
mlegp: an R package for Gaussian process modeling and

sensitivity analysis

Garrett Dancik

December 26, 2007

1 mlegp: an overview

Gaussian processes (GPs) are commonly used as surrogate statistical models for predicting out-
put of computer experiments (Santner et al., 2003). Generlly, GPs are both interpolators and
smoothers of data and are effective predictors when the response surface of interest is a smooth
function of the parameter space. The package mlegp finds maximum likelihood estimates of
Gaussian processes for univariate and multi-dimensional responses, for Gaussian processes with
product exponential correlation structures; constant or linear regression mean functions; no nugget
term, constant nugget terms, or a nugget matrix that can be specified up to a multiplicative con-
stant. The latter is an extension of previous Gaussian process models and provides some flexibility
for using GPs to model heteroscedastic responses. Diagnostic plotting functions, and the sensi-
tivity analysis tools of Functional Analysis of Variance (FANOVA) decomposition, and plotting
of main and two-way factor interaction effects are implemented. Multi-dimensional output can
be modelled by fitting independent GPs to each dimension of output, or to the most important
principle component weights following singular value decomposition of the output. Plotting of
main effects for functional output is also implemented. From within R, a complete list of functions
and vignettes can be obtained by calling ‘library(help = ”mlegp”)’.

2 Gaussian process modeling and diagnostics

2.1 Gaussian processes

Let zknown =
[

z(θ(1)), . . . , z(θ(m))
]

be a vector of observed responses, where z(θ(i)) is the response

observed at the design point θ(i), the parameter vector θ(i) =
[

θ
(i)
1 , . . . , θ

(i)
p

]

, and we are interested

in predicting output z(θ(new)) at the untried parameter setting θ(new). The correlation between
any two responses (observed or unobserved) is assumed to have the (prodcut exponential) form

C(β)i,j ≡ cor
(

z(θ(i)), z(θ(j))
)

= exp

{

p
∑

k=1

(

−βk

(

θ
(i)
k − θ

(j)
k

)2
)

}

. (1)

The correlation matrix C(β) = [C(β)]i,j , and depends on the correlation parameters β = [β1, . . . , βp]
Let µ(·) be the mean function for the unconditional mean of any observation, and the mean

matrix of zknown be

M ≡
[

µ
(

θ(1)
)

, . . . , µ
(

θ(m)
)]

. (2)

The vector of observed responses, zknown, is distributed according to

zknown ∼ MV N
m

(M, σ2
GP C(β) + σ2

eI), (3)

1

where I is a k x k identity matrix, σ2
GP is the unconditional variance of an expected response and

σ2
e , the nugget term, is variance due to the stochasticity of the response (e.g., random noise). For

convenience, denote the variance-covariance matrix of zknown as

V ≡ σ2
GP C(β) + σ2

eI (4)

Also define ri = cor(z(θ(new)), z(θ(i))), following equation (1), and r = [r1, . . . , rm]
′

. Under the
GP assumption, the predictive distribution of z(θ(new)) is normal with mean

E[z(θ(new))|zknown] = µ(θ(new)) + σ2
GP r′V −1(zknown − M) (5)

and variance
V ar[z(θ(new))|zknown] = σ2

GP + σ2
e − σ4

GP r′V −1r.

For more details, see Santner et al. (2003).

2.2 Maximum likelihood estimation

We first need some additional notation. Mean functions that are constant or linear in design
parameters have the form µ(θ) = x(θ)F , where x(θ) is a row vector of regression parameters, and
F is a column vector of regression coefficients. Note that for a constant mean function, x(·) ≡
1 and F is a single value corresponding to the constant mean. The mean matrix M defined in
equation (2) has the form M = XF , where the ith row of X is equal to x(θ(i)).

Let us also rewrite the variance-covariance matrix V from equation (4) to be

V ≡ σ2
GP(C(β) + σ2

e∗I) ≡ σ2
GPW (β, σ2

e∗), (6)

where σ2
e∗ = σ2

e/σ2
GP, and the matrix W depends on the correlation parameters β = [β1, . . . , βp]

and the scaled nugget term σ2
e∗.

When the matrix W is fully specified, maximum likelihood estimates of the mean regression
parameters and σ2

GP exist in closed form and are

F̂ = (XT W−1X)−1XT W−1zknown (7)

and

σ̂2
GP =

1

m
(zknown − M̂)T W−1(zknown − M̂), (8)

where M̂ = XF̂ .
The package mlegp uses numerical methods in conjunction with equations (7) and (8) to find

maximum likelihood estimates of all GP parameters.

2.3 Diagnostics

The cross-validated prediction z-i(θ
(i)) is the predicted response obtained using equation (5) after

removing all responses at design point θ(i) from zknown. Note that it is possible for multiple θ(i)’s,
for various i’s, to be identical, in which case all corresponding observations are removed. The
cross-validated residual for this observations is

z(θ(i)) − z-i(θ
(i))

se(z-i(θ(i))
, (9)

where se(z−i(θ
(i))) is the standard error of z-i(θ

(i))

2

2.4 What does mlegp do?

The package mlegp extends the Gaussian process model of (3) by allowing the user to replace the
identity matrix I in equations (3) and (4) with a diagonal matrix N , thereby specifying the nugget

matrix up to a multiplicative constant. This extension provides some flexibility for modeling
heteroscedastic responses. The user also has the option of fitting a GP with a constant mean (i.e.,
µ(θ) ≡ µ0) or mean functions that are linear regression functions in all elements of θ (plus an
intercept term). For multi-dimensional output, the user has the option of fitting independent GPs
to each dimension (i.e., each type of observation), or to the most important principle component
weights following singular value decomposition. The latter is ideal for data rich situations, such
as functional output, and is explained further in Section (5). GP accuracy is analyzed through
diagnostic plots of cross-validated predictions and cross-validated residuals, which were described
in Section (2.3). Sensitivity analysis tools including FANOVA decomposition, and plotting of main
and two-way factor interactions are described in Section (4).

3 Examples: Gaussian process fitting and diagnostics

3.1 A simple example

The function mlegp is used to fit Gaussian processes (GPs) to a vector or matrix of responses
observed under the same set of design parameters. Data can be input from within R or read from
a text file using the command read.table (type ’?read.table’ from within R for more information).
The example below shows how to fit multiple Gaussian processes to multiple outputs z1 and z2 for
the design matrix x. Diagnostic plots are obtained using the plot function, which graphs observed
values vs. cross-validated predicted values for each GP. The plot obtained from the code below
appears in Figure (1).

> x = -5:5

> z1 = 10 - 5 * x + rnorm(length(x))

> z2 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1, z2))

> plot(fitMulti)

After the GPs are fit, simply typing the name of the object (e.g., fitMulti) will return basic
summary information.

> fitMulti

num GPs: 2

Total observations (per GP): 11

Dimensions: 1

We can also access individual Gaussian processes by specifying the index. The code below, for ex-
amples, displays summary information for the first Gaussian process, including diagnostic statistics
of cross-validated root mean squared error (CV RMSE) and cross-validated root max squared error
(CV RMaxSE), where squared error corresponds to the squared difference between cross-validated
predictions and observed values.

> fitMulti[[1]]

Total observations = 11

Dimensions = 1

mu = 10.49854

sig2: 191.4983

nugget: 0

3

−10 0 10 20 30

−
10

10
30

gp # 1

observed

pr
ed

ic
te

d

−6 −4 −2 0 2 4 6

−
6

0
4

gp # 2

observed

pr
ed

ic
te

d

Figure 1: Gaussian process diagnostic plots. Open circles, cross-validated predictions; solid black
lines, observed values; solid red lines, confidence bands corresponding to cross-validated predictions
± standard deviation.

4

Correlation parameters:

beta a

1 0.2030227 2

Log likelihood = -33.34552

CV RMSE: 0.8953252

CV RMaxSE: 3.509689

3.2 Heteroscedastic responses and the nugget matrix

In cases where the responses are heteroscedastic (have non-constant variance), it is possible to
specify the diagonal nugget matrix up to a multiplicative constant. Future versions of mlegp will
allow more complicated forms of the nugget matrix; currently, we recommend specifying the nugget
matrix based on sample variances for replicate design points (which is easily obtained using the
function varPerReps), or the use of prior information. In the example below, we demonstrate how
to fit a Gaussian process with a constant nugget term and a Gaussian process where the diagonal
nugget matrix is specified up to a multiplicative constant. First we generate heteroscedastic data,
with variance related to the design parameter.

> x = seq(1, 10, by = 0.15)

> z = sin(x) + rnorm(length(x), sd = 0.2 * x)

By default, a nugget term is automatically estimated if there are replicates in the design matrix,
and is not estimated otherwise. However, one can estimate a nugget term by specifying an initial
scalar value for the ‘nugget’ argument during the call to mlegp. This is done in the code below.

> fit1 = mlegp(x, z, nugget = mean((0.2 * x)^2))

Alternatively, one can set ‘nugget’ equal to a vector corresponding to the diagonal nugget matrix
as described in Section (2.4). This allows the nugget matrix to be specified up to a multiplicative
constant, and is demonstrated in the code below.

> fit2 = mlegp(x, z, nugget = (0.2 * x)^2)

It is also possible to force a constant nugget term or the diagonal elements of the nugget matrix
to have a minimum value by setting the argument ‘min.nugget’. This is especially important when
the responses are noiseless, and is useful insituations when the variance-covariance matrix of the
GP is not stable.

Finally, we demonstrate the advantage of using a diagonal nugget matrix by comparing the
correlations between the true response and predictions from each fitted GP, and providing diag-
nostic plots, whose output is displayed in Figure 2). Importantly, predictions are biased when a
constant nugget term is assumed.

> cor(sin(x), predict(fit1))

[,1]

[1,] 0.8251486

> cor(sin(x), predict(fit2))

[,1]

[1,] 0.937518

5

> par(mfrow = c(1, 2))

> plot(fit1, type = 1)

> lines(sin(x), sin(x), col = "blue")

> plot(fit2, type = 1)

> lines(sin(x), sin(x), col = "blue")

−1 0 1 2

−
2

−
1

0
1

2

observed

pr
ed

ic
te

d

−1 0 1 2

−
1

0
1

2

observed

pr
ed

ic
te

d

Figure 2: Diagnostic plots for Gaussian processes with constant nugget term (left) and diago-
nal nugget matrix (right). Open circles, cross-validated predictions; solid black lines, observed
response; solid blue line, true (noiseless) response; solid red lines, confidence bands.

4 Sensitivity Analysis

4.1 Background

For a response y = f(x), where x can be multidimensional, sensitivity analysis (SA) is used to
(a) quantify the extent in which uncertainty in the response y can be attributed to uncertainty
in the design parameters x, and (b) characterize how the response changes as one or more design
parameters are varied. General SA methods can be found in Saltelli et al. (2000). We briefly
describe SA using Gaussian process models, which is described in Schonlau and Welch (2006).

For independent marginal priors on the components of θ, the total variance of the GP predictor
can be decomposed into variance contributions from main and higher order interaction effects, a
technique known as Functional Analysis of Variance (FANOVA) decomposition. The percentage

6

of the total functional variance accounted for by a particular effect provides a measure of the
importance of that effect.

The main effect of parameter θk, defined as E[z(θ)|zknown, θk], predicts output for a fixed value
of θk, averaged over the remaining parameters according to a prior (or weight function) π(θ-k)
on all components of θ except for the kth. The two-way interaction effect for parameters θk and
θl, defined as E[z(θ)|zknown, θk, θl], predicts output for jointly fixed values of θk and θl, averaged
over the remaining parameters according to a prior π(θ-k,-l). Main effects plots and contour plots
conveniently illustrate main effects and two-factor interactions.

In mlegp, we implement FANOVA decomposition and the plotting of main and two-way factor
interactions using indepedent uniform priors on all components of θ. By default, the range of each
component is taken to be the range of that component in the design matrix, but these ranges can
be overwritten via the arguments ‘lower’and ‘upper’.

4.2 Examples

4.2.1 FANOVA decomposition

The function FANOVADecomposition is used to perform FANOVA decomposition on a single
Gaussian processes, or on (a subset) of all Gaussian processes in a list. The function returns
a table that reports the % contribution of each effect to the total functional variance of the
Gaussian process predictor (or each Gaussian process predictor, in the case of a list). The code
below demonstrates the use of the FANOVADecomposition function on a Gaussian process with
two design parameters.

> x1 = kronecker(seq(0, 1, by = 0.25), rep(1, 5))

> x2 = rep(seq(0, 1, by = 0.25), 5)

> y = 4 * x1 - 2 * x2 + x1 * x2 + rnorm(length(x1), sd = 0.001)

> fit = mlegp(cbind(x1, x2), y, param.names = c("x1", "x2"))

> FANOVADecomposition(fit, verbose = F)

param % contribution

1 x1 90.1388705

2 x2 9.4930923

3 x1:x2 0.3740572

4.2.2 Graphical plots for main and interaction effects

The function plotMainEffects is a generic function for plotting multiple main effects for a single
Gaussian process; comparing a main effect across multiple Gaussian processes; and visualizing
main effects of a single parameter on functional output. The first two uses of plotMainEffects are
demonstrated below; an example of the latter can be found in Section (5).

First, we use plotMainEffects to plot the main effects for all input parameters on the Gaussian
process created above. By default, all main effects are plotted, but a subset of effects can be spec-
ified by either name or number through the argument ‘effects’. Setting ‘FANOVA = TRUE’ will
calculate, for each main effect, the percentage contribution of that effect to the total functional
variance of the GP predictor, and this will be reported in the legend. The function plotInter-

actionEffect is used to create a contour plot which visualizes interaction effects, and this is also
demonstrated below. Output from the code can be seen in Figure (3).

> par(mfrow = c(1, 2))

> plotMainEffects(fit, graphStyle = 1, FANOVA = TRUE)

> plotInteractionEffect(fit, effects = c(1, 2))

It is also possible to use plotMainEffects to compare a main effect of a single parameter across
multiple responses. We first create a Gaussian process list object that contains three GPs, each

7

0.0 0.4 0.8

−
1

0
1

2
3

param value

pr
ed

ic
te

d
ou

tp
ut

Legend

x1 (90.139)
x2 (9.493)

x1

x2

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Main and Two-Way Interaction Effect Plots. For each main effect, the percent contri-
bution of that effect to the total functional variance of the Gaussian process is also reported.

8

with the design parameter x. We then plot the main effect of x on the three GPs. This example
also illustrates how the main effect can be referred to by name instead of by number. The main
effects plot produced by the code is displayed in Figure (4).

> x = -5:5

> z1 = 10 - 5 * x + rnorm(length(x))

> z2 = 4 - 5 * x + rnorm(length(x))

> z3 = 7 * sin(x) + rnorm(length(x))

> fitMulti = mlegp(x, cbind(z1, z2, z3), param.names = "x")

> plotMainEffects(fitMulti, effects = "x", graphStyle = 1)

−4 −2 0 2 4

−
20

−
10

0
10

20
30

Main Effect of x for multiple gp’s

param value

pr
ed

ic
te

d
ou

tp
ut

−4 −2 0 2 4

−
20

−
10

0
10

20
30

Main Effect of x for multiple gp’s

param value

pr
ed

ic
te

d
ou

tp
ut

−4 −2 0 2 4

−
20

−
10

0
10

20
30

Main Effect of x for multiple gp’s

param value

pr
ed

ic
te

d
ou

tp
ut

Legend

gp: 1
gp: 2
gp: 3

Figure 4: Main effects of the parameter x on a Gaussian process list that models three responses.

5 Multivariate Output and Dimension Reduction

5.1 Background

For multivariate or functional output, singular value decomposition can be used to reduce the
dimensionality of the response (Heitmann et al., 2006). Let [z]i,j , i = 1, . . . , k, j = 1, . . . , m be
a matrix of m multivariate responses, where column j of the matrix contains the k-dimensional

9

output of the response corresponding to the input parameter θ(j). Also let r = min(k, m). Using
singular value decomposition,

[z]i,j = [UkxrDrxrV
′

rxm]i,j =

r
∑

p=1

λp {αp}i
{wp(θ)}j

, (10)

where λp is the pth singluar value, αp is the pth column of U , and wp(θ) is the pth row of V ′.
We will refer to the jth column of V ′, which contains the elements {wp(θ)}j , p = 1, . . . , r, as
a vector of principle component weights corresponding to the jth observation. The output z is
approximated by keeping the l < r most important principle component weights, corresponding to
the l largest singular values. For a response matrix z as described above, mlegp fits independent
Gaussian processes to the most important principle component weights. The number of principle
component weights to be kept is specified through the argument ‘PC.num’; alternatively, setting
the argument ‘PC.percent’ will keep the most important principle component weights that account
for ‘PC.percent’ of the variation in the response.

5.2 Examples

5.2.1 Basics: Modeling functional output

The first example demonstrates the use of mlegp to fit GPs to principle component weights in order
to model functional output. The functional responses are sinusoidal, consisting of 161 points, with
a vertical offset determined by the design parameter p. We first create the functional responses
and plot them. This output is displayed in Figure (5).

> x = seq(-4, 4, by = 0.05)

> p = 1:10

> y = matrix(0, length(p), length(x))

> for (i in 1:length(p)) {

+ y[i,] = sin(x) + 0.2 * i + rnorm(length(x), sd = 0.01)

+ }

> for (i in p) {

+ plot(x, y[i,], type = "l", col = i, ylim = c(min(y), max(y)))

+ par(new = TRUE)

+ }

For functional output such as this, it is possible to fit separate GPs to each dimension. How-
ever, with 161 dimensions, this is not reasonable. In the code below, we first use the function
singularValueImportance and see that the two most important principle component weights ex-
plain more than 99.99% of the variation in the response. Then, we fit the GPs to these two
principle component weights. Note that in the call to mlegp we take the transpose of the response
matrix, so that columns correspond to the functional responses.

> numPCs = 2

> singularValueImportance(t(y))[numPCs]

[1] 99.996

> fitPC = mlegp(p, t(y), PC.num = numPCs)

The GPs, which model principle component weights, can now be used to predict and analyze the
functional response, based on the UDV ′ matrix of equation (10). The UD matrix corresponding to
the principle component weights that are kept is saved as a component of the Gaussian process list
object. The R code below demonstrates use of the predict method to reconstruct (approximately)
the original functional output.

10

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

−4 −2 0 2 4

0
1

2
3

x

y[
i,

]

Figure 5: An example of functional responses where the design parameter determines the vertical
offset

11

> Vprime = matrix(0, numPCs, length(p))

> Vprime[1,] = predict(fitPC[[1]])

> Vprime[2,] = predict(fitPC[[2]])

> predY = fitPC$UD %*% Vprime

5.2.2 Calculating main effects

The function plotMainEffects visualizes main effects of design parameters on functional output for
GPs fit to principle component weights. This is demonstrated below, for the Gaussian processes
that were fit above. The graphical plot is displayed in Figure (6).

> plotMainEffects(fitPC, effect = 1, graphStyle = 1)

0 50 100 150

0
1

2
3

Main effect of p1

time

pr
ed

ic
te

d
ou

tp
ut

Legend (p1)

1
5.5
10

Figure 6: Main effect of p1 on functional output, based on Gaussian process modeling of the two
most important principle component weights.

5.2.3 Modeling high dimensional (and not necessarily functional) data

Although the above example involves functional output, the singular value decomposition tech-
nique can applied generally to any multi-dimensional response. One can also use mlegp to analyze
non-functional data of high-dimension, as well as multiple functional responses, by manipulating
the output of predict and calling plotMainEffects functions with ‘no.plot’= ‘TRUE’, which returns
the main effects without plotting them. In our final example, we consider two sets of functional

12

outputs: the sinusoidal response y1 and the linear response y2. Both responses depend on the
design parameter p. After combining the output vectors y1 and y2, we fit Gaussian processes to
the most important principle component weights that explain at least 99.999% of the variation in
output.

> p = 1:10

> x1 = seq(-4, 4, by = 0.05)

> x2 = 1:5

> y1 = matrix(0, length(p), length(x1))

> y2 = matrix(0, length(p), length(x2))

> for (i in 1:length(p)) {

+ y1[i,] = sin(x1) + 0.2 * p[i] + rnorm(length(x1), sd = 0.01)

+ y2[i,] = 0.1 * p[i] + x2 + rnorm(length(x2), sd = 0.01)

+ }

> y = cbind(y1, y2)

> fitPC = mlegp(p, t(y), PC.percent = 99.999)

Plotting main effects for the different types of responses is now a matter of retrieving all of
the main effects from plotMainEffects, and breaking this predicted effect into the separate main
effects for the two responses of interest. Main effects for both responses are displayed in Figure
(7).

> main = plotMainEffects(fitPC, effect = 1, no.plot = TRUE)

> preds = main$preds

> beg1 = 1

> end1 = length(x1)

> beg2 = end1 + 1

> end2 = beg2 + length(x2) - 1

> par(mfrow = c(1, 2))

> for (i in 1:dim(preds)[1]) {

+ plot(x1, preds[i, beg1:end1], ylim = c(min(preds[, beg1:end1]),

+ max(preds[, beg1:end1])), type = "l", col = i, xlab = "x1",

+ ylab = "y1", main = "main effect on y1")

+ par(new = TRUE)

+ }

> par(new = FALSE)

> for (i in 1:dim(preds)[1]) {

+ plot(x2, preds[i, beg2:end2], ylim = c(min(preds[, beg2:end2]),

+ max(preds[, beg2:end2])), type = "l", col = i, xlab = "x2",

+ ylab = "y2", main = "main effect on y2")

+ par(new = TRUE)

+ }

13

−4 −2 0 2 4

0
1

2
3

main effect on y1

x1

y1

−4 −2 0 2 4

0
1

2
3

main effect on y1

x1

y1

−4 −2 0 2 4

0
1

2
3

main effect on y1

x1

y1

1 2 3 4 5

1
2

3
4

5
6

main effect on y2

x2

y2

1 2 3 4 5

1
2

3
4

5
6

main effect on y2

x2

y2

1 2 3 4 5

1
2

3
4

5
6

main effect on y2

x2

y2

Figure 7: Main effects of the parameter p on functional responses y1 (left) and y2 (right). Values
of p are 1 (black solid lines), 5.5 (red dashed lines), and 10 (green dotted lines).

References

Heitmann, K., Higdon, D., Nakhleh, C., Habib, S., 2006. Cosmic Calibrat ion, The Astrophysical

Journal, 646, 2, L1-L4.

Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity analysis. (Chichester; New York: Wiley).

Santner, T.J., Williams, B.J., Notz, W., 2003. The Design and Analysis of Computer Experiments
(New York: Springer).

Schonlau, M. and Welch, W., 2006. Screening the Input Variables to a Comp uter Model Via
Analysis of Variance and Visualization, in Screening: Methods for Experimentation in Industry,
Drug Discovery, and Genetics. A. Dean and S. Lewis, eds. (New York: Springer).

Programming Acknowledgements

• C code for random number generation provided by Mutsuo Saito, Makoto Matsumoto and
Hiroshima University (http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT)

• C code for L-BFGS algorithm provided by Naoaki Okazaki (http://www.chokkan.org/
software/liblbfgs)

14

