics are available and work this way.

86 randall pruim, nicholas j. horton, and daniel kaplan

x <- 1:5; y <- seq(10, 60, by=10)

x

[1] 1 2 3 4 5

y

[1] 10 20 30 40 50 60

y + 1 # add 1 to each element

[1] 11 21 31 41 51 61

x * 10 # multiply each element by 10

[1] 10 20 30 40 50

x < 3 # check whether each is less than 3

[1] TRUE TRUE FALSE FALSE FALSE

x^2 # square each element

[1] 1 4 9 16 25

sqrt(x) # square root of each element

[1] 1.000 1.414 1.732 2.000 2.236

log(x) # natural log

[1] 0.0000 0.6931 1.0986 1.3863 1.6094

log10(x) # base 10 log

[1] 0.0000 0.3010 0.4771 0.6021 0.6990

Vectors can be combined into a matrix using rbind() or cbind().

This can facilitate side-by-side comparisons.

compare round() and signif() by binding row-wise into a matrix

z <- rnorm(5); z

[1] -0.56048 -0.23018 1.55871 0.07051 0.12929

rbind(round(z, digits=3), signif(z, digits=3))

[,1] [,2] [,3] [,4] [,5]

[1,] -0.56 -0.23 1.559 0.0710 0.129

[2,] -0.56 -0.23 1.560 0.0705 0.129

start teaching with r 87

6.2.4 Functions that act on vectors as vectors

Other functions, including many statistical functions, are designed to

compute a single number (technically, a vector of length 1) from an

entire vector.

z <- rnorm(100)

basic statistical functions; notice the use of names

c(mean=mean(z), sd=sd(z), var=var(z), median=median(z))

mean sd var median

0.06073 0.90887 0.82604 -0.01139

range(z) # range returns a vector of length 2

[1] -2.309 2.187

x <- 1:10

c(sum=sum(x), prod=prod(x)) # sums and products

sum prod

55 3628800

Still other functions return vectors that are derived from the origi-
nal vector, but not as a componentwise transformation.

z <- rnorm(5); z

[1] -0.04503 -0.78490 -1.66794 -0.38023 0.91900

sort(z); rank(z); order(z)

[1] -1.66794 -0.78490 -0.38023 -0.04503 0.91900

[1] 4 2 1 3 5

[1] 3 2 4 1 5

x <- 1:10

rev(x) # reverse x

[1] 10 9 8 7 6 5 4 3 2 1

diff(x) # pairwise differences

[1] 1 1 1 1 1 1 1 1 1

ediff(x) # pairwise differences w/out changing length

[1] NA 1 1 1 1 1 1 1 1 1

cumsum(x) # cumulative sum

[1] 1 3 6 10 15 21 28 36 45 55

cumprod(x) # cumulative product

[1] 1 2 6 24 120 720 5040

[8] 40320 362880 3628800

88 randall pruim, nicholas j. horton, and daniel kaplan

Whether a function is vectorized or treats a vector as a unit de-

pends on its implementation. Usually, things are implemented the

way you would expect. Occasionally you may discover a function

that you wish were vectorized and is not. When writing your own

functions, give some thought to whether they should be vectorized,

and test them with vectors of length greater than 1 to make sure you

get the intended behavior.

Some additional useful functions are included in Table 6.2.

cumsum()

cumprod()

cummin()

cummax()

Returns vector of cumulative sums, products, minima, or max-

ima.

pmin(x,y,...)

pmax(x,y,...)

Returns vector of parallel minima or maxima where ith element

is max or min of x[i], y[i],

which(x) Returns a vector of indices of elements of x that are true. Typical

use: which(y > 5) returns the indices where elements of y are

larger than 5.

any(x) Returns a logical indicating whether any elements of x are

true. Typical use: if (any(y > 5)) { ...}.

na.omit(x) Returns a vector with missing values removed.

unique(x) Returns a vector with repeated values removed.

table(x) Returns a table of counts of the number of occurrences of each

value in x. The table is similar to a vector with names indicating

the values, but it is not a vector.

paste(x,y,...,

sep=" ")

Pastes x and y together componentwise (as strings) with sep

between elements. Recycling applies.

Table 6.2: Some useful R functions.

6.3 Working with Data

In Section 5.5 we discussed using data in R packages, and in Sec-

tion 5.5.4 we discussed methods for bringing your own data into R.

In both of these scenarios, we have assumed that the data had been

entered and cleaned in some other software and focussed primarily

on data import. In this section we discuss ways to create and manip-

ulate data within R. But first we discuss a few more details regarding

importing data.

start teaching with r 89

6.3.1 Finer control over data import
Even if you primarily use the RStudio

interface to import data, it is good to
know about the command line methods
since these are required to import
data into scripts, RMarkdown, and
knitr/LATEX files.

The na.strings argument can be used to specify codes for missing
values. The following can be useful, for example:

More Info

The functionread.file() function in the
mosaic package uses this as its default
for na.trings.

someData <- read.csv('file.csv',

na.strings=c('NA','','.','-','na'))

because SAS uses a period (.) to code missing data, and some csv ex-

porters use ‘-’. By default R reads these as string data, which forces

the entire variable to be of character type instead of numeric.
By default, R will recode character data as a factor. If you prefer to

leave such variables in character format, you can use More Info

This works with read.csv() and
read.table() as well.

somData <- read.file('file.csv',

stringsAsFactors=FALSE)

Even finer control can be obtained by manually setting the class
(type) used for each column in the file. In addition, this speeds up
the reading of the file. For a csv file with four columns, we can de-
clare them to be of class integer, numeric, character, and factor with
the following command.

someData <- read.file('file.csv',

na.strings=c('NA','','.','-','na'),

colClasses=c('integer','numeric','character','factor'))

6.3.2 Manually entering data

We have already seen that the c() function can be used to combine
elements into a single vector.

x <- c(1, 1, 2, 3, 5, 8, 13); x

[1] 1 1 2 3 5 8 13

The scan() function can speed up data entry in the console by

allowing you to avoid the commas. Individual values are separated

by white space or new lines. A blank line is used to signal the end

of the data. By default, scan() is expecting numeric data, but it is

possible to tell scan() to expect something else, like character data

(i.e., text). There are other options for data types, but numerical Caution!
Be sure when using scan() that you

remember to save your data some-
where. Otherwise you will have to type
it again.

and text data handle the most important cases. See ?scan for more

information and examples.

90 randall pruim, nicholas j. horton, and daniel kaplan

6.3.3 Simulating samples from distributions

R has functions that make it simple to sample from a wide range of
distributions. Each of these functions begins with the letter ‘r’ (for
random) followed by the name of the distribution (often abbrevi-
ated somewhat). The arguments to the function specify the size of
the sample desired and any parameter values required for the distri-
bution. For example, to simulate selecting a sample of size 12 from
a normal population with mean 100 and standard deviation 10, we
would use

rnorm(12, mean = 100, sd = 10)

[1] 94.25 106.08 83.82 99.44 105.19 103.01 101.06 93.59

[9] 91.50 89.76 101.18 90.53

Functions for sampling from other distributions include rbinom(),

rchisq(), rt(), rf(), rhyper(), etc.
It is also easy to sample (with or without replacement) from exist-

ing data using sample() and resample().

x <- 1:10

random sample of size 5 from x (no replacement)

sample(x, size = 5)

[1] 4 7 10 9 6

a different random sample of size 5 from x (no replacement)

sample(x, size = 5)

[1] 8 3 2 5 10

random sample of size 5 from x (with replacement)

resample(x, size = 5)

[1] 6 8 2 5 5

Using resample() makes it easy to simulate small discrete distribu-
tions. For example, to simulate rolling 20 dice, we could use

resample(1:6, size = 20)

[1] 6 6 6 5 6 4 4 3 3 1 4 6 1 1 1 5 5 6 3 1

For working with cards, the mosaic package provides a vector
named Cards and deal() as an alternative name for sample().

deal(Cards, 5) # poker hand

[1] "9H" "AH" "8C" "8D" "QC"

deal(Cards, 13) # bridge, anyone?

[1] "5C" "9D" "AS" "KC" "4C" "7H" "2D" "6C" "QS" "KH" "9S"

[12] "9H" "2S"

start teaching with r 91

If you want to sort the hands nicely, you can create a factor from
Cards first:

hand <- deal(factor(Cards, levels = Cards), 13)

sort(hand) # sorted by suit, then by denomination

[1] 2C 7C 8C 7D 8D 10D 4H 9H QH AH 2S 10S AS

52 Levels: 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC AC ... AS

Example 6.1. For teaching purposes it is sometimes nice to create a
histogram that has the approximate shape of some distribution. One
way to do this is to randomly sample from the desired distribution
and make a histogram of the resulting sample.

x1 <- rnorm(500, mean = 10, sd = 2)

histogram(~x1, width = 0.5)

x1

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

5 10 15

This works, but the resulting plot has a fair amount of noise.
The ppoints() function returns evenly spaced probabilities and

allows us to obtain theoretical quantiles of the normal distribution
instead. The resulting plot now illustrates the idealized sample from
a normal distribution.

x2 <- qnorm(ppoints(500), mean = 10, sd = 2)

histogram(~x2, width = 0.5)

x2

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

5 10 15

92 randall pruim, nicholas j. horton, and daniel kaplan

This is not what real data will look like (even if it comes from a nor-

mal population), but it can be better for illustrative purposes to re-

move the noise. ⋄

6.3.4 Saving Data

write.table() and write.csv() can be used to save data from R into

delimited flat files.

ddd <- data.frame(number = 1:5, letter = letters[1:5])

write.table(ddd, "ddd.txt")

write.csv(ddd, "ddd.csv")

Data can also be saved in native R format. Saving data sets (and

other R objects) using save() has some advantages over other file

formats: More Info

If you want to save an R object but not
its name, you can use saveRDS() and
choose its name when you read it with
readRDS().

• Complete information about the objects is saved, including at-

tributes.

• Data saved this way takes less space and loads much more quickly.

• Multiple objects can be saved to and loaded from a single file.

The downside is that these files are only readable in R.

abc <- "abc"

ddd <- data.frame(number = 1:5, letter = letters[1:5])

save both objects in a single file

save(ddd, abc, file = "ddd.rda")

load them both

load("ddd.rda")

For more on importing and exporting data, especially from other

formats, see the R Data Import/Export manual available on CRAN.

6.4 Manipulating Data Frames with dplyr

There are several ways to manipulate data frames in R. The approach

illustrated here relies heavily on the functions in the dplyr package.

This package is loaded when the mosaic package is loaded. The

dplyr package defines five primary operations on a data frame

1. mutate() – add or change variables

2. select() – choose a subset of columns

http://www.R-project.org/

start teaching with r 93

3. filter() – choose a subset of rows

4. summarise() – reduce the entire data frame to a summary row

5. arrange() – reorder the rows

These become especially powerful when combined with a sixth com-

mand, group_by().

6. group_by() – split the data frame into multiple subsets

Additional functions (inner_join() and left_join() can be used to

combine data from multiple data frames.

6.4.1 Adding new variables to a data frame

The mutate() function can be used to add or modify variables in a

data frame. Note

mutate() is evaluated in such a way
that you have direct access to the
other variables in the data frame,
including one created earlier in the
same mutate() command.

Here we show how to modify the Births78 data frame so that it
contains a new variable day that is an ordered factor.

More Info

For better handling of dates and times
in R, it is best to convert them to date
or time objects. The lubridate package
provides a number of utilities for
creating and manipulating such objects.

data(Births78)

weekdays <- c("Sun", "Mon", "Tue", "Wed", "Thr", "Fri", "Sat")

Births <- mutate(Births78,

day = factor(weekdays[1 + (dayofyear - 1) %% 7],

ordered=TRUE, levels = weekdays))

head(Births,3)

date births dayofyear day

1 1/1/78 7701 1 Sun

2 1/2/78 7527 2 Mon

3 1/3/78 8825 3 Tue

The CPS85 data frame contains data from a Current Population
Survey (current in 1985, that is). Two of the variables in this data
frame are age and educ. We can estimate the number of years a
worker has been in the workforce if we assume they have been in
the workforce since completing their education and that their age at
graduation is 6 more than the number of years of education obtained.

CPS85 <- mutate(CPS85, workforce.years = age - 6 - educ)

favstats(~workforce.years, data = CPS85)

min Q1 median Q3 max mean sd n missing

-4 8 15 26 55 17.81 12.39 534 0

In fact this is what was done for all but one of the cases to create
the exper variable that is already in the CPS85 data.

94 randall pruim, nicholas j. horton, and daniel kaplan

xyplot(births ~ dayofyear, Births, groups=day, auto.key=list(space='right'))

dayofyear

bi
rt

hs

7000

8000

9000

10000

0 100 200 300

Sun
Mon
Tue
Wed
Thr
Fri
Sat

Figure 6.1: Number of US births in 1978

colored by day of week.

tally(~(exper - workforce.years), data = CPS85)

0 4

533 1

With categorical variables, sometimes we want to modify the cod-
ing scheme.

HELP2 <- mutate(HELPrct,

newsex = factor(female, labels=c('M','F')))

It’s a good idea to do some sort of sanity check to make sure that the
recoding worked the way you intended

tally(~newsex + female, data = HELP2)

female

newsex 0 1

M 346 0

F 0 107

The derivedFactor() function can simplify creating factors based
on some logical tests.

HELP3 <- mutate(HELPrct,

risklevel = derivedFactor(

low = sexrisk < 5,

medium = sexrisk < 10,

high = sexrisk >=10,

.method = "first" # use first rule that applies

start teaching with r 95

)

)

head(HELP3, 4)

age anysubstatus anysub cesd d1 daysanysub dayslink

1 37 1 yes 49 3 177 225

2 37 1 yes 30 22 2 NA

3 26 1 yes 39 0 3 365

4 39 1 yes 15 2 189 343

drugrisk e2b female sex g1b homeless i1 i2 id indtot

1 0 NA 0 male yes housed 13 26 1 39

2 0 NA 0 male yes homeless 56 62 2 43

3 20 NA 0 male no housed 0 0 3 41

4 0 1 1 female no housed 5 5 4 28

linkstatus link mcs pcs pss_fr racegrp satreat

1 1 yes 25.112 58.41 0 black no

2 NA <NA> 26.670 36.04 1 white no

3 0 no 6.763 74.81 13 black no

4 0 no 43.968 61.93 11 white yes

sexrisk substance treat risklevel

1 4 cocaine yes low

2 7 alcohol yes medium

3 2 heroin no low

4 4 heroin no low

6.4.2 Dropping variables

Since we already have educ, there is no reason to keep our new vari-
able workforce.years. Let’s drop it. Notice the clever use of the
minus sign.

CPS1 <- select(CPS85, -workforce.years)

head(CPS1, 1)

wage educ race sex hispanic south married exper union age

1 9 10 W M NH NS Married 27 Not 43

sector

1 const

Any number of variables can be dropped or kept in this manner
by supplying a vector of variables names.

CPS1 <- select(CPS85, c(workforce.years, exper))

Columns can be specified by number as well as name (but this can be
dangerous if you are wrong about where the columns are):

96 randall pruim, nicholas j. horton, and daniel kaplan

CPSsmall <- select(CPS85, select = 1:4)

head(CPSsmall, 2)

select1 select2 select3 select4

1 9.0 10 W M

2 5.5 12 W M

The functions matches(), contains(), starts_with(), ends_with(),

and number_range() are special functions that only work in the con-

text of select() but can be useful for describing sets of variables to

keep or discard.

head(select(HELPrct, contains("risk")), 2)

drugrisk sexrisk

1 0 4

2 0 7

The nested functions in the previous command make the code a
bit hard to read, and things would be worse if we were composing
several more functions. The magrittr package (which loads when
dplyr is loaded, hence when mosaic is loaded) provides an alterna-
tive syntax:

HELPrct %>% select(contains("risk")) %>% head(2)

drugrisk sexrisk

1 0 4

2 0 7

The %>% operator uses the output from the left-hand side as the first

input to the function on the right-hand side. This makes it easy to

chain several data manipulation commands together in the order in

which they are applied to the data without having to carefully nest

parentheses and explicitly pass along outputs of one function as an

argument to the next.
Here are a few more examples:

HELPrct %>% select(ends_with("e")) %>% head(2)

age female substance

1 37 0 cocaine

2 37 0 alcohol

HELPrct %>% select(starts_with("h")) %>% head(2)

homeless

1 housed

2 homeless

start teaching with r 97

HELPrct %>% select(matches("i[12]")) %>% head(2) # regex matching

i1 i2

1 13 26

2 56 62

6.4.3 Renaming variables

Both the column (variable) names and the row names of a data
frames can be changed by simple assignment using names() or
row.names().

ddd # small data frame we defined earlier

number letter

1 1 a

2 2 b

3 3 c

4 4 d

5 5 e

row.names(ddd) <- c("Abe", "Betty", "Claire", "Don", "Ethel")

ddd # row.names affects how a data.frame prints

number letter

Abe 1 a

Betty 2 b

Claire 3 c

Don 4 d

Ethel 5 e

It is also possible to reset just individual names with the following
syntax.

misspelled a name, let's fix it

row.names(ddd)[2] <- "Bette"

row.names(ddd)

[1] "Abe" "Bette" "Claire" "Don" "Ethel"

The faithful data set (in the datasets package, which is always
available) has very unfortunate names. Teaching Tip

An alternative solution is to use the
geyser data set in the MASS package.
The gyser data frame has better names
and more data. But here we want to
illustrate how to repair the damage in
faithful.

names(faithful)

[1] "eruptions" "waiting"

The measurements are the duration of an eruption and the time until
the subsequent eruption, so let’s give it some better names.

98 randall pruim, nicholas j. horton, and daniel kaplan

names(faithful) <- c("duration", "time_til_next")

head(faithful, 3)

duration time_til_next

1 3.600 79

2 1.800 54

3 3.333 74

xyplot(time_til_next ~ duration, faithful)

duration

tim
e_

til
_n

ex
t

50

60

70

80

90

2 3 4 5

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

If the variable containing a data frame
is modified or used to store a different
object, the original data from the
package can be recovered using data().

We can also rename a single variable using names(). For example,
perhaps we want to rename educ (the second column) to education.

names(CPS85)[2] <- "education"

CPS85[1, 1:4]

wage education race sex

1 9 10 W M

If we don’t know the column number (or generally to make our
code clearer), a few more keystrokes produces

See Section ?? for information that will
make it clearer what is going on here.names(CPS85)[names(CPS85) == "education"] <- "educ"

CPS85[1, 1:4]

wage educ race sex

1 9 10 W M

The select() function can also be used to rename variables.

data(faithful) # restore the original version

faithful2 <- faithful %>%

select(duration=eruptions, time_til_next = waiting)

head(faithful2, 2)

start teaching with r 99

duration time_til_next

1 3.6 79

2 1.8 54

6.4.4 Creating subsets

We can use filter() to select only certain rows from a data frame.

any logical can be used to create subsets

faithfulLong <- faithful2 %>% filter(duration > 3)

xyplot(time_til_next ~ duration, faithfulLong)

duration

tim
e_

til
_n

ex
t

70

80

90

3.0 3.5 4.0 4.5 5.0

●

●

●
●

● ●●

●

● ●

●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●
● ●

●●
●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

● ●
●

●

●

●
●

●

● ●
●

●

●●

● ●
●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●
●

●
●

●

●●
● ●

●

●

● ●

●

●

●

●
● ●

●●

●

●

●

●

If all we want to do is produce a graph and don’t need to save the
subset, the plot above could also be made with one of the following

xyplot(time_til_next ~ duration,

data = faithful2 %>% filter(duration > 3))

xyplot(time_til_next ~ duration, data = faithful2,

subset=duration > 3)

6.4.5 Summarising a data frame

The summarise() (or summarize()) function summarizes a data frame
as a single row.

HELPrct %>% summarise(x.bar = mean(age), s = sd(age))

x.bar s

1 35.65 7.71

This is especially useful in combination with group_by(), which
divides the data frame into subsets. The following command will

100 randall pruim, nicholas j. horton, and daniel kaplan

compute the mean and standard deviation for each subgroup defined
by a different combination of sex and substance.

HELPrct %>% group_by(sex, substance) %>% summarise(x.bar = mean(age),

s = sd(age))

Source: local data frame [6 x 4]

Groups: sex

sex substance x.bar s

1 female alcohol 39.17 7.980

2 female cocaine 34.85 6.195

3 female heroin 34.67 8.036

4 male alcohol 37.95 7.576

5 male cocaine 34.36 6.890

6 male heroin 33.05 7.974

The formula-based numerical summary functions supplied by the
mosaic package are probably easier for this particular task, but using
dplyr is more general.

favstats(age ~ sex + substance, data = HELPrct)

.group min Q1 median Q3 max mean sd n

1 female.alcohol 23 33 37.0 45 58 39.17 7.980 36

2 male.alcohol 20 32 38.0 42 58 37.95 7.576 141

3 female.cocaine 24 31 34.0 38 49 34.85 6.195 41

4 male.cocaine 23 30 33.0 37 60 34.36 6.890 111

5 female.heroin 21 29 34.0 39 55 34.67 8.036 30

6 male.heroin 19 27 32.5 39 53 33.05 7.974 94

missing

1 0

2 0

3 0

4 0

5 0

6 0

mean(age ~ sex + substance, data = HELPrct, .format = "table")

sex substance mean

1 female alcohol 39.17

2 female cocaine 34.85

3 female heroin 34.67

4 male alcohol 37.95

5 male cocaine 34.36

6 male heroin 33.05

sd(age ~ sex + substance, data = HELPrct, .format = "table")

sex substance sd

1 female alcohol 7.98

2 female cocaine 6.195

start teaching with r 101

3 female heroin 8.036

4 male alcohol 7.576

5 male cocaine 6.89

6 male heroin 7.974

6.4.6 Arranging a data frame

Sometimes it is convenient to reorder a data frame. We can do this
with the arrange() function by specifying the variable(s) on which to
do the sorting.

HELPrct %>% group_by(sex, substance) %>% summarise(x.bar = mean(age),

s = sd(age)) %>% arrange(x.bar)

Source: local data frame [6 x 4]

Groups: sex

sex substance x.bar s

1 male heroin 33.05 7.974

2 male cocaine 34.36 6.890

3 female heroin 34.67 8.036

4 female cocaine 34.85 6.195

5 male alcohol 37.95 7.576

6 female alcohol 39.17 7.980

6.4.7 Merging datasets

The fusion1 data frame in the fastR package contains genotype in-

formation for a SNP (single nucleotide polymorphism) in the gene

TCF7L2. The pheno data frame contains phenotypes (including type

2 diabetes case/control status) for an intersecting set of individu-

als. We can merge these together to explore the association between

genotypes and phenotypes using one of the join functions in dplry or

using the merge() function.

require(fastR)

head(fusion1, 3)

id marker markerID allele1 allele2 genotype Adose

1 9735 RS12255372 1 3 3 GG 0

2 10158 RS12255372 1 3 3 GG 0

3 9380 RS12255372 1 3 4 GT 0

Cdose Gdose Tdose

1 0 2 0

2 0 2 0

3 0 1 1

102 randall pruim, nicholas j. horton, and daniel kaplan

head(pheno, 3)

id t2d bmi sex age smoker chol waist weight

1 1002 case 32.86 F 70.76 former 4.57 112.0 85.6

2 1009 case 27.39 F 53.92 never 7.32 93.5 77.4

3 1012 control 30.47 M 53.86 former 5.02 104.0 94.6

height whr sbp dbp

1 161.4 0.9868 135 77

2 168.1 0.9397 158 88

3 176.2 0.9327 143 89

merge fusion1 and pheno keeping only id's that are in both

fusion1m <- merge(fusion1, pheno, by.x='id', by.y='id',

all.x=FALSE, all.y=FALSE)

head(fusion1m, 3)

id marker markerID allele1 allele2 genotype Adose

1 1002 RS12255372 1 3 3 GG 0

2 1009 RS12255372 1 3 3 GG 0

3 1012 RS12255372 1 3 3 GG 0

Cdose Gdose Tdose t2d bmi sex age smoker chol

1 0 2 0 case 32.86 F 70.76 former 4.57

2 0 2 0 case 27.39 F 53.92 never 7.32

3 0 2 0 control 30.47 M 53.86 former 5.02

waist weight height whr sbp dbp

1 112.0 85.6 161.4 0.9868 135 77

2 93.5 77.4 168.1 0.9397 158 88

3 104.0 94.6 176.2 0.9327 143 89

left_join(pheno, fusion1, by="id") %>% dim()

[1] 2333 22

inner_join(pheno, fusion1, by="id") %>% dim()

[1] 2331 22

which ids are only in \dataframe{pheno}?

setdiff(pheno$id, fusion1$id)

[1] 4011 9131

The difference between an inner join and a left join is that the inner

join only includes rows from the first data frame that have a match

in the second but a left join includes all rows of the first data frame,

even if they do not have a match in the second. In the example above,

there are two subjects in pheno that do not appear in fusion1.

merge() handles these distinctions with the all.x and all.y ar-

guments. In this case, since the values are the same for each data

frame, we could collapse by.x and by.y to by and collapse all.x and

start teaching with r 103

all.y to all. The first of these specifies which column(s) to use to

identify matching cases. The second indicates whether cases in one

data frame that do not appear in the other should be kept (TRUE) or

dropped (filling in NA as needed) or dropped from the merged data

frame.
Now we are ready to begin our analysis.

tally(~t2d + genotype + marker, data = fusion1m)

, , marker = RS12255372

genotype

t2d GG GT TT

case 737 375 48

control 835 309 27

6.5 Getting data from mySQL data bases

The RMySQL package allows direct access to data in MySQL data bases

and the dplyr package facilitates processing this data in the same

way as for data in a data frame.. This makes it easy to work with

very large data sets stored in public databases. The example below

queries a the UCSC genome browser to find all the known genes on

chromosome 1.

connect to a UCSC database

UCSCdata <- src_mysql(

host="genome-mysql.cse.ucsc.edu",

user="genome",

dbname="mm9")

Loading required package: RMySQL

Loading required package: DBI

grab one of the many tables in the database

KnownGene <- tbl(UCSCdata, "knownGene")

Get the gene name, chromosome, start and end sites for genes on Chromosome 1

Chrom1 <-

KnownGene %>%

select(name, chrom, txStart, txEnd) %>%

filter(chrom == "chr1")

The resulting Chrom1 is not a data frame, but behaves much like one.

104 randall pruim, nicholas j. horton, and daniel kaplan

class(Chrom1)

[1] "tbl_mysql" "tbl_sql" "tbl"

Chrom1l <- Chrom1 %>% mutate(length = (txEnd - txStart)/1000)

Chrom1l

Source: mysql 5.6.10-log [genome@genome-mysql.cse.ucsc.edu:/mm9]

From: knownGene [3,056 x 5]

Filter: chrom == "chr1"

name chrom txStart txEnd length

1 uc007aet.1 chr1 3195984 3205713 9.729

2 uc007aeu.1 chr1 3204562 3661579 457.017

3 uc007aev.1 chr1 3638391 3648985 10.594

4 uc007aew.1 chr1 4280926 4399322 118.396

5 uc007aex.2 chr1 4333587 4350395 16.808

6 uc007aey.1 chr1 4481008 4483816 2.808

7 uc007aez.1 chr1 4481008 4486494 5.486

8 uc007afa.1 chr1 4481008 4486494 5.486

9 uc007afb.1 chr1 4481008 4486494 5.486

10 uc007afc.1 chr1 4481008 4486494 5.486

..

For efficiency, the full data are not pulled from the database until Caution!
The arithmetic operations in this
mutate() command are being executed
in SQL, not in R, and the palette of
allowable functions is much smaller. It
is not possible, for example, to compute
the logarithm of the length here using
log(). For that we must first collect the
data into a real data frame.

needed (or until we request this using collect()). This allows us, for

example, to inspect the first few rows of a potentially large pull from

the database without actually having done all of the work required to

pull that data.
But certain things do not work unless we collect the results from

the data based into an actual data frame. To plot the data using
lattice or ggplot2, for example, we must first collect() it into a
data frame.

Chrom1df <- collect(Chrom1l) # collect into a data frame

histogram(~length, data=Chrom1df, xlab="gene length (kb)")

gene length (kb)

D
en

si
ty

0.000

0.002

0.004

0.006

0.008

0 200 400 600 800 1000

start teaching with r 105

6.6 Reshaping data

reshape() provides a flexible way to change the arrangement of data.

It was designed for converting between long and wide versions of

time series data and its arguments are named with that in mind.

A common situation is when we want to convert from a wide form

to a long form because of a change in perspective about what a unit

of observation is. For example, in the traffic data frame, each row is

a year, and data for multiple states are provided.

traffic

year cn.deaths ny cn ma ri

1 1951 265 13.9 13.0 10.2 8.0

2 1952 230 13.8 10.8 10.0 8.5

3 1953 275 14.4 12.8 11.0 8.5

4 1954 240 13.0 10.8 10.5 7.5

5 1955 325 13.5 14.0 11.8 10.0

6 1956 280 13.4 12.1 11.0 8.2

7 1957 273 13.3 11.9 10.2 9.4

8 1958 248 13.0 10.1 11.8 8.6

9 1959 245 12.9 10.0 11.0 9.0

We can reformat this so that each row contains a measurement for

a single state in one year.

longTraffic <-

reshape(traffic[,-2], idvar="year", ids=row.names(traffic),

times=names(traffic)[3:6], timevar="state",

varying=list(names(traffic)[3:6]), v.names="deathRate",

direction="long")

head(longTraffic)

year state deathRate

1951.ny 1951 ny 13.9

1952.ny 1952 ny 13.8

1953.ny 1953 ny 14.4

1954.ny 1954 ny 13.0

1955.ny 1955 ny 13.5

1956.ny 1956 ny 13.4

And now we can reformat the other way, this time having all data
for a given state form a row in the data frame.

stateTraffic <-

reshape(longTraffic, direction='wide',

v.names="deathRate", idvar="state", timevar="year")

stateTraffic

106 randall pruim, nicholas j. horton, and daniel kaplan

state deathRate.1951 deathRate.1952 deathRate.1953

1951.ny ny 13.9 13.8 14.4

1951.cn cn 13.0 10.8 12.8

1951.ma ma 10.2 10.0 11.0

1951.ri ri 8.0 8.5 8.5

deathRate.1954 deathRate.1955 deathRate.1956

1951.ny 13.0 13.5 13.4

1951.cn 10.8 14.0 12.1

1951.ma 10.5 11.8 11.0

1951.ri 7.5 10.0 8.2

deathRate.1957 deathRate.1958 deathRate.1959

1951.ny 13.3 13.0 12.9

1951.cn 11.9 10.1 10.0

1951.ma 10.2 11.8 11.0

1951.ri 9.4 8.6 9.0

In simpler cases, stack() or unstack() may suffice. Hmisc also

provides reShape() as an alternative to reshape().

6.7 Functions in R

Functions in R have several components:

• a name (like histogram)1 1 Actually, it is possible to define func-
tions without naming them; and for
short functions that are only needed
once, this can actually be useful.

• an ordered list of named arguments that serve as inputs to the

function

These are matched first by name and then by order to the val-

ues supplied by the call to the function. This is why we don’t

always include the argument name in our function calls. On the

other hand, the availability of names means that we don’t have to

remember the order in which arguments are listed.

Arguments often have default values which are used if no

value is supplied in the function call.

• a return value

This is the output of the function. It can be assigned to a vari-

able using the assignment operator (=, <-, or ->).

• side effects

A function may do other things (like make a graph or set some

preferences) that are not necessarily part of the return value.

When you read the help pages for an R function, you will see that

they are organized in sections related to these components. The list

of arguments appears in the Usage section along with any default

values. Details about how the arguments are used appear in the

Arguments section. The return value is listed in the Value section.

Any side effects are typically mentioned in the Details section. Even if you do not end up writing
many functions yourself, writing a few
functions will give you a much better
feel for how information flows through
R code.

start teaching with r 107

Now let’s try writing our own function. Suppose you frequently

wanted to compute the mean, median, and standard deviation of a

distribution. You could make a function to do all three to save some

typing. Let’s name our function mystats(). The mystats() will have

one argument, which we are assuming will be a vector of numeric

values. Here is how we could define it: There are ways to check the class of an
argument to see if it is a data frame,
a vector, numeric, etc. A really robust
function should check to make sure that
the values supplied to the arguments
are of appropriate types.

mystats <- function(x) {

mean(x)

median(x)

sd(x)

}

mystats((1:20)^2)

[1] 127.9

The first line says that we are defining a function called mystats()

with one argument, named x. The lines surrounded by curly braces

give the code to be executed when the function is called. So our

function computes the mean, then the median, then the standard

deviation of its argument.

But as you see, this doesn’t do exactly what we wanted. So what’s

going on? The value returned by the last line of a function is (by

default) returned by the function to its calling environment, where

it is (by default) printed to the screen so you can see it. In our case,

we computed the mean, median, and standard deviation, but only

the standard deviation is being returned by the function and hence

displayed. So this function is just an inefficient version of sd(). That

isn’t really what we wanted.

We can use print() to print out things along the way if we like.

mystats <- function(x) {

print(mean(x))

print(median(x))

print(sd(x))

}

mystats((1:20)^2)

[1] 143.5

[1] 110.5

[1] 127.9

Alternatively, we could use a combination of cat() and paste(),

which would give us more control over how the output is displayed.

108 randall pruim, nicholas j. horton, and daniel kaplan

altmystats <- function(x) {

cat(paste(" mean:", format(mean(x), 4), "\n"))

cat(paste(" edian:", format(median(x), 4), "\n"))

cat(paste(" sd:", format(sd(x), 4), "\n"))

}

altmystats((1:20)^2)

mean: 143.5

edian: 110.5

sd: 127.9

Either of these methods will allow us to see all three values, but if we

try to store them . . .

temp <- mystats((1:20)^2)

[1] 143.5

[1] 110.5

[1] 127.9

temp

[1] 127.9

A function in R can only have one return value, and by default it is

the value of the last line in the function. In the preceding example we

only get the standard deviation since that is the value we calculated

last.

We would really like the function to return all three summary

statistics. Our solution will be to store all three in a vector and return

the vector.2 2 If the values had not all been of the
same mode, we could have used a list
instead.mystats <- function(x) {

c(mean(x), median(x), sd(x))

}

mystats((1:20)^2)

[1] 143.5 110.5 127.9

Now the only problem is that we have to remember which number

is which. We can fix this by giving names to the slots in our vector.

While we’re at it, let’s add a few more favorites to the list. We’ll also

add an explicit return().

mystats <- function(x) {

result <- c(min(x), max(x), mean(x), median(x), sd(x))

names(result) <- c("min", "max", "mean", "median", "sd")

return(result)

}

mystats((1:20)^2)

start teaching with r 109

min max mean median sd

1.0 400.0 143.5 110.5 127.9

summary(Sepal.Length ~ Species, data = iris, fun = mystats)

Length Class Mode

3 formula call

aggregate(Sepal.Length ~ Species, data = iris, FUN = mystats)

Species Sepal.Length.min Sepal.Length.max

1 setosa 4.3000 5.8000

2 versicolor 4.9000 7.0000

3 virginica 4.9000 7.9000

Sepal.Length.mean Sepal.Length.median Sepal.Length.sd

1 5.0060 5.0000 0.3525

2 5.9360 5.9000 0.5162

3 6.5880 6.5000 0.6359

Notice how nicely this works with aggregate() and with the
summary() function from the Hmisc package. You can, of course, de-
fine your own favorite function to use with summary(). The favstats()

function in the mosaic package includes the quartiles, mean, stan-
dard, deviation, sample size and number of missing observations.

favstats(Sepal.Length ~ Species, data = iris)

.group min Q1 median Q3 max mean sd n

1 setosa 4.3 4.800 5.0 5.2 5.8 5.006 0.3525 50

2 versicolor 4.9 5.600 5.9 6.3 7.0 5.936 0.5162 50

3 virginica 4.9 6.225 6.5 6.9 7.9 6.588 0.6359 50

missing

1 0

2 0

3 0

6.8 Sharing With and Among Your Students

Instructors often have their own data sets to illustrate points of statis-

tical interest or to make a particular connection with a class. Some-

times you may want your class as a whole to construct a data set,

perhaps by filling in a survey or by contributing their own small bit

of data to a class collection. Students may be working on projects in

small groups; it’s nice to have tools to support such work so that all

members of the group have access to the data and can contribute to a

written report.

110 randall pruim, nicholas j. horton, and daniel kaplan

There are now many technologies that support such sharing. For

the sake of simplicity, we will emphasize three that we have found

particularly useful both in teaching statistics and in our professional

collaborative work. These are:

• Within RStudio server.

• A web site with minimal overhead, such as provided by Dropbox.

• The services of Google Docs.

• A web-based RStudio server for R.

The first two are already widely used in university environments and

are readily accessible simply by setting up accounts. Setting up an

RStudio web server requires some IT support, but is well within the

range of skills found in IT offices and even among some individual

faculty.

6.8.1 Using RStudio server to share files

Teaching Tip

When accounts are set up on the
RStudio server for a new class at Calvin,
each user is given a symbolic link to a
directory where the instructor can write
files and students can only read files.
This provides an easy way to make
data, R code, or history files available to
students from inside RStudio.

The RStudio server runs on a Linux machine. Users of RStudio have

accounts on the underlying Linux file system and it is possible to set

up shared directories with permissions that allow multiple users to

read and/or write files stored there. This has to be done outside of

RStudio, but if you are familiar with the Linux operating system or

have a system administrator who is willing to help you out, this is

not difficult to do.

6.8.2 Your own web site

You may already have a web site. We have in mind a place where you
can place files and have them accessed directly from the Internet. For
sharing data, it’s best if this site is public, that is, it does not require a
login. In this case, read.file() can read the data into R directly from
the URL:

Fires <- read.csv("http://www.calvin.edu/~rpruim/data/Fires.csv")

dim(Fires)

[1] 52 3

head(Fires)

Year Fires Acres

1 2011 74126 8711367

2 2010 71971 3422724

3 2009 78792 5921786

4 2008 78979 5292468

5 2007 85705 9328045

6 2006 96385 9873745

start teaching with r 111

xyplot(Acres ~ Year, data = Fires, type = c("p", "smooth"))

xyplot(Acres/Fires ~ Year, data = Fires, ylab = "acres per fire",

type = c("p", "smooth"))

Year

A
cr

es

2.0e+06

4.0e+06

6.0e+06

8.0e+06

1.0e+07

1960 1970 1980 1990 2000 2010

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●
●

●

Year

ac
re

s
pe

r
fir

e

20

40

60

80

100

120

1960 1970 1980 1990 2000 2010

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●
●●●●●●

●●●

●
●

●

●●●
●

●
●

●●
●

Unfortunately, most “course support” systems such as Moodle or

Blackboard do not provide such easy access to data. The Dropbox

service for storing files in the “cloud” provides a very convenient

way to distribute files over the web. (Go to dropbox.com for informa-

tion and to sign up for a free account.) Dropbox is routinely used to

provide automated backup and coordinated file access on multiple

computers. But the Dropbox service also provides a Public directory.

Any files that you place in that directory can be accessed directly by

a URL.
Our discussion of Dropbox is primarily
for those who do not already know how
to do this other ways.

To illustrate, suppose you wish to share some data set with your

students. You’ve constructed this data set in a spreadsheet and stored

it as a csv file, let’s call it example-A.csv. Move this file into the

Public directory under Dropbox — on most computers Dropbox

arranges things so that its directories appear exactly like ordinary

directories and you’ll use the ordinary, familiar file management

techniques as in Figure 6.2.

Dropbox also makes it straightforward to construct the web-

location identifying URL for any file by using mouse-based menu

112 randall pruim, nicholas j. horton, and daniel kaplan

Figure 6.2: Dragging a csv file to a
Dropbox Public directory

commands to place the URL into the clipboard, whence it can be

copied to your course-support software system or any other place

for distribution to students. For a csv file, reading the contents of the

file into R can be done with the read.csv() function, by giving it the

quoted URL:

a <- read.file("http://dl.dropbox.com/u/5098197/USCOTS2011/ExampleA.csv")

Figure 6.3: Getting the URL of a file in a
Dropbox Public directory

This technique makes it easy to distribute data with little advance

preparation. It’s fast enough to do in the middle of a class: the csv

file is available to your students (after a brief lag while Dropbox syn-

chronizes). It can even be edited by you (but not by your students).

The same technique can be applied to all sorts of files like R

workspaces or R scripts (files containing code). Of course, your

students need to use the appropriate R command: load() for a

workspace or source() for a script.
The example below will source a file that will print a welcoming

message for you.

source("http://mosaic-web.org/go/R/hello.R")

Hello there. You just sourced a file over the web!

But you can put any R code you like in the files you have your stu-

dents source. You can install and load packages, retrieve or modify

data sets, define new functions, or anything else R allows.

start teaching with r 113

Many instructors will find it useful to create a file with your

course-specific R scripts, adding on to it and modifying it as the

course progresses. This allows you to distribute all sorts of special-

purpose functions, letting you distribute new R material to your stu-

dents. That brilliant new idea you had at 2 am can be programmed

up and put in place for your students to use the next morning in

class. Then as you identify bugs and refine the program, you can

make the updated software immediately available to your students. Caution!
Security through Obscurity of this sort
will not generally satisfy institutional
data protection regulations nor profes-
sional ethical requirements, so nothing
truly sensitive or confidential should be
“protected" in this manner.

If privacy is a concern, for instance if you want the data available

only to your students, you can effectively accomplish this by giving

files names known only to your students, e.g., Example-A78r423.csv.

6.8.3 GoogleDocs

The Dropbox technique (or any other system of posting files to the

Internet) is excellent for broadcasting: taking files you create and

distributing them in a read-only fashion to your students. But when

you want two-way or multi-way sharing of files, other techniques are

called for, such as provided by the GoogleDocs service.

GoogleDocs allows students and instructors to create various

forms of documents, including reports, presentations, and spread-

sheets. (In addition to creating documents de novo, Google will also

convert existing documents in a variety of formats.)

Once on the GoogleDocs system, the documents can be edited

simultaneously by multiple users in different locations. They can be

shared with individuals or groups and published for unrestricted

viewing and even editing.

For teaching, this has a variety of uses:

• Students working on group projects can all simultaneously have

access to the report as it is being written and to data that is being

assembled by the group.

• The entire class can be given access to a data set, both for reading

and for writing.

• The Google Forms system can be used to construct surveys, the

responses to which can populate a spreadsheet that can be read

back into RStudio by the survey creators.

• Students can “hand in” reports and data sets by copying a link

into a course support system such as Moodle or Blackboard, or

emailing the link.

• The instructor can insert comments and/or corrections directly

into the document.

114 randall pruim, nicholas j. horton, and daniel kaplan

An effective technique for organizing student work and ensuring

that the instructor (and other graders) have access to it, is to create

a separate Google directory for each student in your class (Dropbox

can also be used in this manner). Set the permission on this directory

to share it with the student. Anything she or he drops into the direc-

tory is automatically available to the instructor. The student can also

share with specific other students (e.g., members of a project group).

We will illustrate the entire process in the context of the following

example.

Example 6.2. One exercise for students starting out in a statistics

course is to collect data to find out whether the “close door” button

on an elevator has any effect. This is an opportunity to introduce

simple ideas of experimental design. But it’s also a chance to teach

about the organization of data.

Have your students, as individuals or small groups, study a par-

ticular elevator, organize their data into a spreadsheet, and hand in

their individual spreadsheet. Then review the spreadsheets in class.

You will likely find that many groups did not understand clearly

the distinction between cases and variables, or coded their data in

ambiguous or inconsistent ways.

Work with the class to establish a consistent scheme for the vari-

ables and their coding, e.g., a variable ButtonPress with levels “Yes”

and “No”, a variable Time with the time in seconds from a fiducial

time (e.g. when the button was pressed or would have been pressed)

with time measured in seconds, and variables ElevatorLocation and

GroupName. Create a spreadsheet with these variables and a few cases

filled in. Share it with the class.

Have each of your students add their own data to the class data

set. Although this is a trivial task, having to translate their individual

data into a common format strongly reinforces the importance of a

consistent measurement and coding system for recording data.

Once you have a spreadsheet file in GoogleDocs, you will want to

open it in R. This can be exported as a csv file, then open it using the

csv tools in R, such as read.csv().
Direct communication with GoogleDocs requires facilities that are

not present in the base version of R, but are available through the
RCurl package. In order to make these readily available to students,
the mosaic package contains a function that takes the quoted (and
cumbersome) string with the Google-published URL and reads the
corresponding file into a data frame. RCurl neads to be installed
for this to work, and will be loaded if it is not already loaded when
fetchGoogle() is called.

elev <- fetchGoogle(

"https://spreadsheets.google.com/spreadsheet/pub?

hl=en&hl=en&key=0Am13enSalO74dEVzMGJSMU5TbTc2eWlWakppQlpjcGc&

start teaching with r 115

single=TRUE&gid=0&output=csv")

head(elev)

StudentGroup Elevator CloseButton Time Enroute

1 HA Campus Center N 8.230 N

2 HA Campus Center N 7.571 N

3 HA Campus Center N 7.798 N

4 HA Campus Center N 8.303 N

5 HA Campus Center Y 5.811 N

6 HA Campus Center Y 6.601 N

LagToPress

1 0

2 0

3 0

4 0

5 0

6 0

Teaching Tip

Another options is to get shorter URLs
using a service like tinyurl.com or
bitly.com.

Of course, you’d never want your students to type that URL by

hand; you should provide it in a copy-able form on a web site or

within a course support system. ⋄

6.9 Additional Notes on R Syntax

6.9.1 Text and Quotation Marks

For the most part, text in R must be enclosed in either single or dou-

ble quotations. It usually doesn’t matter which you use, unless you

want one or the other type of quotation mark inside your text. Then

you should use the other type of quotation mark to mark the begin-

ning and the end.

apostrophe inside requires double quotes around text

text1 <- "Mary didn't come"

this time we flip things around

text2 <- "Do you use \"scare quotes\"?"

6.10 Common Error Messages and What Causes Them

6.10.1 Error: Object not found

R reports that an object is not found when it cannot locate an ob-
ject with the name you have used. One common reason for this is a

tinyurl.com
bitly.com

116 randall pruim, nicholas j. horton, and daniel kaplan

typing error. This is easily corrected by retyping the name with the
correct spelling.

histogram(~aeg, data = HELPrct)

Error: object ’aeg’ not found

Another reason for an object-not-found error is using unquoted
text where quotation marks were required.

text3 <- hello

Error: object ’hello’ not found

In this case, R is looking for some object named hello, but we
meant to store a string:

text3 <- "hello"

6.10.2 Error: unexpected . . .

If while R is parsing a statement it encounters something that does

not make sense it reports that something is “unexpected”. Often this

is the result of a typing error – like omitting a comma.

c(1,2 3) # missing a comma

Error: unexpected numeric constant in "c(1,2 3"

6.10.3 Error: object of type ‘closure’ is not subsettable

The following produces an error if time has not been defined.

time[3]

Error: object of type ’closure’ is not subsettable

There is a function called time() in R, so if you haven’t defined a

vector by that name, R will try to subset the time() function, which

doesn’t make sense.

Typically when you see this error, you have a function in a place

you don’t mean to have a function. The message can be cryptic to

new users because of the reference to a closure.

start teaching with r 117

6.10.4 Other Errors

If you encounter other errors and cannot decipher them, often past-

ing the error message into a google search will find a discussion of

that error in a context where it stumped someone else.

118 randall pruim, nicholas j. horton, and daniel kaplan

6.11 Review of R Commands

Here is a brief summary of the commands introduced in this chapter.

source("file.R") # execute commands in a file

x <- 1:10 # create vector with numbers 1 through 10

M <- matrix(1:12, nrow=3) # create a 3 x 4 matrix

data.frame(number = 1:26, letter=letters[1:26]) # create a data frame

mode(x) # returns mode of object x

length(x) # returns length of vector or list

dim(HELPrct) # dimension of a matrix, array, or data frame

nrow(HELPrct) # number of rows

ncol(HELPrct) # number of columns

names(HELPrct) # variable names in data frame

row.names(HELPrct) # row names in a data frame

attributes(x) # returns attributes of x

toupper(x) # capitalize

as.character(x) # convert to a character vector

as.logical(x) # convert to a logical (TRUE or FALSE)

as.numeric(x) # convert to numbers

as.integer(x) # convert to integers

factor(x) # convert to a factor [categorical data]

class(x) # returns class of x

smallPrimes <- c(2,3,5,7,11) # create a (numeric) vector

rep(1, 10) # ten 1's

seq(2, 10, by=2) # evens less than or equal to 10

rank(x) # ranks of items in x

sort(x) # returns elements of x in sorted order

order(x) # x[order(x)] is x in sorted order

rev(x) # returns elements of x in reverse order

diff(x) # returns differences between consecutive elements

paste("Group", 1:3, sep="") # same as c("Group1", "Group2", "Group3")

write.table(HELPrct, file="myHELP.txt") # write data to a file

write.csv(HELPrct, file="myHELP.csv") # write data to a csv file

save(HELPrct, file="myHELP.Rda") # save object(s) in R's native format

modData <- mutate(HELPrct, old = age > 50) # add a new variable to data frame

women <- subset(HELPrct, sex=='female') # select only specified cases

favs <- subset(HELPrct, select=c('age','sex','substance')) # keep only 3 columns

trellis.par.set(theme=col.mosaic()) # choose theme for lattcie graphics

show.settings() # inspect lattice theme
fetchGoogle(...) # get data from google URL

start teaching with r 119

6.12 Exercises

6.1 Using faithful data frame, make a scatter plot of eruption dura-

tion times vs. the time since the previous eruption.

6.2 The fusion2 data set in the fastR package contains genotypes for

another SNP. Merge fusion1, fusion2, and pheno into a single data

frame.
Note that fusion1 and fusion2 have the same columns.

names(fusion1)

[1] "id" "marker" "markerID" "allele1" "allele2"

[6] "genotype" "Adose" "Cdose" "Gdose" "Tdose"

names(fusion2)

[1] "id" "marker" "markerID" "allele1" "allele2"

[6] "genotype" "Adose" "Cdose" "Gdose" "Tdose"

You may want to use the suffixes argument to merge() or rename

the variables after you are done merging to make the resulting data

frame easier to navigate.

Tidy up your data frame by dropping any columns that are re-

dundant or that you just don’t want to have in your final data frame.

7

Getting Interactive with manipulate and shiny

One very attractive feature of RStudio is the manipulate() function

(in the manipulate package, which is only available within RStudio).

This function makes it easy to create a set of controls (such as sliders,

checkboxes, drop down selections, etc.) that can be used to dynam-

ically change values within an expression. When a value is changed

using these controls, the expression is automatically re-executed and

any plots created as a result are redrawn. This can be used to quickly

prototype a number of activities and demos as part of a statistics

lecture.

shiny is a new web development system for R being designed

by the RStudio team. shiny uses a reactive programming model to

make it relatively easy for an R programmer to create highly in-

teractive, well designed web applications using R without needing

to know much about web programming. Programming in shiny

is more involved than using manipulate, but it offers the designer

more flexibility. One of the goals in creating shiny was to support

corporate environments, where a small number of statisticians and

programmers can create web applications that can be used by others

within the company without requiring them to know any R. This

same framework offers many possibilities for educational purposes as

well. Some have even suggested implementing fairly extensive GUI

interfaces to commonly used R functionality using shiny.

7.1 Getting Started with manipulate

The manipulate() function and the various control functions that are

used with it are only available after loading the manipulate package,

which is only available in RStudio.

require(manipulate)

start teaching with r 121

7.1.1 Sliders

manipulate(

histogram(~ eruptions, data=faithful, n=N),

N = slider(5,40)

)

This generates a plot along with a slider ranging from 5 bins to 40. We find it useful to capitalize the inputs
to the manipulated expression that
are hooked up to manipulate controls.
This helps avoid naming collisions and
signals how the main manipulated
expression is being used.

When the slider is changed, we see a clearer view of the eruptions

of Old Faithful.

7.1.2 Check Boxes

manipulate(

histogram(~ age, data=HELPrct, n=N, density=DENSITY),

N = slider(5,40),

DENSITY = checkbox()

)

122 randall pruim, nicholas j. horton, and daniel kaplan

7.1.3 Drop-down Menus

Drop-down menus can be added using the picker() function.

manipulate(

histogram(~ age, data=HELPrct, n=N,

fit=DISTRIBUTION, dlwd=4),

N = slider(5,40),

DISTRIBUTION =

picker('normal', 'gamma', 'exponential', 'lognormal',

label="distribution")

)

7.1.4 Visualizing Normal Distributions

In this section we will gradually build up a small manipulate ex-

ample that shows the added flexibility that comes from writing a

function that returns a manipulate object. Such functions can be dis-

tributed to students to allow them to explore interactively in a more

flexible way.
We begin by creating an illustration of tail probabilities in a nor-

mal distribution.

manipulate(

xpnorm(X, 500, 100, verbose=FALSE, invisible=TRUE),

X = slider(200,800))

The version below can be used to investigate central probabilities and
tail probabilities.

start teaching with r 123

manipulate(

xpnorm(c(-X,X), 500, 100, verbose=FALSE, invisible=TRUE),

X = slider(200,800))

These examples work with a fixed distribution. Here is a fancier
version in which a function returns a manipulate object. This allows
us to easily create illustrations like the ones above for any normal
distribution.

mNorm <- function(mean=0, sd=1) {

lo <- mean - 5*sd

hi <- mean + 5*sd

manipulate(

xpnorm(c(A,B), mean, sd, verbose=FALSE, invisible=TRUE),

A = slider(lo, hi, initial=mean-sd),

B = slider(lo, hi, initial=mean+sd)

)

}

mNorm(mean=100, sd=10)

7.2 mPlot()

The mosaic package provides the mPlot() function which allows

users to create a wide variety of plots using either lattice or ggplot2.

Furthermore, the code used to generate these plots can be displayed

upon request. This facilitates learning these commands, allows users

to make further modifications that are not possible in the manipu-

late interface, and provides an easy copy-and-paste mechanism for

dropping these plots into other documents.

The available plots come in two clusters, depending on whether

the underlying plot is essentially two-variable or one-variable. Ad-

ditional variables can be represented using color, size, and sub-plots

(facets).

These are essentially 2-variable plots

mPlot(HELPrct, "scatter") # start with a scatter plot

mPlot(HELPrct, "boxplot") # start with boxplots

mPlot(HELPrct, "violin") # start with violin plots

These are essentially 1-variables plots

mPlot(HELPrct, "histogram") # start with a histogram

mPlot(HELPrct, "density") # start with a density plot

mPlot(HELPrct, "frequency polygon") # start with a frequency polygon

124 randall pruim, nicholas j. horton, and daniel kaplan

7.3 Shiny

shiny is a package created by the RStudio team to, in their words,

[make] it incredibly easy to build interactive web applications with R.

Automatic “reactive" binding between inputs and outputs and exten-

sive pre-built widgets make it possible to build beautiful, responsive,

and powerful applications with minimal effort.

These web applications can, of course, run R code to do computa-

tions and produce graphics that appear in the web page.

The level of coding skill required to create this is beyond the scope

of this book, but those with a little more programming background

can easily learn the necessary toolkit to make beautiful interactive

web pages. More information about shiny and some example appli-

cations are available at http://www.rstudio.com/shiny/.

Exercises

7.1 The following code makes a scatterplot with separate symbols for
each sex.

xyplot(cesd ~ age, data = HELPrct, groups = sex)

Build a manipulate example that allows you to turn the grouping on

and off with a checkbox.

7.2 Build a manipulate example that uses a picker to select from a

number of variables to make a plot for. Here’s an example with a

histogram:

http://www.rstudio.com/shiny/

start teaching with r 125

7.3 Design your own interactive demonstration idea and implement

it using RStudio manipulate tools.

8

Bibliography

[Fis25] R. A. Fisher. Statistical Methods for Research Workers. Oliver &

Boyd, 1925.

[Fis70] R. A. Fisher. Statistical Methods for Research Workers. Oliver &

Boyd, 14th edition, 1970.

[NT10] D. Nolan and D. Temple Lang. Computing in the statistics

curriculum. The American Statistician, 64(2):97–107, 2010.

[Sal01] D. Salsburg. The Lady Tasting Tea: How statistics revolutionized

science in the twentieth century. W.H. Freeman, New York,

2001.

9

Index

->, 106

<-, 106

=, 106

?, 66

??, 66

[], 78, 80

[[]], 78, 84

#, 78

$, 68

lattice settings, 48

alpha, 47

any(), 88

apropos(), 66

argument of an R function, 106

array, 82

as.data.frame(), 72

attach()

avoid, 69

auto.key, 47, 55

barchart(), 38, 72

bargraph(), 38, 56, 60, 72

binom.test(), 46

Bioconductor, 65

Births78, 35, 69

boxplot, see bwplot()

bwplot(), 36, 60

c(), 71, 74, 79, 89

Cards, 90

cat(), 107

cbind(), 71, 86

cex, 47

class, 78

class(), 78

collect(), 104

comment character in R (#), 78

conditional plots, 41, 51, 55

confint(), 45

contains(), 96

CPS85, 56

CRAN (Comprehensive R Archive

Network, 64

cummax(), 88

cummin(), 88

cumprod(), 87, 88

cumsum(), 60, 87, 88

Current Population Survey, see CPS85

data

importing, 89

importing into RStudio, 71

pretabulated, 71

data frame, 67

data(), 69, 74

data.frame(), 85

deal(), 90

demo(), 67

density scale, 54

densityplot(), 39, 53, 60

devtools, 65

diff(), 87, 88

dim(), 82

dotPlot(), 39, 50, 60

dotplot(), 40

Dropbox, 111

ediff(), 87

ends_with(), 96

evironments

R, 68

example(), 66

Excel, 70

facets, see conditional plots

factor(), 80, 91

favstats(), 42, 60, 109

Fisher, R. A., 23

freqpolygon(), 39, 52, 60

frequency polygon, see freqpolygon()

function(), 107

functions in R, 106

gdata, 70

generic functions, 58

geyser, 52

ggplot2, 59

ggvis, 35

github, 65

Google, 69

gplot2, 35

head(), 67, 70, 72, 74

help.search(), 66

HELPrct, 36

histogram(), 37, 51, 60

install.packages(), 64

install_github(), 65

IQR(), 42

iris, 55

KidsFeet, 79

labels

axis, 47

ladd(), 52

128 randall pruim, nicholas j. horton, and daniel kaplan

lattice, 35, 59

legends, 41

length(), 83

LETTERS[], 81

letters[], 81

library(), 64

linear models, see also lm()

list, 83

list(), 84

lm(), 44

load(), 70

log(), 74, 85

log10(), 74

main, 47

manipulate, 59

MASS, 52

matches(), 96

matrix, 82

matrix(), 82

max(), 42

mean(), 42, 60, 85

median(), 42, 60, 85

min(), 42

mosaic plot, 37

mplot(), 58, 60

mutate(), 104

mystats(), 107

na.omit(), 88

na.strings, 89

names(), 74, 84

ncol(), 82

nrow(), 82

number_range(), 96

object, 78

observational unit, 67

opacity, see alpha

order(), 87, 88

package

installing, see also

install.packages(), see also

install_github(), 64

loading, see also library(), see also

require(), 64

par.settings, 47

paste(), 88, 107

pch, 47

pdf(), 58

plot symbol

shape, see pch

size, see cex

plot(), 58

plotPoints(), 39

pmax(), 88

pmin(), 88

print(), 58

prod(), 88

prop.test(), 46

pval(), 45

qqmath(), 39, 60

quantile(), 60

quantile-quantile plots, see qqmath

questions

two, 34, 63

rank(), 87, 88

rbind(), 71, 86

read.csv(), 70, 74, 89

read.file(), 70, 74, 89

read.table(), 70, 74, 89

read.xls(), 70

require(), 64, 74

resample(), 70, 90

reshape(), 105

return(), 108

rev(), 88

RMySQL, 103

rnorm(), 90

round(), 86

sample(), 67, 68, 74

savehistory(), 77

scan(), 89

scatter plot, see xyplot()

sd(), 42, 60, 85

select(), 95

seq(), 80

show.settings(), 48

signif(), 86

sort(), 87, 88, 91

source(), 76

SQL, 103

sqrt(), 74

src_mysql, 103

stack(), 106

starts_with(), 96

str, 68

str(), 74

stringsAsFactors, 89

stripplot(), 40

sum(), 42, 60, 88

summary(), 58, 67, 68, 74

t.test(), 45

table(), 88

tally(), 42, 56, 60

tbl, 103

template

the, 63

theme.mosaic(), 48

themes

lattice, see trellis.par.set()

titles (plots), 47

transparency, see alpha

trellis.par.set(), 48

unique(), 88

unstack(), 106

Utilities2, 61

var(), 42, 60, 85

variable, 67

vcd, 37

vector, 79

vectorized functions, 85

View(), 68

which(), 88

with(), 68

xlab, 47

xyplot, 55

xyplot(), 35, 60

ylab, 47

	Some Advice on Getting Started With R
	Strategies
	Tactics
	Scope of this book

	Getting Started with RStudio
	Setting up R and RStudio
	Using R as a Calculator in the Console
	Working with Files
	The Other Panels and Tabs

	Using R Early in the Course
	Coins and Cups: The Lady Tasting Tea
	Births by Day
	SAT and Confounding
	Mites and Wilt Disease

	Less Volume, More Creativity
	The mosaic package and the formula template
	Graphical summaries of data
	Numerical Summaries
	Linear models
	A few other tests
	lattice bells and whistles
	Some additional examples
	Saving Your Plots
	mplot()
	Review of R Commands
	Exercises

	What Students Need to Know about R
	Two Questions
	Four Things to Know About R
	Installing and Using Packages
	Getting Help
	Data
	Review of R Commands
	Exercises

	What Instructors Need to Know about R
	Some Workflow Suggestions
	Primary R Data Structures
	Working with Data
	Manipulating Data Frames with dplyr
	Getting data from mySQL data bases
	Reshaping data
	Functions in R
	Sharing With and Among Your Students
	Additional Notes on R Syntax
	Common Error Messages and What Causes Them
	Review of R Commands
	Exercises

	Getting Interactive with manipulate and shiny
	Getting Started with manipulate
	mPlot()
	Shiny

	Bibliography
	Index

