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Summary

1. Discrete-time hidden Markov models (HMMs) have become an immensely popular

tool for inferring latent animal behaviors from telemetry data, largely because they are

relatively fast and easy to implement when data streams are observed without error

and at regular time intervals. While movement HMMs typically rely solely on location

data, auxiliary biotelemetry and environmental data are powerful and readily-available

resources for incorporating much more behavioral realism and inferring ecological re-

lationships that would otherwise be difficult or impossible to infer from location data

alone. However, there is a paucity of generalized user-friendly software available for

implementing (multivariate) HMMs of animal movement. Furthermore, location mea-

surement error, temporal irregularity, and other forms of missing data are often perva-

sive in telemetry studies (particularly in marine systems).

2. Here we provide a guide to using an open-source R package, momentuHMM version

1.4.1, that addresses many of the deficiencies in existing software. Features for multi-

variate HMMs in momentuHMM include: 1) tools for data pre-processing and visualization;

2) user-specified probability distributions for an unlimited number of data streams and

latent behavior states, such as those based on location (e.g., step length, turning angle)

and auxiliary biotelemetry data (e.g., from pressure, conductivity, heart rate, or motion

sensors); 3) biased and correlated random walk movement models, including “activity

centers” associated with attractive or repulsive forces; 4) user-specified design matrices

and constraints for covariate modelling of initial distribution, state transition proba-

bility, and probability distribution parameters using linear model formulas familiar to

most R users; 5) multiple imputation methods that account for observation error at-

tributable to measurement error and temporally-irregular or missing data; 6) seamless

integration of spatio-temporal covariate raster data; 7) cosinor and spline regression

formulas for cyclical (e.g., daily, seasonal) and other complicated patterns; 8) model

checking and selection; and 9) data simulation capabilities for study design, power anal-

yses and assessing model performance, including simulation of location data subject to

temporal irregularity and/or measurement error.

3. After providing a brief introduction to (multivariate) HMMs for telemetry data, we

demonstrate some of the capabilities of momentuHMM using real-world examples. This

brief tutorial includes workflows for data formatting, model specification, model fitting,

and diagnostics.
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4. While many of the features of momentuHMM were motivated by animal movement

data, the package can be used for analyzing any type of data that is amenable to (mul-

tivariate) HMMs. Practitioners interested in additional features for momentuHMM are

encouraged to contact the authors.

Key-words animal biotelemetry, biologging, crawl, moveHMM, state-space model, state-

switching

1 Introduction

Discrete-time hidden Markov models (HMMs) have become immensely popular for the

analysis of animal telemetry data (e.g. Morales et al. 2004; Jonsen et al. 2005; Langrock

et al. 2012; McClintock et al. 2012). In short, an HMM is a time series model composed

of a (possibly multivariate) observation process (Z1, . . . ,ZT ), in which each data stream

is generated by N state-dependent probability distributions, and where the unobserv-

able (hidden) state sequence (St ∈ {1, . . . , N}, t = 1, . . . , T ) is assumed to be a Markov

chain. The state sequence of the Markov chain is governed by (typically first-order)

state transition probabilities, γ
(t)
ij = Pr(St+1 = j | St = i) for i, j = 1, . . . , N , and an

initial distribution δ(0). The likelihood of an HMM can be succinctly expressed using

the forward algorithm:

L = δ(0)Γ(1)P(z1)Γ
(2)P(z2)Γ

(3) · · ·Γ(T−1)P(zT−1)Γ
(T )P(zT )1

N , (1)

where Γ(t) =
(

γ
(t)
ij

)

is theN×N transition probability matrix, P(zt) = diag(p1(zt), . . . , pN(zt)),

ps(zt) is the conditional probability density of Zt given St = s, and 1N is a N -vector of

ones (for a thorough introduction to HMMs see Zucchini et al. 2016).

One of the most common discrete-time animal movement HMMs for telemetry loca-

tion data is composed of two data streams, step length and turning angle (or bearing),

which are calculated for each of the T time steps from the temporally-regular obser-

vations of an animal’s position, (xt, yt), for t = 1, . . . , T + 1 (e.g. Morales et al. 2004;

Langrock et al. 2012; McClintock et al. 2012). Step length (lt) is typically calculated as

the Euclidean distance between the locations (xt, yt) and (xt+1, yt+1), while turning an-

gle (φt) is calculated as the change in bearing (bt = atan2(yt+1 − yt, xt+1 − xt)) between

the intervals [t− 1, t] and [t, t+1] (e.g. φt = 0 if bt−1 = bt). For this HMM composed of
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2 data streams, zt = (lt, φt), and, conditional on the latent state St, independent proba-

bility distributions are typically assumed for each stream; that is, ps(zt) = ps(lt)ps(φt).

Some common probability distributions for the step length data stream are the gamma

or Weibull distributions, while the wrapped Cauchy or von Mises distributions are of-

ten employed for turning angle or bearing. For a fitted HMM, the Viterbi algorithm is

used to compute the most likely sequence of underlying states (Zucchini et al. 2016).

In movement HMMs, the states are often considered as proxies for animal behaviour.

While HMMs for animal movement based solely on location data are somewhat

limited in the number and type of biologically-meaningful movement behavior states

they are able to accurately identify, advances in biologging technology are now allowing

the collection of valuable auxiliary biotelemetry data (e.g., dive activity, accelerometer,

heart rate, stomach temperature), which, when combined with location data, allow for

multivariate HMMs that can incorporate much more behavioral realism and facilitate

inferences about complex ecological relationships that would otherwise be difficult or

impossible to infer from location data alone (e.g. McClintock et al. 2013; DeRuiter

et al. 2017; McClintock et al. 2017). Multivariate HMMs that utilize both location and

auxiliary biotelemetry data can facilitate the identification of additional states that go

beyond the N = 2 state approaches that are most frequently used by practitioners. For

example, the most widely used 2-state HMMs for animal movement include “encamped”

(or “foraging”) and “exploratory” (or “transit”) states characterized by area-restricted-

search-type movements (shorter step lengths with little to no directional persistence)

and migratory-type movements (longer step lengths with high directional persistence),

respectively (Morales et al. 2004; Jonsen et al. 2005). However, very different behav-

iors can exhibit similar horizontal trajectories. For example, for herbivores such as

North American elk (Morales et al. 2004) or central-place foragers such as harbour

seals (McClintock et al. 2013), the horizontal trajectories of “resting” and “foraging”

movements can be very difficult to distinguish. Standard 2-state HMMs based solely

on horizontal trajectory will tend to lump these behaviors together, and this could

have unintended consequences if, for example, one intends to use the estimated state

sequences to identify foraging habitat. In order to tweeze apart distinct behaviors with

similar horizontal trajectories, additional states can be informed by auxiliary informa-

tion (such as mandible accelerometer or dive data), incorporated as additional data

stream(s) in a multivariate HMM.
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When data streams are observed without error and at regular time intervals, a major

advantage of HMMs is the relatively fast and efficient maximization of the likelihood

using the forward algorithm (Eq. 1). However, location measurement error is rarely

non-existent in animal-borne telemetry studies and depends on both the device and

the system under study. For example, GPS errors are typically less than 50m, but

Argos errors can exceed 10km (e.g. Costa et al. 2010). An extreme case of missing

data can arise when location data are obtained with little or no temporal regularity, as

in many marine mammal telemetry studies (e.g. Jonsen et al. 2005), such that few (if

any) observations align with the regular time steps required by discrete-time HMMs.

When explicitly accounting for uncertainty attributable to location measurement error,

temporally-irregular observations, or other forms of missing data, one must typically

fit (multivariate) HMMs using computationally-intensive (and often time-consuming)

model fitting techniques such as Markov chain Monte Carlo (Jonsen et al. 2005; Mc-

Clintock et al. 2012). However, complex analyses requiring novel statistical methods

and custom model-fitting algorithms are not practical for many practitioners.

While statisticians have been applying HMMs to telemetry data for decades, R

(R Core Team 2017) packages such as bsam (Jonsen et al. 2005), moveHMM (Michelot

et al. 2016), and swim (Whoriskey et al. 2017) have recently helped make these mod-

els of animal movement behavior more accessible to the practitioners that are actually

conducting telemetry studies. These advances represent important steps toward mak-

ing HMMs of animal movement more accessible, but the models that can currently

be implemented using existing software remain limited in many key respects. For ex-

ample, existing HMM software for animal movement is limited to two data streams

based solely on location data (e.g. step length and turning angle), and while moveHMM

allows for a user-specified number of latent behavioral states (bsam and swim are lim-

ited to N = 2 states), it is typically difficult to identify >2 biologically-meaningful

behavior states from only 2 data streams (e.g. Morales et al. 2004; Beyer et al. 2013;

McClintock et al. 2014). Both moveHMM and swim are designed for temporally-regular

(or linearly-interpolated) location data with negligible measurement error, but the re-

alities of animal-borne telemetry often yield temporally-irregular location data subject

to error (particularly in aquatic environments). Other notable deficiencies of exist-

ing software include limited abilities to incorporate spatio-temporal environmental or

individual covariates on parameters, biased (or directed) movements in response to at-
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tractive or repulsive forces (e.g. McClintock et al. 2012; Langrock et al. 2014), cyclical

(e.g. daily, seasonal) and other more complicated behavioral patterns, or constraints

on parameters.

To address these deficiencies in existing software, we introduce a new user-friendly

R package, momentuHMM (Maximum likelihood analysis Of animal MovemENT behavior

Using multivariate Hidden Markov Models), intended for practitioners wishing to im-

plement more flexible and realistic (multivariate) HMM analyses of animal movement

while accounting for common challenges associated with telemetry data. Features for

multivariate HMM analyses in momentuHMM include: 1) tools for data pre-processing

and visualization; 2) user-specified probability distributions for an unlimited number of

data streams and latent behavior states; 3) biased and correlated random walk move-

ment models, including “activity centers” associated with attractive or repulsive forces

(e.g. McClintock et al. 2012); 4) user-specified design matrices and constraints for co-

variate modelling of state transition probability and probability distribution parameters

using linear model formulas familiar to most R users; 5) multiple imputation methods

that account for observation error attributable to measurement error and temporally-

irregular or missing data (Hooten et al. 2017; McClintock 2017); 6) seamless integration

of spatio-temporal environmental covariate data (e.g., wind direction, forest cover, sea

ice concentration) using the raster package (Hijmans 2016b); 7) cosinor (e.g. Cornelis-

sen 2014) and spline regression formulas for cyclical and other complicated behavioral

patterns; 8) model checking and selection; and 9) data simulation capabilities for study

design, power analyses and assessing model performance, including simulation of loca-

tion data subject to temporal irregularity and/or measurement error

In the following tutorial, we demonstrate some of the capabilities of momentuHMM

using real-world examples, including an example of periodic cycles in African elephant

movement, a 3-state (“resting”, “foraging”, “transit”) northern fur seal example in-

corporating auxiliary dive activity data (McClintock et al. 2014), a loggerhead turtle

example relating “foraging” and “transit” movements to ocean surface currents, a 5-

state grey seal example incorporating biased movements toward haul-out and foraging

locations (McClintock et al. 2012), a 4-state (“outbound”, “searching”, “foraging”, “in-

bound”) southern elephant seal example with biased movements toward and away from

a colony (Michelot et al. 2017), and a 3-state (“resting”, “foraging”, “transit”) harbour

seal example using population-level constraints on movement parameters (McClintock
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et al. 2013). Using simulated data, we also demonstrate how the group dynamic model

of Langrock et al. (2014) can be implemented using momentuHMM. This brief tutorial

includes workflows for data formatting, model specification, model fitting, and diagnos-

tics. While many of the features of momentuHMM were motivated by animal movement

data, the package can be used for analyzing any type of data that is amenable to

(multivariate) HMMs. Additional information, including help files, data, examples,

and package usage is available by downloading the momentuHMM package from CRAN

(cran.r-project.org) or Github (github.com/bmcclintock/momentuHMM). This ar-

ticle describes momentuHMM version 1.4.1.

2 momentuHMM overview

Before delving into some of the finer details, we will first provide an overview of the

main features and functions of the package. While space is limited in this tutorial,

further details on implementation can be found in the package’s documentation and

vignette. The workhorse functions of momentuHMM are listed in Table 1. Usage of sev-

eral of these functions (e.g. fitHMM, prepData, simData) is deliberately very similar

to equivalent functions in moveHMM (Michelot et al. 2016) , but the momentuHMM argu-

ments for these functions have been generalized and expanded to accommodate a more

flexible framework for data pre-processing, model specification, parameterization, and

simulation. R users already familiar with moveHMM will therefore likely find it easy to

immediately begin using momentuHMM.

One of the key features of momentuHMM is the ability to include an unlimited number

of HMM data streams (e.g. step length, turning angle, dive activity, heart rate) aris-

ing from a broad range of commonly used probability distributions (e.g. beta, gamma,

normal, Poisson, von Mises, Weibull). Any of the parameters of the probability dis-

tributions used for the observed data can be modelled as a function of environmental

and individual covariates using link functions (Table 2). For any given “natural scale”

(or “real scale”) probability distribution parameter θ, all of the link functions (g) in

momentuHMM are of the general form g(θ) = Xθβθ, where Xθ is the T ×K design matrix

(composed of K covariates) and βθ is the correponding K-vector of “working scale”

(or “beta scale”) parameters for θ. For example, suppose step length is assumed to

have a gamma distribution, lt | St = s ∼ gamma(µs, σs). In momentuHMM, the natural
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Table 1. Workhorse functions for the R package momentuHMM.

Function Description

crawlMerge Merge crawlWrap output with additional data streams or covariates
crawlWrap Fit crawl models and predict temporally-regular locations
fitHMM Fit a (multivariate) HMM to the data
MIfitHMM Fit (multivariate) HMMs to multiple imputation data
MIpool Pool momentuHMM model results across multiple imputations
plot.crwData Plot crawlWrap output
plot.miSum Plot summaries of multiple imputation momentuHMM models
plot.momentuHMM Plot summaries of momentuHMM models
plot.momentuHMMData Plot summaries of selected data streams and covariates
plotPR Plot time series, qq-plots and sample ACFs of pseudo-residuals
plotSat Plot locations on satellite image
plotSpatialCov Plot locations on raster image
plotStates Plot the (Viterbi-)decoded states and state probabilities
prepData Pre-process data streams and covariates
pseudoRes Calculate pseudo-residuals for momentuHMM models
simData Simulate data from a (multivariate) HMM
stateProbs State probabilities for each time step
viterbi Most likely state sequence (using the Viterbi algorithm)
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scale parameters for the gamma distribution are the (state-dependent) step length mean

(µs > 0) and standard deviation (σs > 0). Because both of these parameters must be

positive, the log link function is a natural choice for modelling these parameters as a

function of covariates, e.g., log(µ) = Xµβµ and log(σ) = Xσβσ.

The state transition probabilities (Γ(t)) and initial distribution (δ(0)) can also be

modelled as functions of covariates, using a multinomial logit link, as described e.g. by

Michelot et al. (2016). Permissable R classes for covariates include numeric, integer,

or factor. Factors can be particularly useful for specifying models with individual-

or group-level (e.g. sex or age class) effects on state transition and probability dis-

tribution parameters. Spatio-temporal covariates can also be of classes rasterLayer,

rasterStack, or rasterBrick (Hijmans 2016b), in which case momentuHMM automati-

cally extracts the appropriate covariate values from the raster based on the time and

location of each observation (see example in section 3.3).

2.1 Data preparation and visualization

For temporally-regular location data with negligible measurement error, the prepData

function is used to create a momentuHMMData object that can be used for data visual-

ization and further analysis. The arguments for prepData include:

• data A data frame with T + 1 rows including optionally a field ‘ID’ (identifiers

for different individuals), coordinates from which step length (‘step’) and turning

angle (‘angle’) data streams are to be calculated, any additional data streams,

and any covariates identified in the covNames and angleCovs arguments. Alter-

vatively, data can be a crwData object returned by crawlWrap.

• type Coordinate type; ‘UTM’ if easting-northing or ‘LL’ if longitude-latitude.

• coordNames Names of the two coordinate columns in data. If coordNames=NULL

then step lengths, turning angles, and any location-based covariates (i.e., those

specified by spatialCovs, centers, centroids, and angleCovs) are not calcu-

lated.

• covNames Character vector indicating the names of any covariates in data. Any

variables in data (other than “ID”) that are not identified in covNames or angleCovs

are assumed to be data streams.
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Table 2. Data stream (z) probability distributions, natural parameters, and default link
functions for covariate modelling. Probability distributions with positive support can be
zero-inflated (with additional zero-mass parameters), while the beta distribution can be zero-
and/or one-inflated (with additional one-mass parameters). If user-specified bounds are pro-
vided, then custom link functions are used instead of the defaults (see package documentation
for further details). If both zero- and one-inflation are included, then a multinomial logit link
is used because these probabilities must sum to less than one (in this case, any user-specified
bounds for the zero- and one-inflation parameters are ignored). If circular-circular regression is
specified for the mean of angular distributions (“vm” and “wrpcauchy”), then a link function
based on Rivest et al. (2016) is used. The von Mises consensus distribution (“vmConsensus”)
is a von Mises circular-circular regression model where the concentration parameter depends
on the level of agreement among short-term directional persistence and angular covariates.
Users seeking additional probability distributions are encouraged to contact the authors.

Distribution Support Parameters Link function1

Bernoulli (“bern”) zt ∈ {0, 1} prob ∈ (0, 1) logit
Beta (“beta”) zt ∈ (0, 1) shape1 > 0 log

shape2 > 0 log
zero-mass ∈ (0, 1) logit
one-mass ∈ (0, 1) logit

Exponential (“exp”) zt > 0 rate > 0 log
zero-mass ∈ (0, 1) logit

Gamma (“gamma”) zt > 0 mean > 0 log
sd > 0 log
zero-mass ∈ (0, 1) logit

Log normal (“lnorm”) zt > 0 location ∈ IR identity
scale > 0 log
zero-mass ∈ (0, 1) logit

Normal (“norm”) zt ∈ IR mean ∈ IR identity
sd > 0 log

Poisson (“pois”) zt ∈ {0, 1, . . .} lambda > 0 log
Von Mises (“vm”) zt ∈ (−π, π] mean ∈ (−π, π] tan(mean/2)

concentration > 0 log
Von Mises (“vmConsensus”) zt ∈ (−π, π] mean ∈ (−π, π] Rivest et al. (2016)

kappa > 0 log
Weibull (“weibull”) zt > 0 shape > 0 log

scale > 0 log
zero-mass ∈ (0, 1) logit

Wrapped Cauchy (“wrpcauchy”) zt ∈ (−π, π] mean ∈ (−π, π] tan(mean/2)
concentration ∈ (0, 1) logit

1Link functions (g) relate natural scale parameters (θ) to a T ×K design matrix (X) and K−vector
of working scale parameters (β ∈ R

K) such that g(θ) = Xβ.
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• spatialCovs List of Raster-class objects (Hijmans 2016b) containing spatio-

temporally referenced covariates. Covariates specified by spatialCovs are ex-

tracted from the raster layer(s) based on the location data. Raster stacks may

also be included, in which case the appropriate z values (e.g. time, date) must

also be included in data.

• centers 2-column matrix providing the coordinates for any activity centers (e.g.,

potential centers of attraction or repulsion) from which distance and angle covari-

ates will be calculated based on the location data and returned in the momentuHMMData

object.

• centroids List where each element is a data frame containing the x-coordinates

(’x’), y-coordinates (’y’), and times for a centroid (i.e., a dynamic activity center

for which the coordinates can change over time) from which distance and an-

gle covariates will be calculated based on the location data and returned in the

momentuHMMData object.

• angleCovs Character vector indicating the names of any circular-circular regres-

sion angular covariates in data or spatialCovs that need conversion from stan-

dard direction (in radians relative to the x-axis) to turning angle (relative to

previous movement direction).

Summary plots of the momentuHMMData object returned by prepData can be created

for any data stream or covariate using the generic plot function.

If location data are temporally-irregular or subject to measurement error, then they

are not suitable for prepData. In this case, momentuHMM can be used to perform a

2-stage multiple imputation approach (McClintock 2017). We discuss this pragmatic

approach to incorporating uncertainty attributable to observation error and temporal

irreglarity into multivariate HMM analyses in section 2.4.

2.2 HMM specification and fitting

Once a momentuHMMData object has been created using prepData, then the data are

ready to be passed to the generalized multivariate HMM-fitting function fitHMM. There

are many different options for specifying HMMs using fitHMM, so here we will only

focus on several of the most important and useful features (further details of all fitHMM
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arguments are in the package documentation). The bare essentials of fitHMM include

the arguments:

• data A momentuHMMData object

• nbStates Number of latent states (N)

• dist A named list indicating the probability distributions of the data streams.

• estAngleMean An optional named list indicating whether or not to estimate the

angle mean for data streams with angular distributions (e.g. turning angle). If

not estimated (the default), the angle mean is fixed to 0.

• formula Regression formula for the transition probability covariates

• stationary Logical indicating whether or not the initial distribution is considered

equal to the stationary distribution (must be FALSE if formula includes covariates)

• Par0 A named list containing vectors of starting values for the state-dependent

probability distribution parameters of each data stream

These seven arguments are all that are needed in order to fit the HMMs currently

supported in moveHMM (Michelot et al. 2016). For example, here is how the analysis of

15 “wild haggis” tracks described in Michelot et al. (2016) would be implemented using

momentuHMM:

library(momentuHMM)

### Load raw data

rawHaggis<-read.csv("rawHaggises.csv")

### Process data

processedHaggis<-prepData(data=rawHaggis,covNames=c("slope","temp"))

### Fit HMM

# initial step distribution natural scale parameters

stepPar0 <- c(1,5,0.5,3) # (mu_1,mu_2,sd_1,sd_2)

# initial angle distribution natural scale parameters

anglePar0 <- c(0,0,1,8) # (mean_1,mean_2,concentration_1,concentration_2)

fitHaggis <- fitHMM(data = processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),

Par0 = list(step = stepPar0, angle = anglePar0),
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formula = ~ slope + I(slope^2),

estAngleMean = list(angle=TRUE))

Note that many of the arguments in fitHMM are lists, with each element of the

list corresponding to a data stream. The list names provided in dist, Par0, and

estAngleMean (e.g. ‘step’ and ‘angle’) must therefore have a corresponding column

in data with the same name. Additional data streams can be added to the model by

simply adding the additional elements to these list arguments (see example in section

3.2).

As seen above, the formula argument can include many of the functions and op-

erators commonly used to construct terms in R linear model formulas (e.g. a*b, a:b,

cos(a)). The formulaDelta argument can be similarly used to specify covariate mod-

els for the initial distribution. Unique to momentuHMM, the formula argument can

also be used to specify transition probability matrix models that incorporate cyclical

patterns (using the cosinor special function; see example in section 3.1), splines for

explaining other more complicated patterns (e.g., bs and ns functions in the R base

package splines), and factor variables (e.g., formula=~ID for individual-level effects).

By default the formula argument applies to all state transition probabilities, but the

special functions state, toState, and betaCol allow for state- and parameter-specific

formulas to be specified (see example in section 3.4). While betaCol allows a formula

to be specified for a specific transition (e.g. state 3 → 1), state and toState allow a

formula to be specified for all transitions from (e.g. 3 → 1, 3 → 2) and to (e.g. state

1 → 3, 2 → 3) specific states, respectively. Specific state transition probabilities can

also be fixed to zero (or any other value) using the fixPar argument, which can be

useful for incorporating more behavioral realism. For example, fixPar can be used

to prohibit or enforce switching from one particular state to another (possibly as a

function of spatio-temporal covariates).

Similar to the formula argument for state transition probability modelling, it is

through the DM argument of fitHMM that models are specified for the state-dependent

probability distribution parameters for each data stream. DM is a list argument contain-

ing an element for each data stream, but each element itself is also a list specifying the

design matrix formulas for each parameter. For example, the following fits the exact

same wild haggis model as above, but employs a user-specified (intercept-only) design
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matrix for the step length data stream:

stepDM <- list(mean = ~1, sd = ~1)

### Fit HMM using user-specified DM

fitHaggisDM <- fitHMM(data = processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),

DM = list(step = stepDM),

Par0 = list(step = log(stepPar0), angle = anglePar0),

formula = ~ slope + I(slope^2),

estAngleMean = list(angle=TRUE))

Note that when DM is specified for a data stream, the initial parameter values (Par0)

for that data stream now correspond to columns of the resulting design matrix and must

be on the working scale instead of the natural scale. In this case, because the log link

is used for the natural parameters of the gamma distribution, Par0$step was specified

on the log scale. The functions getPar0 and getParDM are designed to assist users

in the specification of design matrices and corresponding initial values on the working

scale for any given model (see package documentation for further details). DM formulas

are just as flexible as the formula argument and, in addition to common linear model

formula functions and operators, can also include cyclical cosinor models, splines, factor

variables, and state-specific probability distribution parameter formulas (see examples

in sections 3.3 and 3.4). As with the state transition probabilities, working parameters

for probability distributions can also be fixed to user-specified values using the fixPar

argument.

Specification of design matrices using DM is not limited to formulas. Alternatively,

“pseudo-design” matrices can be specified, using an R matrix with rows corresponding

to the natural parameters and columns corresponding to the working parameters. The

elements in the matrix may be numeric or character strings containing model formula

terms (see examples in sections 3.2 and 3.4). Using a pseudo-design matrix for step

length, the following is yet another way to implement the exact same wild haggis model:

stepDMp <- matrix(c(1,0,0,0,

0,1,0,0,

0,0,1,0,
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0,0,0,1),4,4,byrow=TRUE)

rownames(stepDMp) <- c("mean_1","mean_2","sd_1","sd_2")

colnames(stepDMp) <- c("mean_1:(Intercept)","mean_2:(Intercept)",

"sd_1:(Intercept)","sd_2:(Intercept)")

### Fit HMM using user-specified DM

fitHaggisDMp <- fitHMM(data = processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),

DM = list(step = stepDMp),

Par0 = list(step = log(stepPar0), angle = anglePar0),

formula = ~ slope + I(slope^2),

estAngleMean = list(angle=TRUE))

(note that column and rownames for pseudo-design matrices are not required but can

be useful). Pseudo-design matrices allow for the sharing of common working param-

eters (such as intercept terms) among natural scale parameters, and this can be used

to constrain natural scale parameters (e.g., µ1 ≤ µ2) when used in tandem with the

workBounds argument (see section 3.7). This is particularly useful for preventing state

label switching when repeatedly fitting the same HMM using multiple imputation meth-

ods (see section 2.4).

2.3 Circular-circular regression model for the angle mean

Another noteworthy fitHMM argument, circularAngleMean, is a list argument that

enables users to specify circular-circular regression models for the mean (µ) parameter

of angular distributions, such as the wrapped Cauchy and von Mises, instead of circular-

linear models based on the tangent link function (Table 2). When circularAngleMean

is specified as TRUE for any given angular data stream (e.g. turning angle), then a

special link function based on Rivest et al. (2016) is used:

µ = atan2(sin(Xµ)βµ, 1 + cos(Xµ)βµ), (2)

where Xµ is a T ×K matrix composed of the turning angles between K angular covari-

ates (e.g., wind direction, sea surface current direction) and the bearing of movement

during the previous time step; that is, each element

xt,k = atan2(sin(rt,k − bt−1), cos(rt,k − bt−1)) (3)
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for angular covariate rt,k and k = 1, . . . , K (note that prepData and MIfitHMM calculate

Xµ based on the angleCovs, centers, or centroids arguments so users need not

bother). Because this link function is designed for turning angles, a turning angle of

0 is provided as the reference angle (hence the “1+” preceeding the cosine term in

Eq. 2). Thus as a trade-off between biased and correlated movements, the working

parameters (βµ) for the expected turning angle at time t weight the attractive (or

repulsive) strengths of the angular covariates relative to directional persistence. When

all βµ = 0, the model reduces to a correlated random walk, but an increasingly biased

random walk results as βµ gets larger (or smaller). Many interesting hypotheses about

animal movmement can be addressed using circular-circular regression on movement

direction, including the effects of wind, sea surface currents (see example in section

3.3), and centers of attraction or repulsion (see example in section 3.4).

The special function angleStrength can be included in DM formulas or pseudo-

design matrices in order to model the circular-circular regression angle mean as a func-

tion of the relative strength (or importance) of angular covariates (Rivest et al. 2016):

µ = atan2((Zµ ◦ sin(Xµ))βµ, 1 + (Zµ ◦ cos(Xµ))βµ), (4)

where Zµ is a T × K matrix of positive real covariates (e.g. wind speed, sea surface

current speed) and ◦ is the Hadamard (i.e. element-wise) product.

Also based on Rivest et al. (2016), the von Mises consensus distribution is a special

von Mises circular-circular regression model where the concentration parameter (ρ)

depends on the level of agreement among short-term directional persistence (i.e. moving

forward) and the angular covariates:

ρ = κ

√

[

(Zµ ◦ sin(Xµ))βµ

]2
+
[

1 + (Zµ ◦ cos(Xµ))βµ

]2
. (5)

Note that the von Mises consensus distribution is parameterized in terms of µ and κ

(see Table 2), but momentuHMM returns and plots real parameter estimates in terms of

µ and ρ. When all βµ are non-negative, then the minimum and maximum values for

ρ are κ|1−min(Zµβµ)| and κ
[

1 + max(Zµβµ)
]

, respectively. In the consensus model,

κ can be interpreted as the concentration towards a turning angle of zero (i.e. moving

forward) when the angular covariate components perfectly cancel out. See section 3.3

for example code using angleStrength and the von Mises consensus (“vmConsensus”)
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distribution.

2.4 Multiple imputation

When location data are temporally-irregular or subject to measurement error, then

they are not suitable for standard maximum-likelihood HMM analyses based on the

forward algorithm (Eq. 1). In this case, momentuHMM can be used to perform the 2-

stage multiple imputation approach of McClintock (2017). The basic concept is to

first employ a single-state (i.e., N = 1) movement model that is relatively easy to fit

but can accommodate location measurement error and temporally-irregular or missing

observations (e.g. Johnson et al. 2008). The second stage involves repeatedly fitting the

desired HMM to m temporally-regular realizations of the position process drawn from

the model output of the first stage. Data streams or covariates that are dependent

on location (e.g., step length, turning angle, habitat type, snow depth, sea surface

temperature) will of course vary among the m realizations of the position process, and

the pooled inferences across the HMM analyses therefore reflect location uncertainty.

There are three primary functions (MIfitHMM, MIpool, and crawlWrap) for per-

forming multiple imputation HMM analyses in momentuHMM, and all rely on parallel

processing to speed up computations. crawlWrap is a wrapper function for fitting the

continuous-time correlated random walk (CTCRW) model of Johnson et al. (2008) to

one or more tracks (subject to location measurement error and/or temporal irregular-

ity) and then predicting temporally-regular tracks of the user’s choosing (e.g. 15 min,

hourly, daily) based on the CTCRW model output. crawlWrap returns a crwData ob-

ject that can be used to draw m realization of the position process within the MIfitHMM

function. MIfitHMM is essentially a wrapper function for fitHMM that repeatedly fits

the same user-specified HMM to m imputed data sets and stores the output from each

of the m model fits. If a crwData object is provided, then MIfitHMM will first draw

m imputations based on the crwData output and then fit the specified HMM to each

imputed data set. If users wish to use a movement model other than the CTCRW to

account for measurement error and temporal irregularity (e.g. Calabrese et al. 2016;

Gurarie et al. 2017), or if other observation error processes (e.g. missing data) are to

be accounted for in the imputation step, MIfitHMM can also be used for analysis of a list

of m momentuHMMData objects that were imputed by the user. Based on the m model

fits, the MIpool function calculates pooled estimates, standard errors, and confidence
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intervals for the working scale parameters, natural scale parameters (based on trans-

formations of the pooled working parameters and mean or user-specified values for any

covariates), state sequences, state probabilities, and activity budgets (i.e. the propor-

tion of the T times step assigned to each state) using standard multiple imputation

formulae (Rubin & Schenker 1986; McClintock 2017). MIpool can be called separately

or within MIfitHMM (using the poolEstimates argument), and the function returns a

miSum object containing the pooled output across all imputatons. See sections 3.2, 3.3,

3.4, and 3.7 for example HMM analyses that use multiple imputation to account for

location measurement error and temporally irregularity.

2.5 Model visualization and diagnostics

The generic plot functions for momentuHMMmodels (plot.momentuHMM and plot.miSum)

plot the data stream histograms along with their corresponding estimated probability

distributions, the estimated natural parameters and state transition probabilities as

a function of any covariates included in the model, and the tracks of all individuals

(color-coded by the most likely state sequence). By default, the probability distribu-

tions are plotted based on the means of any covariate values, but user-specified covari-

ate values for the plots can be provided using the covs argument. When the argument

plotCI=TRUE, then confidence intervals for the natural parameters and state transition

probabilities are also plotted. Confidence intervals are calculated from the working

parameter estimates based on the delta method and finite-difference approximations of

the first derivative for the transformation using the numDeriv::grad function (Gilbert

& Varadhan 2016). For multiple imputation analyses (plot.miSum), all plots are based

on the pooled parameter estimates and the means of any covariates (if not provided

by the covs argument) across each imputation. Using the argument errorEllipse,

plot.miSum will include estimated location error ellipses in the plots of individual

tracks. The functions plotSat, plotSpatialCov, and plotStates (Table 1) provide

further methods for visualizing model results.

Diagnostic tools include the calculation and plotting of pseudo-residuals (Zucchini

et al. 2016) using the pseudoRes and plotPR functions, respectively. For discrete

distributions (e.g. Bernoulli, Poisson), a continuity adjustment is used for calculating

pseudo-residuals. Akaike’s Information Criterion can be calculated for one or more

models using the AIC.momentuHMM function.
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2.6 Simulation

The function simData can be used to simulate multivariate HMM data from scratch

or based on the estimated parameters of existing momentuHMM or miSum models. The

simData arguments are very similar to those used for model specification in fitHMM (e.g.,

dist, DM) and data preparation in prepData (e.g., spatialCovs, centers), but they

include additonal arguments, lambda and errorEllipse, for simulating location data

subject to temporal irregularity and measurement error, respectively. The spatialCovs

argument allows for rasters of spatio-temporal covariate values to be utilized in simu-

lation models, while the centers argument allows activity centers to be incorporated.

Thus simData can be used to simulate more ecologically-realistic tracks (potentially

subject to observation error) that can be useful for study design, power analyses, and

assessing model performance. Goodness-of-fit can also be investigated by drawing sim-

ulated data sets from a fitted model and comparing them to observed properties of the

data (Morales et al. 2004).

3 Examples

We will now demonstrate some of the capabilities of momentuHMM using real telemetry

data. These examples are intended for demonstration purposes only, and we do not

claim these example analyses represent improvements relative to previous or alterna-

tive analyses for these data sets. While only some of the key workflow elements are

included here, complete R code and further details for these analyses are available in

the “vignettes” source directory.

3.1 African elephant

As our first example, we use an African elephant (Loxodonta africana) bull track de-

scribed in Wall et al. (2014) and publicly available from the movebank.org data repos-

itory.

We can load the data from the URL (this requires an Internet connection):

URL <- paste0("https://www.datarepository.movebank.org/bitstream/handle/",

"10255/move.373/Elliptical%20Time-Density%20Model%20%28Wall%",

"20et%20al.%202014%29%20African%20Elephant%20Dataset%20%",
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"28Source-Save%20the%20Elephants%29.csv")

rawData <- read.csv(url(URL))

The data set contains two tracks; for this analysis, we only consider the first one.

In addition to hourly locations, the tag also collected external temperature data. We

subset the data frame to keep only the relevant rows and columns:

# select and rename relevant columns

rawData <- rawData[,c(11,3,4,5,6)]

colnames(rawData) <- c("ID","time","lon","lat","temp")

# only keep first track

rawData <- subset(rawData,ID==unique(ID)[1])

The data now has the following columns:

head(rawData)

## ID time lon lat temp

## 1 Salif Keita 2008-03-22 17:00:00.000 -2.160167 15.65350 38

## 2 Salif Keita 2008-03-22 18:00:00.000 -2.160075 15.65452 35

## 3 Salif Keita 2008-03-22 19:00:00.000 -2.159902 15.65451 32

## 4 Salif Keita 2008-03-22 20:00:00.000 -2.159435 15.65489 30

## 5 Salif Keita 2008-03-22 21:00:00.000 -2.158113 15.65512 29

## 6 Salif Keita 2008-03-22 22:00:00.000 -2.157848 15.65461 28

Location measurement error is negligible for these terrestrial GPS data, although

about 1% of the hourly observations collected between 22 March 2008 and 30 Septem-

ber 2010 are missing. Instead of simply ignoring these missing data, we can employ

crawlWrap to predict the missing locations based on the CTCRW model of Johnson

et al. (2008) prior to conducting our HMM analysis.

To use crawlWrap, we convert times from factors to POSIX, and project the observed

locations to UTM coordinates:

# convert times from factors to POSIX

rawData$time <- as.POSIXct(rawData$time,tz="GMT")

# project to UTM coordinates using package rgdal

library(rgdal)
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llcoord <- SpatialPoints(rawData[,3:4],

proj4string=CRS("+proj=longlat +datum=WGS84"))

utmcoord <- spTransform(llcoord,CRS("+proj=utm +zone=30 ellps=WGS84"))

# add UTM locations to data frame

rawData$x <- attr(utmcoord,"coords")[,1]

rawData$y <- attr(utmcoord,"coords")[,2]

Then, we call crawlWrap to fit a CTCRW model and predict hourly locations:

# initial parameters for crawl fit

inits <- list(a = c(rawData$x[1],0,rawData$y[1],0),

P = diag(c(5000^2, 10*3600^2, 5000^2, 10*3600^2)))

# fit crawl model

crwOut <- crawlWrap(obsData=rawData, timeStep="hour", initial.state=inits,

theta=c(4,-10), fixPar=c(NA,NA))

Here the desired time step is specified by the timeStep argument, and the initial.state,

theta, and fixPar arguments are the same as for crawl::crwMLE (Johnson 2017). For

the choice of initial parameters in crawlWrap, we refer the reader to the documentation

of the package crawl, in particular crawl::crwMLE and crawl::crwPredict. We now

have a complete set of temporally-regular location data.

Autocorrelation function (ACF) estimates suggest there are 24-hour cycles in the

step length data, and this presents an opportunity to demonstrate the use of the

cosinor function for incorporating cyclical behavior in model parameters using momentuHMM.

We create a momentuHMMData object, and the 24-hour cosinor model covariate:

# create momentuHMMData object from crwData object

elephantData <- prepData(data=crwOut, covNames="temp")

# add cosinor covariate based on hour of day

elephantData$hour <- as.integer(strftime(elephantData$time, format = "%H", tz="GMT"))

As seen here, the function prepData can also be used for pre-processing the best

predicted track data from crawlWrap output. The 24-hour cosinor covariate (“hour”)

is simply a set of integers (0, 1, . . . , 23) indicating the hour of day for each observation.

The ACF plot of the step lengths, shown in Figure 1, was obtained with:
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acf(elephantData$step[!is.na(elephantData$step)],lag.max=300)

Our aim is to fit a 2-state HMM to the elephant track that includes temperature

effects on the turning angle concentration parameters and cycling temperature effects

(with a 24-hour periodicity) on the step length and state transition probability pa-

rameters. Complex models such as this can require many parameters, and it can be

challenging to choose good starting parameter values for the optimization. Here, we

take an incremental approach, starting from a simpler model with no covariates. In

momentuHMM, the function getPar0 extracts initial parameters from a fitted (nested)

HMM, given arguments for the more complex model.

For the covariate-free 2-state model, six initial parameters need to be chosen: for

each state, the mean and standard deviation of the gamma distribution of step lengths,

and the concentration of the wrapped Cauchy distribution of turning angles. Look-

ing at the histograms of the step lengths and the turning angles (e.g. output by

plot(elephantData)) is often useful to choose good starting parameter values.

# label states

stateNames <- c("encamped","exploratory")

# distributions for observation processes

dist = list(step = "gamma", angle = "wrpcauchy")

# initial parameters

Par0_m1 <- list(step=c(100,500,100,200),angle=c(0.3,0.7))

# fit model

m1 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = Par0_m1,

estAngleMean = list(angle=FALSE), stateNames = stateNames)

To ensure convergence, we could also use the argument retryFits to specify the

number of attempts to minimize the negative log-likelihood based on random pertur-

bations of the parameter estimates at the current minimum.

We can build on complexity, by including the temperature and time of day as

covariates in the state transition probabilities. We use the function getPar0 to extract

the new starting parameter values.
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# formula for transition probabilities

formula <- ~ temp * cosinor(hour, period = 24)

# initial parameters (obtained from nested model m1)

Par0_m2 <- getPar0(model=m1, formula=formula)

# fit model

m2 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = Par0_m2$Par,

beta0=Par0_m2$beta, stateNames = stateNames, formula=formula)

The special function cosinor(hour, period = 24) internally creates the cosinor

model covariates, cos(2π×hour/period) and sin(2π×hour/period), and includes both

terms (plus interactions with “temp”) in the fitted model.

Finally, we can fit the more complex model, including the effect of temperature and

time of day on the parameters of the state-dependent distributions of steps and angles.

# formulas for parameters of state-dependent observation distributions

DM <- list(step = list(mean = ~ temp * cosinor(hour, period = 24),

sd = ~ temp * cosinor(hour, period = 24)),

angle = list(concentration = ~ temp))

# initial parameters (obtained from nested model m2)

Par0_m3 <- getPar0(model=m2, formula=formula, DM=DM)

# fit model

m3 <- fitHMM(data = elephantData, nbStates = 2, dist = dist, Par0 = Par0_m3$Par,

beta0 = Par0_m3$beta, DM = DM, stateNames = stateNames,

formula = formula)

The above model m3 identifed a state of slow undirected movement (“encamped”),

and a state of faster and more directed movement (“exploratory”) (Figure 1). For a

fitted model, the function viterbi computes the most likely state sequence:

# decode most likely state sequence

states <- viterbi(m3)

# derive percentage of time spent in each state

table(states)/nrow(elephantData)
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Here, about 74% of the steps were attributed to the “encamped” state, and 26%

were attributed to the “exploratory” state.

We can use AIC(m1,m2,m3) to compare the three fitted models in terms of AIC;

here, m3 is overwhelmingly supported by the AIC when compared to alternative models

with fewer covariates.

The model can be visualized with the generic function plot, which was used for the

plots shown in Figure 2, and the decoded track in Figure 1.

plot(m3, plotCI = TRUE, covs = data.frame(hour=12))

Interestingly, this model suggests step lengths and directional persistence for the

“encamped” state decreased as temperature increased, step lengths for both states

tended to decrease in the late evening and early morning, and transition probabilities

from the “encamped” to “exploratory” state decreased as temperature increased (Figure

2).

Model fit can be assessed using the pseudo-residuals, with the functions pseudoRes

and plotPR. The residual ACF plot shown in Figure 1 was produced by:

# compute pseudo-residuals for the steps and the angles

pr <- pseudoRes(m3)

# plot the ACF of step pseudo-residuals

acf(pr$stepRes[!is.na(pr$stepRes)],lag.max = 300)

Autocorrelation function plots of the pseudo-residuals indicate this model explained

much of the periodicity in step length, although there does still appear to be some room

for improvement.

3.2 Northern fur seal

In our second example, we use the northern fur seal (Callorhinus ursinus) example from

McClintock et al. (2014) to demonstrate the use of additional data streams for distin-

guishing behaviors with similar horizontal trajectories in a multivariate HMM. The data

consist of 241 temporally-irregular Fastloc GPS locations obtained during a foraging trip

of a nursing female near the Pribilof Islands of Alaska, USA, from 10-17 October 2007.

The tag included time-depth recording capabilities, and the dive activity data were
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Figure 1. Plot of the elephant track produced using the ‘plotSat’ function (top-left panel),
autocorrelation function (ACF) plot of the corresponding step length data (top-right panel),
plot of the Viterbi-decoded state sequence for the 2-state (“encamped” and “exploratory”)
model generated using the generic ‘plot’ function (bottom-left panel), and the step length
pseudo-residual ACF plot for this model using the ‘plotPR’ function (bottom-right panel).
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Figure 2. Selected plots for the 2-state (“encamped” and “exploratory”) African elephant
example generated using the generic ’plot’ function. Top panels present histograms of the step
length (top-left) and turning angle (top-right) data along with the estimated state-dependent
probability distributions based on the mean temperature (temp = 29.7 degrees celsius) at
12:00 GMT (hour = 12). Middle panels present estimates (and 95% confidence intervals)
for the step length mean parameter of the “encamped” state as a function of temperature
and hour of day. Bottom-left panel presents estimates for the turning angle concentration
parameter of the “encamped” state as a function of temperature. Bottom-right panel presents
estimated state transition probabilities (1 = “encamped”, 2 = “exploratory”) as a function
of temperature at 12:00 GMT.
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summarized as the number of foraging dives over T = 228 temporally-regular 1 hr time

steps. To fit the N = 3 state (1=“resting”, 2=“foraging”, 3=“transit”) of McClintock

et al. (2014) using momentuHMM, we first used crawlWrap to predict temporally-regular

locations at 1 hr time steps assuming a bivariate normal measurement error model and

merged the results with the foraging dive data using the crawlMerge function. Then

multiple imputation was used to account for location measurement error by repeatedly

fitting the HMM to nSims realizations of the position process using MIfitHMM:

nbStates <- 3

stateNames <- c("resting", "foraging", "transit")

dist <- list(step = "gamma", angle = "wrpcauchy", dive = "pois")

Par0 <- getParDM(nbStates = nbStates, dist = dist,

Par = Par, DM = DM, workBounds = workBounds,

estAngleMean = list(angle = FALSE))

Fixpar <- list(dive = c(-100, NA, NA))

nfsFits <- MIfitHMM(crwOut, nSims = 100, nbStates = nbStates, dist = dist,

Par0 = Par0, DM = DM, workBounds = workBounds,

estAngleMean = list(angle = FALSE),

fixPar = fixPar, retryFits = 30,

stateNames=stateNames)

plot(nfsFits)

Here we specified a gamma distribution for step length (‘step’), wrapped Cauchy dis-

tribution for turning angle (‘angle’), and Poisson distribution for the number of foraging

dives (‘dive’). The function getParDM was used to organize the starting values for the

data stream working parameters (Par0) in the correct format based on DM, workBounds,

and estimates of the natural parameters (Par) from McClintock et al. (2014). The DM

and workBounds arguments were specified to avoid label switching among the nSims

imputed data model fits and enforce similar state-dependent probability distribution

constraints as McClintock et al. (2014); for example, constraining the Poisson rate pa-

rameters such that the “foraging” state tends to have higher numbers of foraging dives

than the “transit” state (λ2 > λ3; see Eq. 10 in section 3.7 for more details on parameter

constraints using DM in conjunction with the userBounds and workBounds arguments).

To prohibit foraging dives for the “resting” state, we used the fixPar argument to

effectively fix the Poisson rate parameter to zero on the natural scale (i.e. λ1 ≈ 0). To

help deal with the problem of convergence to local maxima, the retryFits argument

allows users to specify the number of times to attempt to re-fit each model using random
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perturbations of the parameter estimates as the starting values for optimization.

The results are very similar to those of the discrete-time model of McClintock et al.

(2014), with periods of foraging often followed by resting (Figure 3). The “activ-

ity budgets” (i.e. the proportion of time steps allocated to each state) calculated by

MIpool based on the estimated state sequences for each imputation were 0.31 (95% CI:

0.23−0.4) for “resting”, 0.28 (95% CI: 0.23−0.34) for “foraging”, and 0.41 (95% CI:

0.31−0.51) for “transit”.

3.3 Loggerhead turtle

For our third example, we demonstrate how to model movement direction and step

length as a function of angular covariates using hitherto unpublished loggerhead turtle

(Caretta caretta) data for a captive-raised juvenile released in 2012 on the coast of North

Carolina, USA. The data consist of 165 temporally-irregular Argos locations subject

to measurement error and rasters of daily ocean surface currents collected between 20

November and 19 December 2012. Assuming a gamma distribution for step length (lt)

and a wrapped Cauchy distribution for turning angle (φt), we model the mean step

length parameter (µl
t) as a function of ocean surface current speed (wt) and direction

(rt) relative to the bearing of movement (bt):

µl
t = exp(βl

0 + βl
1wt cos(bt − rt)), (6)

and the turning angle mean parameter (µφ
t ) as a trade-off between short-term directional

persistence and bias in the direction of ocean surface currents using the circular-circular

regression link function:

µφ
t = atan2(sin(dt)β

φ, 1 + cos(dt)β
φ), (7)

where dt = atan2(sin(rt − bt−1), cos(rt − bt−1)).

We wish to fit a 2-state HMM to the turtle data, with a “foraging” state unaffected

by currents and a “transit” state potentially influenced by ocean surface currents as in

Eqs. 6 and 7. We used crawlWrap to predict T = 350 temporally-regular locations at 2

hr time steps assuming a bivariate normal measurement error model that accounts for

the Argos location quality class (i.e. 3,2,1,0,A,B) of each observation. We then again

used multiple imputation to account for location uncertainty by repeatedly fitting the

28



step

D
en

si
ty

0 5000 10000 15000

0.
00

00
0

0.
00

01
0

0.
00

02
0

ID NFSF0907

resting
foraging
transit
Total

angle (radians)
D

en
si

ty

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

−π −π 2 0 π 2 π

ID NFSF0907

resting
foraging
transit
Total

dive

D
en

si
ty

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ID NFSF0907

resting
foraging
transit
Total

●●●●●●●●
●
●
●
●
●
●

●
●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●●●●●●

●
●

●
●

●
●●●●
●

●

●
●

●
●

●●
●●●●●

●●●●
●●

●
●●●

●●●●
●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●

●●
●

●
●

●
● ●

●
●

●
● ● ●

●
●

●
●

●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●
●
●

●

●

●

●

●
●
●●

−250000 −150000 −50000 0 50000

0
50

00
0

15
00

00
25

00
00

x

y

ID NFSF0907

resting
foraging
transit

Figure 3. Plots of the northern fur seal example results generated using the generic ‘plot’
function. The estimated probability distributions for step length (top-left panel), turning
angle (top-right panel), and number of foraging dives (bottom-left panel) for the 3-state
(“resting”, “foraging”, and “transit”) model are plotted along with histograms of these data
streams. The temporally-regular predicted locations (and 95% ellipsoidal confidence bands)
and estimated states are plotted in the bottom-right panel. All estimates are pooled across
multiple imputations of the position process and thus reflect uncertainty attributable to lo-
cation measurement error and temporally-irregular observations.
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HMM to nSims realizations of the position process using MIfitHMM. We first draw nSims

realizations of the position process and extract the corresponding spatial covariates

from the raster bricks for ocean surface current speed (“speedBrick”) and direction

(“dirBrick”) using MIfitHMM with fit=FALSE:

miTurtleData <- MIfitHMM(crwOut, nSims = 100, fit=FALSE,

spatialCovs = list(w = speedBrick, d = dirBrick, r = dirBrick),

angleCovs = "d")

When the fit argument is FALSE, MIfitHMM returns a list of length nSims composed

of momentuHMMData objects (miData). For convenience and ease of interpretation, we

manually added an additional covariate (angle osc = cos(bt − rt)) to each of the im-

puted data sets and fitted the 2-state HMM using Eqs. 6 and 7 for state 2 (“transit”):

nbStates<-2

dist <- list(step = "gamma", angle = "wrpcauchy")

DM <- list(step = list(mean = ~state2(w:angle_osc), sd = ~1),

angle = list(mean = ~state2(d), concentration= ~1))

turtleFits <- MIfitHMM(miTurtleData$miData, nbStates = nbStates, dist = dist,

Par0 = Par0, DM = DM,

estAngleMean = list(angle = TRUE),

circularAngleMean = list(angle = TRUE))

plot(turtleFits, plotCI = TRUE, covs = data.frame(angle_osc = cos(0)))

Note that the state2 special function in DM indicates the covariate formulas are

specific to state 2 (“transit”) and the circularAngleMean argument indicates that

circular-circular regression link function is to be used on the mean turning angle pa-

rameter as in Eq. 7.

For the “transit” state, pooled parameter estimates indicated step lengths increased

with ocean surface current speed and as the bearing of movement aligned with ocean

surface current direction (βl
1 = 0.39, 95% CI: 0.12 − 0.65; Figure 4). The estimated

wrapped Cauchy distribution for turning angle had mean angles (µφ
t ) biased towards the

direction of ocean surface currents for each time step (βφ = 0.26, 95% CI: 0.01− 0.51),

with concentration parameter ρφ2 = 0.86 (95% CI: 0.8−0.92) indicating turning angles

were concentrated at µφ
t . Thus movement during the “transit” state appears to strongly

follow ocean surface currents (mean angle osc = 0.87, SD = 0.22), while movement
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during the “foraging” state exhibited shorter step lengths (µl
1 = 3066m, 95% CI: 2148−

3984) perpendicular to ocean surface currents (mean angle osc = 0.07, SD = 0.27),

with some directional persistence (ρφ1 = 0.48, 95% CI: 0.34 − 0.62). The turtle spent

0.57 (95% CI: 0.48−0.65) of the 2 hr time steps in the “foraging” state and 0.43 (95%

CI: 0.35−0.52) of time steps in the “transit” state as it travelled northeast along a

predominant current until it (presumably) found an attractive foraging patch (Figure

4).

It may often make more sense to weight angular covariates (such as ocean sur-

face current direction) by their relative strength or importance. For example, weak

ocean surface currents may be less likely to influence movement direction than strong

ocean surface currents. This could easily be included in our turtle model using the

angleStrength function in DM:

DM$angle = list(mean = ~state2(angleStrength(d, strength = w)),

concentration= ~1))

which would yield the following model for the “transit” state mean angle parameter:

µφ
t = atan2(wt sin(dt)β

φ, 1 + wt cos(dt)β
φ). (8)

Still another option would be to use the von Mises consensus model, where the

concentration parameter would now depend on the level of agreement between short-

term directional persistence (i.e. going forward) and ocean surface currents:

dist$angle = "vmConsensus"

DM$angle = list(mean = ~state2(angleStrength(d, strength = w)),

kappa = ~1)

which would yield the following model for the “transit” state concentration parameter:

ρφt = κ
√

[wt sin(dt)βφ]2 + [1 + wt cos(dt)βφ]2. (9)

3.4 Grey seal

For our next example, we perform a similar analysis of a grey seal (Halichoerus grypus)

track that was originally conducted by McClintock et al. (2012) using Bayesian methods

and (computationally-intensive) Markov chain Monte Carlo. The data consist of 1045
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Figure 4. Selected results from the loggerhead turtle example. Top panels include esti-
mates and 95% confidence intervals for the mean step length parameter as a function of
ocean surface current speed (w) when ocean surface current direction (rt) is the same as
the bearing (bt) of movement (i.e. angle osc = cos(bt − rt) = 1; top-left panel), mean
step length parameter as a function of angle osc at the mean ocean surface current speed
(w = 0.46 m/s; top-middle panel), and mean turning angle parameter as a function of
dt = atan2(sin(rt − bt−1), cos(rt − bt−1)) (top-right panel). Bottom panel plots the pooled
track, 95% error ellipse confidence bands, and state (orange = “foraging”, blue = “transit”)
estimates based on multiple imputations of the position process relative to ocean surface
current speed (m/s) and direction on 2 December 2012.
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temporally-irregular Fastloc GPS locations collected in the North Sea between 9 April

and 11 August 2008. Because the seal repeatedly visited the same haul-out and foraging

locations, it provides a nice example for demonstrating how to implement biased move-

ments relative to activity centers using momentuHMM. McClintock et al. (2012) fitted a

5-state model to these data that included three center of attraction states, with move-

ment biased towards two haul-out sites (“Abertay” and “Farne Islands”) and a foraging

area (“Dogger Bank”), and two “exploratory” states (”low speed”, ”high speed”) that

were unassociated with an activity center. After using crawlWrap to predict T = 1515

temporally-regular locations at 2 hr time steps including a bivariate normal measure-

ment error model, we can perform a very similar analysis to McClintock et al. (2012) in

momentuHMM by using the centers argument and state-specific functions for the prob-

ability distribution parameters. A cluster analysis on the observed locations using the

R package dtwclust (Sarda-Espinosa 2017) identified three centroids with coordinates

that were nearly identical to the three activity centers (“Abertay”, “Farne Islands”,

and “Dogger Bank”) identified by McClintock et al. (2012). We use these coordinates

to derive covariates relative to the activity centers when drawing nSims realizations of

the position process:

crwSim <- MIfitHMM(crwOut, nSims = 100, fit=FALSE,

center = centers)

Specifying the centers argument results in the calculation of two covariates for

each activity center: the distance (with ‘.dist’ suffix) and angle (with ‘.angle’ suffix)

from each location at time t. These covariates can then be used to model parameters

as a function of the distance and angle to activity centers for each time step:

dist <- list(step = "weibull", angle = "wrpcauchy")

distFormula <- ~state1(I(Abertay.dist>2500)) + state2(I(Farne.dist>2500))

+ state3(I(Dogger.dist>15000))

angleFormula <- ~state1(Abertay.angle) + state2(Farne.angle)

+ state3(Dogger.angle)

stepDM <- list(shape = distFormula, scale = distFormula)

angleDM <- list(mean = angleFormula, concentration = distFormula)

DM <- list(step = stepDM, angle = angleDM)

Similar to McClintock et al. (2012), we assume a Weibull distribution for step length

where both the shape and scale parameter depend on the distance from the location at
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time t to each activity center. For the activity centers on land (“Abertay” and “Farne”),

we allow the (state-dependent) step length parameters to change when the seal is beyond

2500m of the haulout. For the “Dogger” activity center, we allow the parameters to

change when the seal is beyond 15000m of this (presumably) foraging area. We thus

allow the movement behavior to change within these activity center states upon entering

or leaving the vicinity of these sites. We assume a wrapped Cauchy distribution for

turning angle with (state-dependent) mean angle derived from the direction to each

activity center at time t, and the concentration parameter is modeled similarly to the

step length parameters. For the two “exploratory” states, we assumed they are simple

random walks unaffected by proximity to activity centers. To complete our model

specification, we use the knownStates argument to assign the seal to the corresponding

activity center state whenever it was within the 2500m (haul-out area) or 15000m

(foraging area) thresholds for each imputed data set:

greySealFits <- MIfitHMM(miDat, nSims = 400,

nbStates = 5, dist = dist,

Par0 = Par0, beta0 = beta0, fixPar = fixPar,

formula = distFormula,

estAngleMean = list(angle=TRUE),

circularAngleMean = list(angle=TRUE),

DM = DM, knownStates = knownStates)

plot(greySealFits, plotCI = TRUE)

As with the step length and turning angle concentration parameters, the state tran-

sition probabilities are also allowed to change as a function of distance to activity centers

(as specified by the formula argument). The starting values (Par0 and beta0) for each

imputation were extracted from a single HMM fitted to the best predicted locations

from crawlWrap, and fixPar was used to remove short-term directional persistence

(and thus formulate the model as a mixture of biased and simple random walks).

Estimated activity budgets for the 5 states of this multiple imputation HMM were

0.28 (0.28 − 0.29) for the “Abertay” haul-out state, 0.12 (0.11 − 0.14) for the “Farne

Islands” haul-out state, 0.37 (0.35 − 0.38) for the “Dogger Bank” foraging state, 0.09

(0.04−0.18) for a low-speed “exploratory” state, and 0.14 (0.09−0.22) for a high-speed

“exploratory” state. All three activity center states exhibited shorter step lengths and

less biased movements when within the vicinity of these targets (Figure 5). Results
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from this analysis were thus very similar to those of McClintock et al. (2012), but

this implementation required far less computation time and no custom model-fitting

algorithms.

The simData function can be used to simulate tracks from a fitted model:

greySealSim<-simData(model = greySealFits, centers = centers,

initialPosition = centers[1,],

obsPerAnimal = 1515)

A simulated track is presented along with the fitted track in Figure 6. While po-

tentially useful for study design, power analysis, and prediction, the simData function

can also be helpful in assessing goodness of fit by repeatedly drawing simulated data

sets from a fitted model and comparing them to observed properties of the data (e.g.

Morales et al. 2004).

3.5 Southern elephant seal

Here, we analyse the southern elephant seal (Mirounga leonina) data from Michelot

et al. (2017) using momentuHMM. The data set consists of 15 tracks, each encompassing

(at most) one foraging trip, starting from Kerguelen Island. We want to fit the model

described by Michelot et al. (2017), with the four following states:

1. outbound trip from the colony to the ice;

2. searching;

3. foraging;

4. inbound trip from the ice to the colony.

The data set has three columns: “ID” (track ID), “x” (longitude), and “y” (latitude):

head(tracks)

## ID x y

## 1 1 70.60946 -49.60737

## 2 1 70.82908 -50.08287

## 3 1 70.90029 -50.32835

## 4 1 70.85766 -50.54746

## 5 1 70.63792 -50.90529

## 6 1 70.48480 -50.99666
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Figure 5. Selected results from the grey seal example. Panels include estimates and 95%
confidence intervals for the “Abertay” haul-out state step length scale parameter as a function
of distance in meters (‘Abertay.dist’; top-left panel), “Abertay” haul-out state turning angle
concentration parameter as a function of distance (top-right panel), “Dogger Bank” foraging
state step length scale parameter as a function of distance (‘Dogger.dist’; bottom-left panel),
and the “Dogger Bank” foraging state turning angle concentration parameter as a function
of distance (bottom-right panel).
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Figure 6. Fitted and simulated tracks from the grey seal example. This seal tended to
move in a clockwise fashion between two haul-out locations (“Abertay” and “Farne Islands”)
and a foraging area (“Dogger Bank”) in the North Sea. Top panel plots the pooled track,
95% error ellipse confidence bands, and state estimates based on the 5-state HMM fitted to
multiple imputations of the position process. Red points indicate the locations of the three
activity centers. Black points indicate the (temporally-irregular) observed locations. Bottom
panel presents the locations and states for a track simulated from the fitted model using the
‘simData’ function.
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From the locations, we use prepData to derive the step lengths and turning angles,

as well as the distance and bearing (relative to previous movement direction as in Eq.

3) to the Kerguelen Island colony (with coordinates 70◦ longitude and -49◦ latitude):

center <- matrix(c(70,-49),nrow=1,dimnames=list("colony"))

data <- prepData(data=tracks, type="LL", centers=center)

Note that distances are in kilometers and angles are based on initial bearings (us-

ing geosphere::bearing; Hijmans 2016a) when calculated from longitude and latitude

coordinates.

3.5.1 Model 1: no covariates

We start by fitting a covariate-free 4-state correlated random walk model, which we

will use to extract starting parameter values for more complex models. We use the

argument fixPar to fix some transition probabilities to zero, following Michelot et al.

(2017). We set to NA the columns of unconstrained transition probabilities, and we fix

the intercept of the other columns to a large negative number (here −100) to set the

corresponding transition probabilities to be virtually zero (i.e. impossible transition).

As in Michelot et al. (2017), we set transition probabilities from outbound to forage,

outbound to inbound, search to outbound, forage to outbound, forage to inbound,

inbound to outbound, inbound to search, and inbound to forage to be effectively zero.

stateNames <- c("outbound","search","forage","inbound")

# initial parameters

stepPar0 <- c(25,5,1,25,10,5,3,10)

anglePar0 <- c(15,5,2,15)

# constrain transition probabilities

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100),

nrow=1)

m1 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),

Par0=list(step=stepPar0, angle=anglePar0),

fixPar=list(beta=fixbeta), stateNames = stateNames)
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3.5.2 Model 2

This model mimics the formulation of Michelot et al. (2017). We model the effect of

the distance to colony on the transition probability from outbound to search, and of

the time since departure on the transition probability from search to inbound.

# time spent since left colony

time <- NULL

for(id in unique(data$ID)) {
nbSubObs <- length(which(data$ID==id))

# approximately in months for interval = 9.6h

time <- c(time, (1:nbSubObs)/75)

}

data$time <- time

# compute time since departure and include in formula below

formula <- ~ colony.dist + time

As before, we constrain the transition probability matrix to prevent some of the

transitions (e.g. from forage to inbound, etc.). We define a 3× 12 matrix for the beta

parameters, in which each column corresponds to a transition (1 → 2, 1 → 3, 1 → 4, 2 →

1, . . . ), and each row corresponds to a covariate (intercept, distance to center, time since

departure). We set to NA the columns of unconstrained transition probabilities, and we

again fix the intercept of the other columns to a large negative number (here −100)

to set the corresponding transition probabilities to be virtually zero (i.e. impossible

transition).

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100,

NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,NA, 0, 0, 0, 0, 0, 0),

nrow=3,byrow=TRUE)

Biased random walks are used to model the movement in states 1 and 4, with

repulsion away from the colony in the outbound trip, and attraction towards the colony

in the inbound trip. For that purpose, we include ‘colony.angle’ as a covariate on the

angle mean of the von Mises distributions for turning angles in states 1 and 4.
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angleFormula <- ~ state1(colony.angle) + state4(colony.angle)

To specify the direction of the bias (away from or towards the colony), we fix the

parameters linking the mean turning angle to the direction of the colony. In state 1, we

fix the coefficient to a large negative number (e.g. -100) so that the mean direction is

away from the colony. In state 4, we fix it to a large positive number (e.g. 100) so that

the mean direction is towards the colony. Fixing these parameters to large positive (or

negative) values effectively removes the correlated random walk component of Eq. 2

for states 1 and 4. The four other parameters correspond to the angle concentrations

and should be estimated (NAs in fixPar).

fixPar <- list(angle=c(-100,100,NA,NA,NA,NA),beta=fixbeta)

Because no covariates are specified for the mean angle of state 2 (searching) and

state 3 (foraging), these states are reduced to correlated random walks with a mean

turning angle of zero (i.e. atan2(0, 1) = 0 as in Eq. 2).

We can now fit the second model with starting parameter values extracted from the

simpler model using getPar0. In fitHMM, we use the arguments estAngleMean and

circularAngleMean to indicate that the angle mean is to be estimated using circular-

circular regression.

Par0 <- getPar0(model=m1, nbStates=4,

DM=list(angle=list(mean=angleFormula, concentration=~1)),

estAngleMean=list(angle=TRUE),

circularAngleMean=list(angle=TRUE), formula=formula)

m2 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),

Par0=list(step=Par0$Par$step, angle=Par0$Par$angle),

beta0=Par0$beta, fixPar=fixPar, formula=formula,

DM=list(angle=list(mean=angleFormula, concentration=~1)),

estAngleMean=list(angle=TRUE), circularAngleMean=list(angle=TRUE),

stateNames = stateNames)

Instead of relying entirely on fixPar for parameter constraints, an equivalent model

for the transition probabilities could be specified using the special function betaCol in

formula:

40



formula <- ~ betaCol1(colony.dist) + betaCol6(time)

fixbeta <- matrix(c(NA,-100,-100,-100,NA,NA,-100,NA,-100,-100,-100,-100,

rep(NA,12),

rep(NA,12)),

nrow=3,byrow=TRUE)

fixPar <- list(angle=c(-100,100,NA,NA,NA,NA),beta=fixbeta)

Here betaCol1(colony.dist) specifies an effect of distance to colony only on the

transition from state 1 to state 2 (which corresponds to the first column of the beta

matrix) and betaCol6(time) specifies an effect of time since departure only on the

transition from state 2 to state 4 (which corresponds to the sixth column of the beta

matrix). When the special function betaCol is used, then fitHMM automatically fixes

the appropriate elements in the second (‘colony.dist’) and third (‘time’) rows of the beta

matrix to zero (without the user needing to do so manually using fixPar). However,

note that the first row (corresponding to the intercept terms) must still be manually

fixed to achieve the desired constraints on the transition probability matrix.

3.5.3 Model 3

In addition to the covariates included in model 2, we add the effect of distance to colony

on the step length and turning angle concentration parameters for states 1 and 4. We

specify the following formulas:

distFormula <- ~ state1(colony.dist) + state4(colony.dist)

stepDM <- list(mean=distFormula, sd=distFormula)

angleDM <- list(mean=angleFormula, concentration=distFormula)

The initial parameters are extracted from model 2, again using the function getPar0.

Instead of fixing the mean direction of movement like in model 2, we estimate it here as

a trade-off between short-term directional persistence and bias toward (or away) from

the colony (i.e. a biased correlated random walk as in Eq. 2).

# remove fixed angle parameters

fixPar <- list(beta=fixbeta)
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# get starting parameters from m2

Par0 <- getPar0(model=m2, nbStates=4,

DM = list(step=stepDM, angle=angleDM),

estAngleMean=list(angle=TRUE),

circularAngleMean=list(angle=TRUE),

formula=formula)

# the bias is estimated rather than fixed

Par0$Par$angle[c("mean_1:(colony.angle)","mean_4:(colony.angle)")] <- 0

m3 <- fitHMM(data=data, nbStates=4, dist=list(step="gamma",angle="vm"),

Par0=list(step=Par0$Par$step, angle=Par0$Par$angle),

beta0=Par0$beta, fixPar=fixPar, formula=formula,

DM = list(step=stepDM, angle=angleDM),

estAngleMean=list(angle=TRUE),

circularAngleMean=list(angle=TRUE),

stateNames = stateNames)

The three fitted model can be compared with AIC(m1,m2,m3), which overwhelm-

ingly supports model 3. The most likely state sequence is obtained with viterbi(m3).

Figure 7 shows a map of the state-decoded track. The estimated circular-circular re-

gression coefficients for the angle means of state 1 (outbound) and state 4 (inbound)

were −0.66 (95% CI: −0.82 − −0.5) and 0.4 (95% CI: 0.32 − 0.49), respectively, thus

indicating biased correlated random walks with repulsion away from the colony during

outbound movements and attraction towards the colony during inbound movements.

The estimated regression coefficients for the step length mean and turning angle concen-

tration parameters for states 1 and 4 suggest that step lengths decreased and turning

angles became more concentrated at the mean angle as distance to colony increased

(Figure 8)

3.6 Group dynamic animal movement

Here we demonstrate how momentuHMM can be used to simulate and fit the group dy-

namic animal movement model of Langrock et al. (2014). In group dynamic models,

groups (e.g., herds, packs, schools) are allowed to influence the movement of social

individuals. One way to accomplish this is to model individual movements as being

attracted to a group “centroid”. Depending on the system, the centroid could simply

be the location of the group center (e.g., the mathematical centroid of the group) or
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Figure 7. The 15 elephant seal tracks, colored by the most likely state sequence.

group leader (e.g., alpha wolf) at times t = 1, . . . , T . In this sense, the centroid can

be considered a dynamic activity center that changes position over time, and these

models are not necessarily limited to groups. For example, the centroid could instead

refer to predators, competitors, or human activity (in which case the centroid might be

repulsive rather than attractive!).

Dynamic activity centers can be simulated in simData using the centroids argu-

ment. Following simulation scenario A of Langrock et al. (2014), we first simulate a

group centroid as a single-state (i.e. N = 1) biased correlated random walk relative to

the origin:

dist <- list(step="gamma", angle="vm")

nbObs <- 250

Parc <- list(step = c(15,10),

angle = c(0.15,log(1)))

DMc <- list(angle=list(mean = ~center1.angle,

concentration=~1))

centroidData <- simData(nbStates=1, dist=dist, Par=Parc, DM=DMc,

circularAngleMean = list(angle = TRUE),

centers = matrix(0,1,2),
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Figure 8. Selected results from the elephant seal example. Panels include estimates and
95% confidence intervals for the “outbound” mean step length parameter (top-left panel),
“inbound” mean step length parameter (top-right panel), “outbound” turning angle concen-
tration parameter (bottom-left panel), and “inbound” turning angle concentration parameter
(bottom-right panel) as a function of distance to colony (‘colony.dist’). Distance to colony
has been standardized based on a mean of 2539 km (SD = 1021.3).
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obsPerAnimal = nbObs)

Now we can use the simulated centroid track (Fig. 9) as a dynamic activity center

and simulate the movement of a group of 20 individuals as a 2-state mixture of a biased

random walk (relative to the centroid) and a correlated random walk (independent of

the centroid):

nbAnimals <- 20

nbStates <- 2

stateNames <- c("group","solitary")

Par <- list(step = c(30,50,15,25),

angle = c(1.e+7,log(2.5),log(5)))

beta <- matrix(c(-2.944439,-1.734601),1,nbStates)

DM <- list(angle=list(mean = ~state1(centroid.angle),

concentration = ~1))

# calculate stationary distribution

gamma <- diag(nbStates)

gamma[!gamma] <- exp(beta)

gamma <- t(gamma)

gamma <- gamma/apply(gamma,1,sum)

delta <- solve(diag(nbStates) - t(gamma) + 1, rep(1, nbStates))

# draw random initial locations for each individual

initialPositions <- vector("list")

for (i in 1:nbAnimals) {
initialPositions[[i]] <- runif(2, -10, 10)

}

# create centroid data frame

cD <- data.frame(x = centroidData$x, y = centroidData$y)

groupData <- simData(nbAnimals=nbAnimals, nbStates=nbStates, dist=dist,

Par = Par, beta = beta, delta = delta, DM = DM,

circularAngleMean = list(angle = TRUE),

centroids = list(centroid = cD),

obsPerAnimal = nbObs,

initialPosition = initialPositions,
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Figure 9. Selected results from the group dynamic animal movement example. Panels include
the simulated centroid path (top-left panel), the simulated paths of 20 individuals where state
1 (“group”) includes biased movements towards the centroid and state 2 (“solitary”) is a
correlated random walk independent of the group centroid (top-right panel), and two fitted
tracks that are colored by the most likely state sequence (bottom panels).
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states = TRUE, stateNames = stateNames)

Here state 1 (“group”) has biased movements toward the centroid and state 2 (“soli-

tary”) is simply a correlated random walk independent of the group centroid (Fig. 9).

Note that despite this being a 2-state HMM, the working scale parameters for turning

angle (Par$angle) only includes 3 parameters (1 for the angle mean and 2 for the con-

centration parameters). This is because under the circular-circular regression model,

no working parameter is specified2 for the reference turning angle of zero (i.e., the com-

ponent for short-term directional persistence; see Eq. 2) and no angular covariates were

specified in the model for state 2 (“solitary”). Thus the first parameter corresponds

to the working scale parameter of the centroid.angle covariate for state 1 (“group”),

while the second and third parameters are the working scale parameters for the con-

centration parameters for states 1 and 2, respectively. In this case, the angle mean

parameter for state 1 was set at a large value (1.e+7) so as to enforce a biased random

walk (instead of a biased correlated random walk). In other words, the large value for

the biased random walk component “swamps” the correlated random walk component

in Eq. 2.

Finally, we can fit the group dynamic model using fitHMM:

Par0 <- list(step = c(30,50,15,25),

angle = c(0,log(2.5),log(5)))

groupFit <- fitHMM(groupData, nbStates=nbStates, dist=dist, Par=Par0,

DM = DM, stationary = TRUE,

estAngleMean = list(angle = TRUE),

circularAngleMean = list(angle = TRUE),

stateNames = stateNames)

3.7 Harbour seals

Here we demonstrate how more complicated parameter constraints can be implemented

using the userBounds and workBounds arguments in fitHMM and MIfitHMM. This exam-

ple is based on the harbour seal analysis of McClintock et al. (2013). Using individual-

level random effects on probability distribution parameters, McClintock et al. (2013)

2More accurately, the working parameter for the reference angle is automatically fixed to β0 = 1.
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performed a Bayesian analysis of population-level activity budgets for 3-states (“rest-

ing”, “foraging”, and “transit”). While momentuHMM cannot be used to replicate this

analysis exactly, we can perform a similar analysis in the absence of individual-level

random effects. Here we will focus on several specific parameter constraints, but the

full example code can be found in the “vignettes” source directory.

The harbour seal data consist of 17 individuals (10 male, 7 female) and, as in the

northern fur example in section 3.2, both location and dive activity data. The location

data were obtained at temporally-irregular intervals, while the dive activity data were

obtained at regular 2-hour time steps. We therefore first used crawlWrap to fit and

predict locations for all 17 tracks at 2-hour time steps and then used crawlMerge to

merge the predicted locations with the dive activity data. We then fitted several differ-

ent models assuming: 1) no individual- or sex-level effects on all parameters (i.e., the

“null” model); 2) sex-level effects on all parameters; and 3) individual-level effects on

all parameters. Based on fitHMM fits for the best predicted tracks, AIC overwhelmingly

supported the model including individual-level effects on all parameters, but for sim-

plicity we will use the model including no individual- or sex-level effects to demonstrate

how the constraints of McClintock et al. (2013) can be implemented in momentuHMM. In

addition to the lack of individual-level random effects in our example, we also depart

from McClintock et al. (2013) in our use of zero-inflation parameters to account for

steps of length zero (i.e., lt = 0) and time steps with no dive activity (i.e., ωt = 0).

Unlike McClintock et al. (2013), note that our model 3 also includes individual-level

fixed effects on the state transition probabilities.

McClintock et al. (2013) fit their 3-state model using more complicated constraints

on the probability distribution parameters than any of our previous vignette exam-

ples. In addition to relational constraints among the “resting”, “foraging”, and “tran-

sit” states similar to those used in the northern fur seal example (section 3.2), these

constraints included upper bounds for the shape and scale parameters of the Weibull

distribution for step length, a minimum value for the “transit” concentration param-

eter of the wrapped Cauchy distribution for turning angle, and bounds on the shape

parameters of the beta distribution for dive activity specifically chosen to prevent any

“bathtub” shaped distributions for the proportion of each time step spent diving below

1.5m.

Before we demonstrate how to implement these constraints, we should first provide
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more detail on exactly how the DM, userBounds, and workBounds arguments work

together in fitHMM (and MIfitHMM). While the DM argument should now be familiar, we

have thus far spent little time discussing the latter two arguments. The userBounds

argument specifies the lower and upper bounds for the natural scale parameters as a

2-column matrix. By default all working scale parameters (βθ) are bounded on the

real line, but the workBounds argument can be used to specify the lower and upper

bounds for the working scale parameters as a 2-column matrix. Specifically, momentuHMM

calculates natural scale parameters with finite bounds as

θ = (Uθ − Lθ) g
−1 (Xθβ

∗

θ) + Lθ,

where Lθ is the lower bound on the natural scale and Uθ is the upper bound on the

natural scale. Note that β∗

θ = βθ under the default values for workBounds. For natural

scale parameters with finite lower bounds and infinite upper bounds, we have

θ = g−1 (Xθβ
∗

θ) + Lθ.

When workBounds is specified, then additional link functions are used on the work-

ing scale parameters. For example, for working scale parameters with finite bounds, we

have

β∗

θ = (Uβθ
− Lβθ

) logit−1 (βθ) + Lβθ
,

where Lβθ
is the lower bound on the working scale and Uβθ

is the upper bound on the

working scale. When constraining working parameters with finite lower bounds (e.g.

zero) and infinite upper bounds, we have

β∗

θ = exp (βθ) + Lβθ
.

When constraining working parameters with infinite lower bounds and finite upper

bounds (e.g. zero), we have

β∗

θ = − (exp (−βθ)−Uβθ
) .

Although optimization within fitHMM and MIfitHMM is always performed on βθ, note

that β∗

θ (and a delta method approximation for the variance of this transformation) is

returned by CIbeta, MIpool, and print function calls.
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For the Weibull distribution parameters for step length, McClintock et al. (2013)

constrained the shape parameter as < 5 (to prevent too “peaked” distributions) and the

scale parameter less than the maximum distance a harbour seal could travel in 2 hours

at 2 m/s (i.e., bs < 14400m) for s ∈ {1 = “resting”, 2 = “foraging”, 3 = “transit”}.

They also constrained b3 ≥ b2 ≥ b1. This is easily accomplished in momentuHMM using

the DM, userBounds, and workBounds arguments:

nbStates <- 3

stateNames <- c("resting", "foraging", "transit")

dist <- list(step = "weibull", angle = "wrpcauchy", dive = "beta")

stepDM<-matrix(c(1,0,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,

0,0,0,1,1,0,0,0,0,

0,0,0,1,1,1,0,0,0,

0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,1),nrow=3*nbStates,byrow=TRUE,

dimnames=list(c(paste0("shape_",1:nbStates),

paste0("scale_",1:nbStates),

paste0("zeromass_",1:nbStates)),

c(paste0("shape_",1:nbStates,":(Intercept)"),

"scale:(Intercept)","scale_2","scale_3",

paste0("zeromass_",1:nbStates,":(Intercept)"))))

stepworkBounds<-matrix(c(rep(-Inf,4),0,0,rep(-Inf,3),

rep(Inf,ncol(stepDM))),ncol(stepDM),2)

stepBounds<-matrix(c(0,5,

0,5,

0,5,

0,14400,

0,14400,

0,14400,

0,1,

0,1,

0,1),nrow=3*nbStates,byrow=TRUE,

dimnames=list(c(paste0("shape_",1:nbStates),

paste0("scale_",1:nbStates),

paste0("zeromass_",1:nbStates))))

When included in workBounds and userBounds for the step length data stream,
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‘stepworkBounds’ and ‘stepBounds’ above constrain the parameters β∗

l,5 > 0 and β∗

l,6 > 0

such that 14400 ≥ b3 ≥ b2 ≥ b1 ≥ 0:

b1 = (14400− 0) logit−1 (βl,4) + 0

b2 = (14400− 0) logit−1 (βl,4 + exp(βl,5) + 0) + 0

b3 = (14400− 0) logit−1 (βl,4 + exp(βl,5) + 0 + exp(βl,6) + 0) + 0.

In order to force the “transit” state to have strong directional persistence, McClin-

tock et al. (2013) constrained the concentration parameter ρ3 > 0.75. In the absence

of relational constraints, userBounds could be used to constrain ρ3 > 0.75. However,

because we also wish to constrain ρ2 ≤ ρ3, we must make use of the workBounds ar-

gument. We can constrain ρ3 ≥ 0.75, ρ2 ≤ ρ3, and ρs ≤ 0.95 (s ∈ {1, 2, 3}) using the

following combination of DM, userBounds, and workBounds arguments:

angleDM <- matrix(c(1,0,0,

0,1,1,

0,1,0),nrow=nbStates,byrow=TRUE,

dimnames=list(paste0("concentration_",1:nbStates),

c("concentration_1:(Intercept)",

"concentration_23:(Intercept)",

"concentration_2")))

angleBounds <- matrix(c(0,0.95,

0,0.95,

0,0.95),nrow=nbStates,byrow=TRUE,

dimnames=list(paste0("concentration_",1:nbStates)))

transitcons <- boot::logit((0.75 - angleBounds[3,1])

/(angleBounds[3,2] - angleBounds[3,1]))

angleworkBounds <- matrix(c(-Inf,transitcons,-Inf,

rep(Inf,2),0),ncol(angleDM),2)

When ‘angleworkBounds’ and ‘angleBounds’ are respectively included in workBounds

and userBounds for the turning angle data stream, this yields

ρ1 = (0.95− 0) logit−1 (βφ,1) + 0

ρ2 = (0.95− 0) logit−1 (exp(βφ,2) + 1.32− (exp(−βφ,3)− 0)) + 0

ρ3 = (0.95− 0) logit−1 (exp(βφ,2) + 1.32) + 0.

Here we constrained ρs ≤ 0.95 to avoid numerical convergence issues that can arise with
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sparse data sets as ρs → 1. Also note that when using workBounds to enforce a specific

constraint on the natural scale, userBounds should not also include the corresponding

natural parameter constraint(s). For example, because we are constraining ρ3 ≥ 0.75

with the workBounds argument, we did not also include a 0.75 lower bound for ρ3 in

‘angleBounds’ above.

For the beta distribution of the dive activity data, McClintock et al. (2013) con-

strained the shape1 (υs) and shape2 (δs) parameters as follows:

1 ≤ υ1 ≤ δ1 ≤ 10

1 ≤ δ2 ≤ υ2 ≤ 10

where υ2 = υ3 and δ2 = δ3. These constraints can be imposed using the following

combination of DM, userBounds, and workBounds arguments:

omegaDM <- matrix(c(1,0,0,0,0,0,

0,0,1,1,0,0,

0,0,1,1,0,0,

1,1,0,0,0,0,

0,0,1,0,0,0,

0,0,1,0,0,0,

0,0,0,0,1,0,

0,0,0,0,0,1,

0,0,0,0,0,1),nrow=nbStates*3,byrow=TRUE,

dimnames=list(c(paste0("shape1_",1:nbStates),

paste0("shape2_",1:nbStates),

paste0("zeromass_",1:nbStates)),

c("shape_1:(Intercept)","shape2_1",

"shape_2:(Intercept)","shape1_2",

"zeromass_1:(Intercept)",

"zeromass_23:(Intercept)")))

omegaworkBounds <- matrix(c(-Inf,0,-Inf,0,-Inf,-Inf,

rep(Inf,ncol(omegaDM))),ncol(omegaDM),2)

omegaBounds <- matrix(c(1,10,

1,10,

1,10,

1,10,

1,10,

1,10,

0,1,

0,1,
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0,1),nrow=nbStates*3,byrow=TRUE,

dimnames=list(c(paste0("shape1_",1:nbStates),

paste0("shape2_",1:nbStates),

paste0("zeromass_",1:nbStates))))

Lastly, we wish to impose some biologically-meaningful constraints on the zero-

inflation parameters using the fixPar argument. Because we would never expect a

harbour seal in the “transit” state to exhibit a step length of zero, it makes sense to

constrain the zero-mass step length parameter for the “transit” state to (effectively)

zero. Similarly, we would not expect a harbour seal in the “foraging” or “transit” states

to exhibit no dive activity, and it therefore also makes sense to constrain the zero-mass

dive activity parameters for these states to zero. We can accomplish this using the

following fixPar argument:

fixPar <- list(step=c(rep(NA,nbStates*2),NA,NA,boot::logit(1.e-100)),

omega=c(rep(NA,4),NA,boot::logit(1.e-100)))

Putting it all together, we can fit our constrained model assuming no individual- or

sex-level effects using MIfitHMM:

DM <- list(step = stepDM, angle = angleDM, omega = omegaDM)

userBounds <- list(step = stepBounds, angle = angleBounds, omega = omegaBounds)

workBounds <- list(step = stepworkBounds, angle = angleworkBounds, omega = omegaworkBounds)

hsFits <- MIfitHMM(crwOut, nSims = 30,

nbStates = nbStates, dist = dist, Par0 = Par0,

DM = DM, workBounds = workBounds,

userBounds = userBounds, workBounds = workBounds,

fixPar = fixPar, stateNames = stateNames)

As was mentioned earlier, we found overwhelming AIC support for the individual-

level effects model relative to the sex-level effects models and the null model above.

While our best supported momentuHMM model included individual-level fixed effects,

the estimated tracks (Fig. 10) and inferences about population-level activity budgets

were similar to the individual-level random effects model of McClintock et al. (2013).

Estimated activity budgets for the males were 0.36 (95% CI: 0.35− 0.37) for “resting”,

0.53 (95% CI: 0.52− 0.55) for “foraging”, and 0.11 (95% CI: 0.1− 0.12) for “transit”.

Activity budgets for females were 0.3 (95% CI: 0.29 − 0.3) for “resting”, 0.61 (95%
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CI: 0.6 − 0.62) for “foraging”, and 0.09 (95% CI: 0.08 − 0.1) for “transit”. We found

considerable individual variation in the state transition probabilities (Fig. 11), and

when comparing the estimated activity budgets of our analysis with those of McClintock

et al. (2013), we suspect the more noticeable differences between the time spent in

the “resting” and “foraging” states for males is attributable to our having included

individual-level effects on the state transition probabilities.

Figure 10. Two harbour seal tracks, colored by the most likely state sequence.

4 Discussion

Here we have introduced version 1.4.1 of the R package momentuHMM and demonstrated

some of its capabilities for conducting multivariate HMM analyses with animal loca-

tion, auxiliary biotelemetry, and environmental data. The package allows for fitting

(and simulating from) a suite of biased and correlated random walk movement pro-

cess models (e.g. McClintock et al. 2012), can be used for an unlimited number of
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Figure 11. Estimated individual-level state transition probabilities for the harbour seal
example.
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data streams and latent behavior states, includes multiple imputation methods to ac-

count for measurement error, temporal irregularity, and other forms of missing data

that would otherwise be prohibitive to maximum likelihood analysis, and integrates

seamlessly with rasters to facilitate spatio-temporal covariate modelling. Because the

package incorporates biased random walks, it can also be used to implement group

dynamic models (e.g. Langrock et al. 2014). The package therefore greatly expands on

available software and facilitates the incorporation of more ecological and behavioral

realism for hypothesis-driven analyses of animal movement that account for many of

the challenges commonly associated with telemetry data. While many of the features

of momentuHMM were motivated by animal movement data, we note that the package

is not limited to location data and can be used for analyzing any type of data that is

amenable to (multivariate) HMMs.

Model fitting in momentuHMM is relatively fast because the forward algorithm (Eq.

1) is coded in C++. Because multiple imputations are completely parallelizable, with

sufficient processing power computation times for analyses that account for measure-

ment error, temporal irregularity, or other forms of missing data need not be longer

than that required to fit a single HMM. However, computation times will necessarily be

longer as the number of states and/or parameters increase. For example, momentuHMM

required about 1 hr to fit a single HMM with N = 6 states, seven data streams, and

T = 7414 time steps (McClintock 2017).

As in any maximum likelihood analysis based on numerical optimization, compu-

tation times will also depend on the starting values (Par0 and beta0). Specifying

“good” starting values is arguably the most challenging aspect of model fitting in

momentuHMM, particularly for the working scale coefficients when using covariates. The

getPar, getPar0, getParDM, and checkPar0 functions are designed to help with the

specification of starting values, and the retryFits argument in crawlWrap, fitHMM,

and MIfitHMM will re-optimize based on random perturbations of the parameters to help

explore the likelihood surface and diagnose convergence to local maxima. Optimization

for the circular-linear regression link function (tan(mean/2); see Table 2) in particular

can be prone to local minima, so users are encouraged to explore a range of starting

values when fitting these models.

While momentuHMM includes functions for drawing realizations of the position pro-

cess based on the CTCRW model of Johnson et al. (2008), this is but one of many
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methods for performing the first stage of multiple imputation. Realizations of the po-

sition process from any movement model that accounts for measurement error and/or

temporal irregularity (e.g. Calabrese et al. 2016; Gurarie et al. 2017) could be passed to

MIfitHMM for HMM-type analyses in the second stage. Multiple imputation methods

also need not be limited to these telemetry error scenarios. For example, conventional

missing data could also be imputed using standard techniques (Rubin & Schenker 1986),

thereby allowing the investigation of non-random mechanisms for missingness that can

be problematic if left unaccounted for in HMMs.

There remain many potential avenues for refining and extending the capabilities of

momentuHMM. Computation times could likely be improved by further optimizing the R

and C++ code for speed. Notable extensions include hidden semi-Markov models and

random effects on data stream probability distribution and state transition probabil-

itiy parameters (Zucchini et al. 2016). We would also like to incorporate additional

parameters for change-point thresholds and the locations of activity centers instead

of requiring that they be pre-specified (and potentially compared using AIC or other

model selection criteria) as in grey seal example. Lastly, it is relatively straightforward

to add additional probability distributions, and we are pleased to do so upon request.

Practitioners interested in additional features for momentuHMM are encouraged to contact

the authors.
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