
with the design parameter x. We then plot the main effect of x on the three GPs. This example
also illustrates how the main effect can be referred to by name instead of by number. The main
effects plot produced by the code is displayed in Figure (4).

> x = -5:5

> z1 = 10 - 5 * x + rnorm(length(x))

> z2 = 4 - 5 * x + rnorm(length(x))

> z3 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1, z2, z3), param.names = "x")

> plotMainEffects(fitMulti, effects = "x", graphStyle = 1)

−4 −2 0 2 4

−
20

−
10

0
10

20
30

Main Effect of x for multiple gp’s

param value

pr
ed

ic
te

d
ou

tp
ut

−4 −2 0 2 4

−
20

−
10

0
10

20
30

Main Effect of x for multiple gp’s

param value

pr
ed

ic
te

d
ou

tp
ut

−4 −2 0 2 4

−
20

−
10

0
10

20
30

Main Effect of x for multiple gp’s

param value

pr
ed

ic
te

d
ou

tp
ut

Legend

gp: 1
gp: 2
gp: 3

Figure 4: Main effects of the parameter x on a Gaussian process list that models three responses.

5 Multivariate Output and Dimension Reduction

5.1 Background

For multivariate or functional output, singular value decomposition can be used to reduce the
dimensionality of the response (Heitmann et al., 2006). Let [z]i,j , i = 1, . . . , k, j = 1, . . . , m be
a matrix of m multivariate responses, where column j of the matrix contains the k-dimensional

9

output of the response corresponding to the input parameter θ(j). Also let r = min(k, m). Using
singular value decomposition,

[z]i,j = [UkxrDrxrV
′

rxm]i,j =

r∑

p=1

λp {αp}i
{wp(θ)}j

, (10)

where λp is the pth singluar value, αp is the pth column of U , and wp(θ) is the pth row of V ′.
We will refer to the jth column of V ′, which contains the elements {wp(θ)}j , p = 1, . . . , r, as
a vector of principle component weights corresponding to the jth observation. The output z is
approximated by keeping the l < r most important principle component weights, corresponding to
the l largest singular values. For a response matrix z as described above, mlegp fits independent
Gaussian processes to the most important principle component weights. The number of principle
component weights to be kept is specified through the argument ‘PC.num’; alternatively, setting
the argument ‘PC.percent’ will keep the most important principle component weights that account
for ‘PC.percent’ of the variation in the response.

5.2 Examples

5.2.1 Basics: Modeling functional output

The first example demonstrates the use of mlegp to fit GPs to principle component weights in order
to model functional output. The functional responses are sinusoidal, consisting of 161 points, with
a vertical offset determined by the design parameter p. We first create the functional responses
and plot them. This output is displayed in Figure (5).

> x = seq(-4, 4, by = 0.05)

> p = 1:10

> y = matrix(0, length(p), length(x))

> for (i in 1:length(p)) {

+ y[i,] = sin(x) + 0.2 * i + rnorm(length(x), sd = 0.01)

+ }

> for (i in p) {

+ plot(x, y[i,], type = "l", col = i, ylim = c(min(y), max(y)))

+ par(new = TRUE)

+ }

For functional output such as this, it is possible to fit separate GPs to each dimension. How-
ever, with 161 dimensions, this is not reasonable. In the code below, we first use the function
singularValueImportance and see that the two most important principle component weights ex-
plain more than 99.99% of the variation in the response. Then, we fit the GPs to these two
principle component weights. Note that in the call to mlegp we take the transpose of the response
matrix, so that columns correspond to the functional responses.

> numPCs = 2

> singularValueImportance(t(y))[numPCs]

[1] 99.996

> fitPC = mlegp(p, t(y), PC.num = numPCs)

The GPs, which model principle component weights, can now be used to predict and analyze the
functional response, based on the UDV ′ matrix of equation (10). The UD matrix corresponding to
the principle component weights that are kept is saved as a component of the Gaussian process list
object. The R code below demonstrates use of the predict method to reconstruct (approximately)
the original functional output.

10

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

Figure 5: An example of functional responses where the design parameter determines the vertical
offset

11

> Vprime = matrix(0, numPCs, length(p))

> Vprime[1,] = predict(fitPC[[1]])

> Vprime[2,] = predict(fitPC[[2]])

> predY = fitPC$UD %*% Vprime

5.2.2 Calculating main effects

The function plotMainEffects visualizes main effects of design parameters on functional output for
GPs fit to principle component weights. This is demonstrated below, for the Gaussian processes
that were fit above. The graphical plot is displayed in Figure (6).

> plotMainEffects(fitPC, effect = 1, graphStyle = 1)

0 50 100 150

0
1

2
3

Main effect of p1

time

pr
ed

ic
te

d
ou

tp
ut

Legend (p1)

1
5.5
10

Figure 6: Main effect of p1 on functional output, based on Gaussian process modeling of the two
most important principle component weights.

5.2.3 Modeling high dimensional (and not necessarily functional) data

Although the above example involves functional output, the singular value decomposition tech-
nique can applied generally to any multi-dimensional response. One can also use mlegp to analyze
non-functional data of high-dimension, as well as multiple functional responses, by manipulating
the output of predict and calling plotMainEffects functions with ‘no.plot’= ‘TRUE’, which returns
the main effects without plotting them. In our final example, we consider two sets of functional

12

outputs: the sinusoidal response y1 and the linear response y2. Both responses depend on the
design parameter p. After combining the output vectors y1 and y2, we fit Gaussian processes to
the most important principle component weights that explain at least 99.999% of the variation in
output.

> p = 1:10

> x1 = seq(-4, 4, by = 0.05)

> x2 = 1:5

> y1 = matrix(0, length(p), length(x1))

> y2 = matrix(0, length(p), length(x2))

> for (i in 1:length(p)) {

+ y1[i,] = sin(x1) + 0.2 * p[i] + rnorm(length(x1), sd = 0.01)

+ y2[i,] = 0.1 * p[i] + x2 + rnorm(length(x2), sd = 0.01)

+ }

> y = cbind(y1, y2)

> fitPC = mlegp(p, t(y), PC.percent = 99.999)

Plotting main effects for the different types of responses is now a matter of retrieving all of
the main effects from plotMainEffects, and breaking this predicted effect into the separate main
effects for the two responses of interest. Main effects for both responses are displayed in Figure
(7).

> main = plotMainEffects(fitPC, effect = 1, no.plot = TRUE)

> preds = main$preds

> beg1 = 1

> end1 = length(x1)

> beg2 = end1 + 1

> end2 = beg2 + length(x2) - 1

> par(mfrow = c(1, 2))

> for (i in 1:dim(preds)[1]) {

+ plot(x1, preds[i, beg1:end1], ylim = c(min(preds[, beg1:end1]),

+ max(preds[, beg1:end1])), type = "l", col = i, xlab = "x1",

+ ylab = "y1", main = "main effect on y1")

+ par(new = TRUE)

+ }

> par(new = FALSE)

> for (i in 1:dim(preds)[1]) {

+ plot(x2, preds[i, beg2:end2], ylim = c(min(preds[, beg2:end2]),

+ max(preds[, beg2:end2])), type = "l", col = i, xlab = "x2",

+ ylab = "y2", main = "main effect on y2")

+ par(new = TRUE)

+ }

13

−4 −2 0 2 4

0
1

2
3

main effect on y1

x1

y1

−4 −2 0 2 4

0
1

2
3

main effect on y1

x1

y1

−4 −2 0 2 4

0
1

2
3

main effect on y1

x1

y1

1 2 3 4 5

1
2

3
4

5
6

main effect on y2

x2

y2

1 2 3 4 5

1
2

3
4

5
6

main effect on y2

x2

y2

1 2 3 4 5

1
2

3
4

5
6

main effect on y2

x2

y2

Figure 7: Main effects of the parameter p on functional responses y1 (left) and y2 (right). Values
of p are 1 (black solid lines), 5.5 (red dashed lines), and 10 (green dotted lines).

References

Heitmann, K., Higdon, D., Nakhleh, C., Habib, S., 2006. Cosmic Calibrat ion, The Astrophysical

Journal, 646, 2, L1-L4.

Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity analysis. (Chichester; New York: Wiley).

Santner, T.J., Williams, B.J., Notz, W., 2003. The Design and Analysis of Computer Experiments
(New York: Springer).

Schonlau, M. and Welch, W., 2006. Screening the Input Variables to a Comp uter Model Via
Analysis of Variance and Visualization, in Screening: Methods for Experimentation in Industry,
Drug Discovery, and Genetics. A. Dean and S. Lewis, eds. (New York: Springer).

Programming Acknowledgements

• C code for random number generation provided by Mutsuo Saito, Makoto Matsumoto and
Hiroshima University (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT)

• C code for L-BFGS algorithm provided by Naoaki Okazaki (http://www.chokkan.org/
software/liblbfgs)

14

