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Abstract

mhurdle is a package for R enabling the estimation of a wide set of models for which the
response is zero left-censored. This kind of models are called limited dependent or Tobit
models in the econometric literature and are of particular interest to analyze households’
consumption data provided by family expenditure surveys.
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1. Introduction

In applied econometric studies, the dependent variable often exhibits a large proportion of
fixed values, e.g.:

• the number of hours of work supplied is zero for all unemployed or inactive persons;

• the expenditure for particular goods are nil for all households not consuming these
goods;

• the attendance of a show is always equal to the capacity of the room each time the show
is performed at “position closed”.

In these circumstances, ordinary least-squares estimation is biased and inconsistent. However,
the model can be estimated consistently using maximum likelihood methods by taking into
account the censored nature of the dependent variable.

This problem has been treated for a long time in the statistics literature dealing with survival
models which are implemented in R with the survival package of Therneau and Lumley (2008).

It has also close links with the problem of selection bias, for which some methods are imple-
mented in the sampleSelection package of Toomet and Henningsen (2008b).

mhurdle deals specifically with models where the dependent variable is zero-left censored
and the observations’ sample consequently may present a large proportion of zeros, which is
typically the case in household expenditure surveys1.

1This package has been developed as part of a PhD dissertation carried out by Stéphane Hoareau (2009)
at the University of La Réunion under the supervision of Fabrizio Carlevaro and Yves Croissant.
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Since Tobin (1958) seminal paper, a large econometric literature has been developed to deal
correctly with this problem of zero observations. More specifically, zero observations may
appear for the following three reasons:

lack of resources : the household would like to consume the good, but cannot afford it with
its present budget;

good rejection : the good is not selected by the household, because it is harmful or can be
replaced by some substitute good ;

purchase infrequency : the good is bought by the household, but with a low frequency
so that zero expenditure may be observed if the survey is carried out over a too short
period (see Deaton and Irish 1984).

The original Tobin’s model takes only the first source of zeros into account. With mhurdle,
the three sources of zero may be introduced in the model.

For each of the three sources of zeros, a continuous latent variable is defined, with a zero
observed if the latent variable is negative. These latent variables are defined as the sum
of a linear combination of covariates and a random disturbance with a possible correlation
between the disturbances of different latent variables.

The paper is organized as follows: Section˜2 presents an overview of the theoretical models
used. Section˜3 presents the theoretical framework for model estimation, evaluation and
selection. Section˜4 discusses the software rationale used in the package. Section˜5 illustrates
the use of mhurdle with several examples. Section˜6 concludes.

2. Econometric framework

2.1. Model specification

Our modeling strategy rests on the following three equations:
y∗1 = β>1 x1 + ε1
y∗2 = β>2 x2 + ε2
y∗3 = β>3 x3 + ε3

where x1, x2, x3 stand for column-vectors of explanatory variables (called covariates in the
followings), β1, β2, β3 for column-vectors of the impact coefficients of the explanatory variables
on the dependent variables y∗1, y∗2, y∗3 and ε1, ε2, ε3 for random disturbances.

• The first equation defines the good selection mechanism : if y∗1 < 0, the good is not
consumed because it is not identified by the household as a relevant consumption good.

• The second equation defines the desired consumption level of the good ; therefore, if
y∗2 < 0, the good is not consumed, as a negative consumption level implied by the budget
constraint cannot be realized.
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• The third equation defines the frequency of purchase mechanism: if y∗3 < 0 the good is
not purchased during the survey period, while it is purchased at least one time when
y∗3 > 0. Assuming that the survey period is a fraction P of the purchase period, a
purchase y = y∗2/P is observed with probability P = Prob{y∗3 > 0} during the survey
while no purchase is observed with probability (1− P ).

As y∗1 and y∗3 are unobservable indicators of dichotomous variables, ε1 and ε3 stand for N(0, 1)
random disturbances, while ε2 ∼ N(0, σ2) with unknown σ2, since y∗2 is an observable variable
when uncensored.

A priori information may suggest that one or more of these censoring mechanisms is ineffective.
For instance, we know in advance that all households purchase food regularly, implying that
the first two censoring mechanisms are inoperative for food. In this case, the relevant model
is defined by only two equations: one defining the desired consumption level of food and
the other the decision of food purchasing during the survey period. Besides, the desired
consumption equation explaining dependent variable y∗2 must be specified as a non negative
parametric function of covariates x2 and random disturbance ε2. For the time being, two
functional forms of this equation have been programmed in mhurdle, namely a log-normal
functional form :

ln y∗2 = β>2 x2 + ε2

and a truncated normal functional form, defined by a linear desired consumption equation
with ε2 distributed according to a N(0, σ2) left-truncated at ε2 = −β>2 x2, as suggested by
Cragg (1971).

A priori information may also suggest to set to zero some or all correlations between random
disturbances ε1, ε2, ε3, entailing a partial or total independence between the above defined
censoring mechanisms. In particular, it seems appropriate to a priori suppose zero correlation
between ε1 and ε3 as well as between ε2 and ε3, as a consequence of the different nature in the
determinants responsible, on one hand, of the good selection and desired consumption level
decisions and, on the other hand, of those responsible of the frequency of purchase decision.

Figure 1 outlines the full set of special models that can be generated from this general econo-
metric framework by enforcing ineffective censoring mechanisms and by selecting an appro-
priate functional form of the desired consumption equation.

This figure shows that 12 different consistent models can be estimated by the mhurdle package,
leading to 23 different parametric specifications when no correlation between random distur-
bances ε1 and ε2 is considered as a different specification assumption from that of correlated
disturbances.

Note that among these models, two are not concerned by censored data, namely models 1
and 2. These two specifications are relevant only for modeling uncensored samples.

All the other models are potentially able to analyze censored samples by combining up to
the three censoring mechanisms described above. With the notable exception of the standard
Tobit model, that can be estimated also by the survival package of Therneau and Lumley
(2008), these models cannot be found in an other R-library.

Some of mhurdle models have already been used in the applied econometric literature. In
particular, models 3 and 4 are single hurdle good selection models originated by Cragg (1971).
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Figure 1: The full set of mhurdle special models.

The double hurdle model combining uncorrelated good selection and lack of resources cen-
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soring mechanisms is also due to Cragg (1971); the correlated version of this double hurdle
model has been originated by Blundell and Meghir (1987).

P-Tobit model is due to Deaton and Irish (1984) and explains zero purchases as the result
of lack of resources and/or infrequent purchases. Models 6 and 7 are single hurdle models
not yet used in applied demand analysis, where the operating censoring mechanism is due to
infrequent purchases.

Among the original models encompassed by mhurdle, models 9 and 10 are double hurdle
models combining good selection and frequency of purchase mechanisms to explain censored
samples.

Model 12 is an original three hurdle model originated in Hoareau (2009). This model ex-
plains censored purchases either as the result of good rejection, lack of resources or infrequent
purchases.

2.2. Likelihood function

As for the standard Tobit model, the likelihood of our censored models have two components:
the first one is the probability of a binary choice (purchasing or not), the second one is
the density function of the chosen expenditure level of consumption for the households that
consume.

The contribution of a zero observation to the sample log-likelihood function can be written
as follow:

lnL−i =


ln
(

1− Φ
(
β>1 x1i,

β>2 x2i
σ ; ρ

)
Φ(β>3 x3i)

)
for normal models

ln
(
1− Φ(β>1 x1i)Φ(β>3 x3i)

)
for log-normal models

ln

1−
Φ

(
β>1 x1i,

β>2 x2i
σ

;ρ

)
Φ

(
β>2 x2i
σ

) Φ(β>3 x3i)

 for truncated-normal models

where Φ(z) denotes the distribution function of a N(0, 1) random variable. We remind that
log-normal and truncated normal models assume that the lack of resources mechanism is
inoperative, whereas it is operative in normal models.

The second and the third expression correspond to the case where a zero purchase is observed
only for good rejection or for purchase infrequency reasons. In the second expression, the
desired consumption equation is specified according to a log-normal functional form whereas,
in the third expression, it is specified according to a truncated-normal functional form. The
first expression corresponds to the case where a zero purchase is observed either for good
rejection, for lack of resources or for purchase infrequency reasons.

These expressions become simpler in the following special cases:

• when the good selection mechanism is inoperative, implying:

P{y∗1i > 0} = Φ(β>1 x1i) = 1

and consequently:

lnL−i =

{
ln
(

1− Φ
(
β>2 x2i
σ

)
Φ(β>3 x3i)

)
for normal models

ln
(
1− Φ(β>3 x3i)

)
otherwise



6 Multiple hurdle models in R: The mhurdle Package

• when the purchase frequency mechanism is inoperative, implying:

P{y∗3i > 0} = Φ(β>3 x3i) = 1

and consequently:

lnL−i =


ln
(

1− Φ
(
β>1 x1i,

β>2 x2i
σ ; ρ

))
for normal models

ln
(
1− Φ(β>1 x1i)

)
for log-normal models

ln

1−
Φ

(
β>1 x1i,

β>2 x2i
σ

;ρ

)
Φ

(
β>2 x2i
σ

)
 for truncated-normal models

• when the good selection mechanism and the desired consumption equation are uncorre-
lated (ρ = 0), implying:

Φ

(
β>1 x1i,

β>2 x2i

σ
; 0

)
= Φ(β>1 x1i)Φ

(
β>2 x2i

σ

)
and consequently:

lnL−i =

{
ln
(

1− Φ(β>1 x1i)Φ
(
β>2 x2i
σ

)
Φ(β>3 x3i)

)
for normal models

ln
(
1− Φ(β>1 x1i)Φ(β>3 x3i)

)
otherwise

• when both the good selection and the frequency of purchase mechanisms are inoperative,
implying:

lnL−i =

{
ln
(

1− Φ
(
β>2 x2i
σ

))
for normal models

−∞ for log-normal and truncated-normal models

Consequently, in this very special case, log-normal and truncated-normal model speci-
fications can only be used to analyze uncensored samples.

The contribution of a positive observation to the log-likelihood function is best presented by
defining a “residual” of the fit as :

ei =

{
ln yi + ln Φ(β>3 x3i)− β>2 x2i for log-normal models
yiΦ(β>3 x3i)− β>2 x2i otherwise

One observes that the parameters and the covariates of the frequency of purchase equation
enter the definition of this “residual”, because this residual is defined for the average consump-
tion, which depends on the probability of purchasing, as described previously.

The contribution of a positive observation to the log-likelihood function is then written as :

lnL+
i = − lnσ + lnφ

(
ei
σ

)
+ ln Φ

(
β>1 x1i+

ρ
σ
ei√

(1−ρ2)

)
+ ln Φ(β>3 x3i)

+


ln Φ(β>3 x3i) for normal models
− ln yi for log-normal models

− ln Φ
(
β>2 x2i
σ

)
+ ln Φ(β>3 x3i) for truncated-normal models
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where φ(z) denotes the density function of a N(0, 1) random variable.

As for the log-likelihood function of a censored observation, the expression of the log-likelihood
function of an uncensored observation become simpler in the following special cases:

• when the good selection mechanism is inoperative, implying:

lnL+
i = − lnσ + lnφ

(
ei
σ

)
+ ln Φ(β>3 x3i)

+


ln Φ(β>3 x3i ) for normal models
− ln yi for log-normal models

− ln Φ
(
β>2 x2i
σ

)
+ ln Φ(β>3 x3i ) for truncated-normal models

• when the purchase frequency mechanism is inoperative, implying:

ei =

{
ln yi − β>2 x2i for log-normal models
yi − β>2 x2i otherwise

and

lnL+
i = − lnσ + lnφ

(
ei
σ

)
+ ln Φ

(
β>1 x1i+

ρ
σ
ei√

(1−ρ2)

)
+

{
− ln yi for log-normal models

− ln Φ
(
β>2 x2i
σ

)
for truncated-normal models

• when the good selection mechanism and the desired consumption equation are uncorre-
lated (ρ = 0), implying:

lnL+
i = − lnσ + lnφ

(
ei
σ

)
+ ln Φ(β>1 x1i) + ln Φ(β>3 x3i)

+


ln Φ(β>3 x3i ) for normal models
− ln yi for log-normal models

− ln Φ
(
β>2 x2i
σ

)
+ ln Φ(β>3 x3i ) for truncated-normal models

• when both the good selection and the frequency of purchase mechanisms are inoperative,
implying:

ei =

{
ln yi − β>2 x2i for log-normal models
yi − β>2 x2i otherwise

and

lnL+
i = − lnσ + lnφ

(
ei
σ

)
+

{
− ln yi for log-normal models

− ln Φ
(
β>2 x2i
σ

)
for truncated-normal models
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Combining these log-likelihood function for zero and positive expenditure observations, the
sample log-likelihood function is written as :

lnL =
∑
i|yi=0

lnL−i +
∑
i|yi>0

lnL+
i

Note that for uncorrelated single-hurdle good selection models, lnL−i depends only on β1 and
lnL+

i depends only on β2 and σ, allowing to separate the model estimation according to two
independent models :

• a binary probit model allowing to estimate β1 independently of β2 and σ;

• a linear, log-linear or truncated regression model allowing to estimate β2 and σ inde-
pendently of β1.

3. Model estimation, evaluation and selection

The econometric framework described in the previous section provides a theoretical framework
for tackling the problems of model estimation, evaluation and selection within the statistical
theory of classical inference.

3.1. Model estimation

The full parametric specification of our multiple hurdle models allows to efficiently estimate
their parameters by means of the maximum likelihood principle. Indeed, it is well known
from classical estimation theory that, under the assumption of correct model specification
and for a likelihood function sufficiently well behaved, the maximum likelihood estimator is
asymptotically efficient within the class of consistent and asymptotically normal estimators2.

More precisely, the asymptotic distribution of the maximum likelihood estimator θ̂ of a mhur-
dle model parameter vector θ, is written as:

θ̂
A∼ N(θ,

1

n
IA(θ)−1)

where
A∼ stands for ”asymptotically distributed as” and

IA(θ) = plim
1

n

n∑
i=1

E(
∂2 lnLi(θ)

∂θ∂θ>
) = plim

1

n

n∑
i=1

E(
∂ lnLi(θ)

∂θ

∂ lnLi(θ)

∂θ>
)

for the asymptotic R.A. Fisher information matrix of a sample of n independent observations.

More generally, any inference about a differentiable vector function of θ, denoted by γ = h(θ),
can be based on the asymptotic distribution of its implied maximum likelihood estimator
γ̂ = h(θ̂). This distribution can be derived from the asymptotic distribution of θ̂ according
to the so called delta method:

2See Amemiya (1985) chapter 4, for a more rigorous statement of this property.
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γ̂
A∼ h(θ) +

∂h

∂θ>
(θ̂ − θ) A∼ N(γ,

1

n

∂h

∂θ>
IA(θ)−1∂h

>

∂θ
).

The practical use of these asymptotic distributions requires to replace the theoretical variance-
covariance matrix of these asymptotic distributions with consistent estimators, which can be

obtained by using ∂h(θ̂)
∂θ>

as a consistent estimator for ∂h(θ)
∂θ>

and either 1
n

∑n
i=1

∂2 lnLi(θ̂)
∂θ∂θ>

or

1
n

∑n
i=1

∂ lnLi(θ̂)
∂θ

∂ lnLi(θ̂)
∂θ>

as a consistent estimator for IA(θ). The last two estimators are di-
rectly provided by two standard iterative methods used to compute the maximum likelihood
parameter’s estimate, namely the Newton-Raphson method and the Berndt, Hall, Hall, Haus-
man or BHHH method, respectively, mentioned in section 4.3.

3.2. Model evaluation

Two fundamental principles should be used to appraise the results of a model estimation,
namely its economic relevance and its statistical and predictive adequacy. The first principle
deals with the issues of accordance of model estimate with the economic rationale underlying
the model specification and of its relevance for answering the questions for which the model
has been built. These issues are essentially context specific and, therefore, cannot be dealt
with generic criteria. The second principle refers to the issues of empirical soundness of model
estimate and of its ability to predict sample or out-of-sample observations. These issues can be
tackled by means of formal tests of significance, based on the previously presented asymptotic
distributions of model estimates, and by measures of goodness of fit/prediction, respectively.

To assess the goodness of fit of mhurdle estimates, two pseudo R2 coefficients are provided.
The first one is an extension of the classical coefficient of determination, used to explain the
fraction of variation of the dependent variable explained by the covariates included in a linear
regression model with intercept. The second one is an extension of the likelihood ratio index
introduced McFadden (1974) to measure the relative gain in the maximized log-likelihood
function due to the covariates included in a qualitative response model.

To define a pseudo coefficient of determination, we rely on the non linear regression model
explaining the dependent variable of a mhurdle model. This model is written as:

yi = E(yi) + εi, i = 1, ..., n

where εi stands for a zero expectation, heteroskedastic random disturbance and E(yi) =
Prob{yi > 0}E(yi|yi > 0), with Prob{yi > 0} = 1− L−i and

E(yi|yi > 0) =


β>2 x2i

Φ(β>3 x3i)
+ σ

ψn(β>1 x1i,
β>2 x2i
σ

;ρ)

Φ(β>1 x1i,
β>2 x2i
σ

;ρ)Φ(β>3 x3i)
for normal and truncated-normal models

exp{β>2 x2i+0.5σ2(1−ρ2)}ψl(β>1 x1i;ρσ)

Φ(β>1 x1i)Φ(β>3 x3i)
for log-normal models

where

ψn(β>1 x1i,
β>2 x2i

σ
; ρ) =

∫ ∞
−β>1 x1i

[
ρε1Φ

(
β>2 x2i
σ + ρε1√

1− ρ2

)
+
√

1− ρ2φ

(
β>2 x2i
σ + ρε1√

1− ρ2

)]
φ(ε1)dε1
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and

ψl(β
>
1 x1i; ρσ) =

∫ ∞
−β>1 x1i

exp{ρσε1}φ(ε1)dε1

Notice that these two last integrals can be computed using the first terms of a Taylor series
expansion around ρ = 0 and ρσ = 0, respectively, as detailed for the first integral in Carlevaro,
Croissant, and Hoareau (2008). Moreover, the above general expressions of E(yi|yi > 0)
become simpler in the following special cases:

• when the good selection mechanism is inoperative (Φ(β>1 x1i) = 1), leading to:

E(yi|yi > 0) =


β>2 x2i

Φ(β>3 x3i)
+ σ

φ(
β>2 x2i
σ

Φ(
β>2 x2i
σ

)Φ(β>3 x3i)
for normal and truncated-normal models

exp{β>2 x2i+0.5σ2}
Φ(β>3 x3i)

for log-normal models

• when the purchase frequency mechanism is inoperative (Φ(β>3 x3i) = 1), leading to:

E(yi|yi > 0) =


β>2 x2i + σ

ψn(β>1 x1i,
β>2 x2i
σ

;ρ)

Φ(β>1 x1i,
β>2 x2i
σ

;ρ)
for normal and truncated-normal models

exp
{
β>2 x2i + 0.5σ2

(
1− ρ2

)} ψl(β
>
1 x1i;ρσ)

Φ(β>1 x1i)
for log-normal models

• when the good selection mechanism and the desired consumption equation are uncorre-
lated (ρ = 0), implying:

Φ

(
β>1 x1i,

β>2 x2i

σ
; 0

)
= Φ(β>1 x1i)Φ

(
β>2 x2i

σ

)
as well as:

ψn

(
β>1 x1i,

β>2 x2i

σ
; 0

)
= ψl

(
β>1 x1i; 0

)
= Φ(β>1 x1i)

and consequently:

E(yi|yi > 0) =


β>2 x2i

Φ(β>3 x3i)
+ σ

φ

(
β>2 x2i
σ

)
Φ(

β>2 x2i
σ

)Φ(β>3 x3i)
for normal and truncated-normal models

exp{β>2 x2i+0.5σ2}
Φ(β>3 x3i)

for log-normal models

namely the same formulas of E(yi|yi > 0) as when the good selection mechanism is
inoperative;
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• when both the good selection and the frequency of purchase mechanisms are inoperative,
leading to:

E(yi|yi > 0) =

 β>2 x2i + σ
φ

(
β>2 x2i
σ

)
Φ(

β>2 x2i
σ

)
for normal and truncated-normal models

exp
{
β>2 x2i + 0.5σ2

}
for log-normal models

Denoting by ŷi the fitted values of yi obtained by computing predictor E(yi) for yi with
the maximum likelihood estimate of model parameters, we define a pseudo coefficient of
determination for a mhurdle model according to the following formula:

R2 = 1− RSS

TSS

with RSS =
∑

(yi − ŷi)2 the residual sum of squares and TSS =
∑

(yi − ŷ0)2 the total sum
of squares, where ŷ0 denotes the maximum likelihood estimate of E(yi) in the mhurdle model
without covariates (intercept-only model). Notice that this goodness of fit measure cannot
exceed one but can be negative, as a consequence of the non linearity of E(yi) with respect
to the parameters.

Two other formulas, which are equivalent to compute R2 in the linear regression model with
intercept, could have been used to define a pseudo coefficient of determination, namely: the
ratio of the explained sum of square to the total sum of squares or the squared correlation
between actual and fitted values. We disregarded these alternatives because the former mea-
sure can exceed one in a non linear regression model, while the latter, although providing
values always within zero and one, cannot be adjusted for degrees of freedom for a use as a
model selection criterion. A more promising approach consists in computing RSS and TSS
with standardized residuals, to correct for the heteroskedasticity of row residuals. This Pear-
son goodness of fit measure, requiring to write down analytically the variance of εi, is not
currently implemented.

The extension of the McFadden likelihood ratio index for qualitative response models to
mhurdle models is straightforwardly obtained by substituting in this index formula:

ρ2 = 1− lnL(θ̂)

lnL(α̂)
=

lnL(α̂)− lnL(θ̂)

lnL(α̂)

the maximized log-likelihood function of a qualitative response model with covariates and the
log-likelihood function of the corresponding model without covariates or intercept-only model,
with the maximized log-likelihood functions of a mhurdle model with covariates, lnL(θ̂), and
without covariates, lnL(α̂), respectively. This goodness of fit measure takes values within zero
and one and, as it can be easily inferred from the above second expression of ρ2, it measures
the relative increase of the maximized log-likelihood function due to the use of explanatory
variables with respect to the maximized log-likelihood function of a naive intercept-only model.

3.3. Model selection

Model selection deals with the problem of discriminating between alternative model specifi-
cations used to explain the same dependent variable, with the view of finding the one best
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suited to explain the sample of observations at hand. This decision problem can be tackled
from two point of view, namely that of the model specification achieving the best in-sample
fit, on one hand, and that of the model specification that is favored in a formal test comparing
two model alternatives, on the other hand.

The first selection criterion is easy to apply as it consists in comparing one of the above defined
measures of fit, computed for the competing model specifications, after adjusting them for the
loss of sample degrees of freedom due to model parametrization. Indeed, the value of these
measures of fit can be improved by increasing model parametrization, in particular when the
parameter estimates are obtained by optimizing a criteria functionally related to the selected
measure of fit, as it is the case when using the ρ2 fit measure with a maximum likelihood
estimate. Consequently, a penalty that increases with the number of model parameters should
be added to the R2 and ρ2 fit measures to trade off goodness of fit improvements with
parameter parsimony losses.

To define an adjusted pseudo coefficient of determination, we rely on Theil (1971)’s correction
of R2 in a linear regression model, defined by

R̄2 = 1− n−K0

n−K
RSS

TSS

where K and K0 stand for the number of parameters of the mhurdle model with covariates
and without covariates, respectively. Therefore, choosing the model specification with the
largest R̄2 is equivalent to choosing the model specification with the smallest model residual
variance estimate: s2 = RSS

n−K .

To define an adjusted likelihood ratio index, we replace in this goodness of fit measure ρ2

the log-likelihood criterion with the Akaike information criterion AIC = −2 lnL(θ̂) + 2K.
Therefore, choosing the model specification with the largest

ρ̄2 = 1− lnL(θ̂)−K
lnL(α̂)−K0

is equivalent to choosing the model specification that minimizes the Akaike (1973) predictor
of the Kullback-Liebler Information Criterion (KLIC). This criterion measures the distance
between the conditional density function f(y|x; θ) of a possibly misspecified parametric model
and that of the true unknown model, denoted by h(y|x). It is defined by the following formula:

KLIC = E

[
ln

(
h(y|x)

f(y|x; θ∗)

)]
=

∫
ln

(
h(y|x)

f(y|x; θ∗)

)
dH(y, x)

where H(y, x) denotes the distribution function of the true joint distribution of (y, x) and θ∗
the probability limit, with respect to H(y, x), of θ̂ the so called quasi-maximum likelihood
estimator obtained by applying the maximum likelihood when f(y|x; θ) is misspecified.

Our second model selection criterion relies on the use of a test proposed by Vuong (1989).
According to the rationale of this test, the ”best” parametric model specification among a
collection of competing specifications is the one that minimizes the KLIC criterion or, equiv-
alently, the specification for which the quantity:

E[ln f(y|x; θ∗)] =

∫
ln f(y|x; θ∗)dH(y, x)
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is the largest. Therefore, given two competing conditional models with density functions
f(y|x; θ) and g(y|x;π) and parameter vectors θ and π of size K and L, respectively, Vuong
suggests to discriminate between these models by testing the null hypothesis:

H0 : E[ln f(y|x; θ∗)] = E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
= 0

meaning that the two models are equivalent, against:

Hf : E[ln f(y|x; θ∗)] > E[ln g(y|x;π∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
> 0

meaning that specification f(y|x; θ) is better than g(y|x;π), or against:

Hg : E[ln f(y|x; θ∗)] < E[ln g(y|x; θ∗)]⇐⇒ E

[
ln
f(y|x; θ∗)

g(y|x;π∗)

]
< 0

meaning that specification g(y|x;π) is better than f(y|x; θ).

The quantity E[ln f(y|x; θ∗)] is unknown but it can be consistently estimated, under some reg-
ularity conditions, by 1/n times the log-likelihood evaluated at the quasi-maximum likelihood
estimator. Hence 1/n times the log-likelihood ratio (LR) statistic

LR(θ̂, π̂) =
n∑
i=1

ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

is a consistent estimator of E
[
ln f(y|x;θ∗)

g(y|x;π∗)

]
. Therefore, an obvious test of H0 consists in

verifying whether the LR statistic differs from zero. The distribution of this statistic can be
work out even when the true model is unknown, as the quasi-maximum likelihood estimators
θ̂ and π̂ converge in probability to the pseudo-true values θ̂∗ and π̂∗, respectively, and have
asymptotic normal distributions centered on these pseudo-true values.

The resulting distribution of LR(θ̂, π̂) depends on the relation linking the two competing mod-
els. To this purpose, Vuong differentiates among three types of competing models, namely:
nested, strictly non nested and overlapping. However, for model comparisons within the set
of mhurdle special models presented in FIG. 1, only the first two cases are really relevant, at
least as long as we compare model specifications with identical covariates.

A parametric model Gπ defined by the conditional density function (cdf) g(y|x;π) is said
to be nested in parametric model Fθ with cdf f(y|x; θ), if and only if any cdf of Gπ is
equal to a cdf of Fθ, for almost all x. Within our mhurdle special models this is the case
when comparing two specifications differing only with respect to the presence or the absence
of correlated disturbances. For these models, it is necessarily the case that f(y|x; θ∗) ≡
g(y|x;π∗). Therefore H0 is tested against Hf .

If model Fθ is misspecified, it has been shown by Vuong that:

• under H0, the quantity 2LR(θ̂, π̂) converges in distribution towards a weighted sum of
K + L iid χ2(1) random variables, where the weights are the K + L possibly negative
eigenvalues of a theoretical symmetric matrix, that can be consistently estimated by a
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sample analogue. Notice that the density function of this random variable has not been
worked out analytically. Therefore, we compute it by simulation.

• under Hf , the same statistic converge almost surely towards +∞.

As a consequence, for a test with critical value c, H0 is rejected in favor of Hf if 2LR(θ̂, π̂) > c

or if the p-value associated to the observed value of 2LR(θ̂, π̂) is less than the significance
level of the test. Notice that, if model Fθ is correctly specified, the asymptotic distribution
of the LR statistic is, as expected, a χ2 random variable with K − L degrees of freedom.

Two parametric models Fθ and Gπ defined by cdf f(y|x; θ) and g(y|x;π) are said to be
strictly non-nested, if and only if no cdf of model Fθ is equal to a cdf of Gπ, for almost
all x, and conversely. Within mhurdle special models this is the case when comparing two
specifications differing with respect either to the effective censoring mechanisms or to the
functional form of the desired consumption equation. For these models, it is necessarily the
case that f(y|x; θ∗) 6= g(y|x;π∗) implying that both models are misspecified under H0.

For such strictly non-nested models, Vuong has shown that:

• under H0, the quantity n−1/2LR(θ̂, π̂) converges in distribution towards a normal ran-
dom variable with zero expectation and variance:

ω2 = V

(
ln
f(y|x; θ∗)

g(y|x;π∗)

)
computed with respect to the distribution function of the true joint distribution of (y, x).

• under Hf , the same statistic converge almost surely towards +∞.

• under Hg, the same statistic converge almost surely towards −∞.

Hence, H0 is tested against Hf or Hg using the standardized LR statistic:

TLR =
LR(θ̂, π̂)√

nω̂

where ω̂2 denotes the following consistent estimator for ω2:

ω̂2 =
1

n

n∑
i=1

(
ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

−

(
1

n

n∑
i=1

ln
f(yi|xi; θ̂)
g(yi|xi; π̂)

)2

As a consequence, for a test with critical value c, H0 is rejected in favor of Hf if TLR > c
or if the p-value associated to the observed value of TLR in less than the significance level of
the test. Conversely, H0 is rejected in favor of Hg if TLR < −c or if the p-value associated to
the observed value of |TLR| in less than the significance level of the test. Notice that, if one
of models Fθ or Gπ is assumed to be correctly specified, the Cox (1961, 1962) LR test of non
nested models needs to be used.

4. Software rationale
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There are three important issues to be addressed to correctly implement in R the econometric
framework described in the previous section. The first one is to provide a good interface to
describe the model to be estimated. The second one is the problem of finding good starting
values for computing model estimates. The third one is to offer flexible optimization tools for
likelihood maximization.

4.1. Model syntax

In R, the model to be estimated is described using formula objects, the left-hand side denoting
the censored dependent variable y and the right-hand side the functional relation explaining
y as a function of covariates. For example, y ~ x1 + x2*x3 indicates that y linearly depends
on variables x1,x2,x3 and on the interaction term x2 times x3.

For the models implemented in mhurdle, three kinds of covariates should be specified: the
ones of the consumption equation (denoted x2), the ones of the selection equation (denoted
x1) and those of the infrequency equation (denoted x3). To define a model with three kinds
of covariates, a general solution is given by the Formula package developed by Zeileis and
Croissant (2010), which provides extended formula objects. To define a model where y is
the censored dependent variable, x21 and x22 two covariates for the desired consumption
equation, x11 and x12 two covariates for the selection and x31 and x32 two covariates for the
infrequency of purchase equation, we use the following commands :

R> library("Formula")

R> f <- Formula(y ~ x11 + x12 | x21 + x22 | x31 + x32)

To illustrate the use of Formula, let’s use the tobin data.frame from the survival package.
This data.frame is a sub-sample of 20 observations of the original data used by Tobin (1958)
in his seminal paper.

R> data("tobin", package = "survival")

R> head(tobin, 3)

durable age quant

1 0.0 57.7 236

2 0.7 50.9 283

3 0.0 48.5 207

The variables of this data.frame are :

durable: the durable good expenditures in thousands of US$;

age: the age of the head of the family in years;

quant: the liquidity ratio in per thousands.

To estimate a model for durable good expenditures using age and quant as covariates for
the desired consumption equation, age for the selection equation, and quant for the purchase
infrequency equation, we use the following syntax:
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R> f <- Formula(durable ~ age | age + quant | quant)

Several methods are provided to deal with these extended formulas. In particular, the model
covariate matrices for the three equations are easily computed using:

R> S <- model.matrix(f, data = tobin, rhs = 1)

R> X <- model.matrix(f, data = tobin, rhs = 2)

R> P <- model.matrix(f, data = tobin, rhs = 3)

R> head(X, 3)

(Intercept) age quant

1 1 57.7 236

2 1 50.9 283

3 1 48.5 207

R> head(S, 3)

(Intercept) age

1 1 57.7

2 1 50.9

3 1 48.5

R> head(P, 3)

(Intercept) quant

1 1 236

2 1 283

3 1 207

For the end user, all these manipulations are internal to mhurdle function. All he should do is
entering a formula of the type y ~ x11 + x12 | x21 + x22 | x31 + x32 as first argument
of the function.

4.2. Starting values

For the models we consider, the log-likelihood function will be, in general, not concave. More-
over, this kind of models are highly non linear with respect to parameters, and therefore
difficult to estimate. For these reasons, the question of finding good starting values for the
iterative computation of parameter estimates is crucial.

As a less computer intensive alternative to maximum likelihood estimation, Heckman (1976)
has suggested a two step estimation procedure based on a respecification of the censored
variable linear regression model, sometimes called “Heckit” model, avoiding inconsistency of
ordinary least-squares estimator. This two step estimator is consistent but inefficient. It is
implemented in package sampleSelection.

According to Carlevaro et˜al. (2008) experience in applying this estimation procedure to two-
hurdle models, this approach doesn’t seem to work well with our correlated hurdle-models.
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Indeed, except for the very special case of model 3 (log-normal correlated single-hurdle selec-
tion model), the probability of observing a censored purchase is not that of a simple probit
model (see the formula of lnL−i ).

As noted previously, for uncorrelated single-hurdle good selection models, the estimation
may be performed in a sequence of two simple estimations, namely the maximum likelihood
estimation of a standard dichotomous probit model, followed by the ordinary least-squares
estimation of a linear, log-linear or linear-truncated regression model. In the last case, package
truncreg (Croissant 2009) is used.

In case of correlated single-hurdle good selection models, the coefficient maximum likelihood
estimate of the corresponding uncorrelated model (ρ = 0) is used as starting values.

For purchase infrequency models (P-Tobit models), the starting values are computed using
an Heckman-like two step procedure. In the first step, parameters β3 are estimated using a
simple probit. In the second step, a linear, log-linear or linear-truncated model is estimated
on the sub-sample of uncensored observations using yiΦ(β

′
3x3) or ln yi + ln Φ(β

′
3x3) (in the

case of a log-normal specification) as the dependent variable of the regression model estimated
by ordinary least squares.

4.3. Optimisation

Two kinds of routines are currently used for maximum likelihood estimation. The first one
can be called “Newton-like” methods. With these routines, at each iteration, an estimation
of the log-likelihood hessian matrix is computed, using either the second derivatives of the
criterion function (Newton-Raphson method) or the outer product of the gradient (Berndt,
Hall, Hall, Hausman or BHHH method). This approach is very powerful if the criterion
function is well-behaved, but it may perform poorly otherwise and fail after a few iterations.

The second one, called Broyden, Fletcher, Goldfarb, Shanno or BFGS method, updates at
each iteration an estimate of the log-likelihood hessian matrix. It is often more robust and
may perform better in cases where the former doesn’t work.

Two optimization functions are included in core R: nlm, which uses the Newton-Raphson
method, and optim , which uses the BFGS method (among others). The recently developed
maxLik package by Toomet and Henningsen (2008a) provides a unified framework. With a
unique interface, all the previously described methods are available.

The behavior of maxLik can be controlled by the user using mhurdle arguments like print.level
(from 0-silent to 2-verbal), iterlim (the maximum number of iterations), methods (the
method used, one of "nr", "bhhh" or "bfgs") that are passed to maxLik.

5. Examples

The package is loaded using:

R> library("mhurdle")

5.1. Estimation

The estimation is performed using the mhurdle function, which has the following arguments:
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formula: a formula describing the model to estimate. It should have three parts on the right-
hand side specifying, in the first part, the desired consumption equation covariates, in
the second part, the good selection equation covariates and, in the third part, the
purchase frequency equation covariates.

data: a data.frame containing the observations of the variables present in the formula.

subset, weights, na.action: these are arguments passed on to the model.frame function in
order to extract the data suitable for the model. These arguments are present in the lm

function and most of the estimation functions.

start: the starting values. If NULL, the starting values are computed as described in the
previous section.

dist: this argument indicates the functional form of the desired consumption equation, which
may be: either log-normal "l" (the default), normal "n" or truncated normal "t".

corr: a logical argument indicating whether the disturbances of the selection equation and
the consumption equation are correlated or not. The default is FALSE.

... further arguments that are passed to the optimization function maxLik.

Different combinations of these arguments lead to a large variety of models. Note that some
of them are logically inconsistent and therefore irrelevant. For example, a model with no good
selection equation and corr = TRUE is logically inconsistent because only good selection and
desired consumption equations can be correlated.

To illustrate the use of mhurdle package, we first estimate an independent triple-hurdle model,
which we call model12i :

R> model12i <- mhurdle(durable ~ age + quant | age + quant | age +

+ quant, tobin, dist = "n", method = "bfgs")

In applied work, the issue may be to select the relevant hurdles. As an alternative to the
previously estimated three hurdle model we can now estimate more a priori restricted models
where only one or two hurdles are relevant.

To estimate a model where only lack of resources is relevant to explain censored durable good
expenditures, we use :

R> model5 <- mhurdle(durable ~ 0 | age + quant | 0, tobin, dist = "n",

+ method = "nr")

To estimate an independent log-normal single-hurdle good rejection model, we use:

R> model3i <- mhurdle(durable ~ age + quant | age + quant | 0, tobin,

+ dist = "l")

To estimate a log-normal single-hurdle purchase infrequency model, we use:
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R> model6 <- mhurdle(durable ~ 0 | age + quant | age + quant, tobin,

+ dist = "l")

To estimate an independent model where censured durable good expenditures may be ex-
plained by lack of resources or good rejection, we use :

R> model8i <- mhurdle(durable ~ age + quant | age + quant | 0, tobin,

+ dist = "n")

We then update this model in order to estimate a dependent double-hurdle (lack of resources
or good rejection) model:

R> model8d <- update(model8i, corr = TRUE)

5.2. Methods

A summary method is provided for mhurdle objects :

R> summary(model8i)

Call:

mhurdle(formula = durable ~ age + quant | age + quant | 0, data = tobin,

dist = "n")

Frequency of 0: 0.65

Newton-Raphson maximisation

gradient close to zero

5 iterations, 0h:0m:0s

g'(-H)^-1g = 6.12E-22

Coefficients :

Estimate Std. Error t-value Pr(>|t|)

sel.(Intercept) 1.461792 3.710805 0.3939 0.6936338

sel.age -0.122834 0.072312 -1.6987 0.0893830 .

sel.quant 0.017997 0.015802 1.1389 0.2547578

reg.(Intercept) 12.841869 5.321390 2.4133 0.0158108 *

reg.age 0.404577 0.098441 4.1098 3.959e-05 ***

reg.quant -0.113719 0.019904 -5.7132 1.108e-08 ***

sigma 1.434599 0.397077 3.6129 0.0003028 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-Likelihood: -22.186 on 7 Df

rho: score test : z = 0.016 (p.value = 0.494)
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R^2 :

McFadden : 0.25143

Regression : 0.37556

This method displays the percentage of 0 in the sample, the coefficient table, several measures
of goodness of fit and, for independent models, a score test of correlation.

coef, vcov, logLik, predict methods are provided in order to extract part of the results.

Coefficients and the estimated asymptotic variance matrix of maximum likelihood estimators
are extracted using the usual coef and vcov functions. mhurdle object methods have a second
argument indicating which subset has to be returned (the default is to return all).

R> coef(model12i, "reg")

(Intercept) age quant

0.200499276 0.013152493 -0.002808693

R> coef(model12i, "sel")

(Intercept) age quant

9.64594522 0.27385000 -0.07744716

R> coef(model12i, "sigma")

sigma

0.7949458

R> coef(summary(model12i), "ifr")

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.0520340 696.83632 0.002944786 0.9976504

age -2.5905681 37.01866 -0.069980062 0.9442095

quant 0.5774693 10.34643 0.055813405 0.9554905

R> vcov(model12i, "reg")

(Intercept) age quant

(Intercept) 13.86563162 -0.113600675 -0.0350976222

age -0.11360067 0.008281271 -0.0011242924

quant -0.03509762 -0.001124292 0.0003623083

Log-likelihood may be obtained for the estimated model or for a “naive” model, i.e. a model
without covariates. Moreover, the component of the likelihood for null and for positive ob-
servations may be obtained separately :

R> logLik(model12i)
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[1] -18.1697

R> logLik(model12i, which = "positive")

[1] -13.47851

R> logLik(model12i, naive = TRUE, which = "zero")

zero

-5.600195

Fitted values are obtained using the fitted function. The output is a matrix whose two
columns are the estimated probability of censoring Prob{yi = 0} and the estimated expected
value of an uncensored dependent variable observation E(yi|yi > 0).

R> head(fitted(model12i))

zero positive

[1,] 1.0000000 1.809788e+29

[2,] 0.4795935 1.703160e+00

[3,] 0.9999849 2.743720e+05

[4,] 0.4478696 4.027116e+00

[5,] 0.4366752 4.276167e+00

[6,] 1.0000000 4.486644e+174

A predict function is also provided, which returns the same two columns for given values of
the covariates.

R> pr <- predict(model12i, newdata = data.frame(durable = c(0, 1,

+ 0), age = c(50, 32, 48), quant = c(206, 232, 245)))

R> head(pr)

zero positive

[1,] 1.0000000 9.074063e+17

[2,] 0.6532498 8.239173e-01

[3,] 0.4428734 3.816195e+00

For model evaluation and selection purposes, goodness of fit measures and Vuong tests de-
scribed in section 3 are provided. These criteria allow to select the most empirically appro-
priate model specification.

Two goodness of fit measures are provided. The first measure is an extention to limited
dependent variable models of the classical coefficient of determination for linear regression
models. This pseudo coefficient of determination is computed both without (R2) and with
(R̄2) adjustment for the loss of sample degrees of freedom due to model parametrization.
The unadjusted coefficient of determination allows to compare the goodness of fit of model
specifications having the same number of parameters, whereas the adjusted version of this
coefficient is suited for comparing model specifications with a different number of parameters.
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R> r.squared(model12i, which = "all", type = "regression")

[1] 0.4608687

The second measure is an extension to limited dependent variable models of the likelihood
ratio index for qualitative response models. This pseudo coefficient of determination is also
computed both without (ρ2) and with (ρ̄2) adjustment for the loss of sample degrees of freedom
due to model parametrization, in order to allow model comparisons with the same or with a
different number of parameters.

R> r.squared(model12i, type = "mcfadden", which = "all", dfcor = TRUE)

[1] 0.1922852

The Vuong test based on the TLR statistic, as presented in section 3.3, is also provided as a
criteria for model selection within the family of 12 strictly non nested models of FIG. 1.

R> vuongtest(model6, model8d)

Vuong Test (non-nested)

data: model6 model8d

z = -1.0376, p-value = 0.1497

alternative hypothesis: The second model is better

Testing the hypothesis of no correlation between the good selection mechanism and the desired
consumption equation can be performed by means of a Wald test, a Lagrange multiplier (LM)
test or a log-likelihood ratio (LR) statistic.

Likelihood ratio tests are performed using a Vuong test, and more precisely the nested version
of this test. As explained in section 3.3, the critical value or the p-value to be used to perform
this test is not the same depending on the model builder believes or not that his model is
correctly specified. In the first case, the p-value is computed using the standard chi square
distribution, in the second case a weighted chis square distribution is used.

R> vuongtest(model8d, model8i, type = "nested", hyp = TRUE)

Vuong Test (nested)

data: model8d model8i

chisq = 0.002, df = 1, p-value = 0.9646

alternative hypothesis: The larger model is better

R> vuongtest(model8d, model8i, type = "nested", hyp = FALSE)
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Vuong Test (nested)

data: model8d model8i

wchisq = 0.002, df = 1, p-value = 0.661

alternative hypothesis: The larger model is better

The LM test is performed using the independent model (model8i). The summary performs
the test, as seen previously, the p-value for this test is 0.494. The Wald test is simply obtained
in the coefficient table of the dependent model (model8d)

R> coef(summary(model8d), "rho")

Estimate Std. Error t-value Pr(>|t|)

rho 0.05469814 1.218839 0.04487724 0.9642052

In the previous example, all the tests don’t reject the hypothesis of no correlation.

6. Conclusion

mhurdle aims at providing a unified framework allowing to estimate and assess a variety
of extensions of the standard Tobit model particularly suitable for single-equation demand
analysis not currently implemented in R .
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Ph.D. thesis, Faculty of Law and Economics, University of La Réunion.
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