Minimal Free Resolutions Package

David J. Marchette

1 Introduction

A graph is a set of vertices and a set of edges, G = (V, E). In the mfr package
all graphs are assumed undirected and simple: there are no self-loops (edges
from a vertex v to itself) and no multiple edges.

The neighborhood of a vertex v is the set of vertices connected to v by an
edge, union the vertex v. We write this as N[v]. A splitting edge is an edge
between vertices u and v, such that N[u] C N[v].

A graph is chordal if every induced cycle has a chord (an edge between two
vertices that are not adjacent in the cycle). The complement of a graph is a
graph on the same vertices with an edge in the new graph between vertices u
and v if and only if there is no such edge in the original graph.

A graph invariant is a function that is constant on isomorphism classes.
The Betti numbers of a graph correspond to a matrix-valued graph invariant.
The details of what these are and some information about how they can be
computed is in the vignette edgeideals and the references therein. For now,
we will simply treat these as a “black box” of graph invariants, and look at the
various functions available in the mfr package that allows us to compute them
(at least for small graphs).

The mfr package extends the igraph package and makes use of the function-
ality inherent in it. There are a number of fundamental limitations that are the
result of the computational complexity of the minimal free resolution (MFR).

1. The algorithms work primarily on chordal graphs. The algorithm is recur-
sive, so the size of the graph for which the MFR can be calculated depends
on the size of the recursion stack, and on the size of memory.

2. The recursive algorithm can be applied to non-chordal graphs, so long as
there exist splitting edges in the graph. If the graph is not chordal, at some
point in the recursion a graph will occur which has no splitting edges.
At this point, either one of the special cases will be used, the Singular
algebraic geometry package will be called if available, or an approximation
to the MFR will be returned.

3. It is unlikely that the MFR for a graph with more than a couple dozen
vertices can be computed on a reasonable computer in a reasonable amount
of time if the graph contains no splitting edges and is not one of the special
cases.



> set.seed(1234)
> g <- rtree(20)
> plot(g,layout=layout.fruchterman.reingold,vertex.label="",vertex.size=1)

Figure 1: A random tree.

The following sections detail the main functionality of the package. Section
2 describes some new random graphs, and Section 3 describe some new graphs
added to the ones available in the igraph package, while the later sections cover
the minimal free resolutions themselves.

2 Some Random Graphs

The mfr package has several functions for creating random graphs. Because of
the recursive algorithm for chordal graphs (see the vignette edgeideals) there
is code to generate trees and chordal graphs.

By default, rchordal starts with a random tree and adds edges (keeping the
graph chordal) until the desired number of edges is obtained.

There is also a slight generalization of the erdos.renyi.game random graph,
a block model with two blocks called the kidney.egg.game. The basic idea is
that there is a large subset of vertices (the “kidney”) and a small set (the “egg”)



> set.seed(2322)
> h <- rchordal(10,20)
> plot(h,layout=layout.fruchterman.reingold,vertex.label="" 6vertex.size=1)

Figure 2: A random chordal graph.



> set.seed(2452)
> g <- kidney.egg.game (n=30,p=.1,m=10,9=.6)
> plot(g,vertex.label="",vertex.size=2)

Figure 3: A kidney-egg graph.

with a higher edge probability in the egg.

Note that kidney-egg graphs have their own plot function, putting the egg on
the right. Kidney-egg graphs are a special case of product.game graphs. This
function takes two graphs and creates a new graph with these two as subgraphs,
randomly connected by edges between the subgraphs. The use provides either a
probability p or a number n, and either n edges are randomly selected between
the subgraphs, or each possible edge is chosen with probability p. The argument
p takes precedent, so if it is given n is ignored.

Another class of random graphs are the random dot product graphs (RDPG).
A random dot product graph is a random graph in which each vertex v has as-
sociated with it a vector x,,, and the probability of an edge between two vertices
w and v is the dot product of their vectors, Pluv] = z!,x,. Conditional on the x
vectors, the edges are independent, just as is the case with erdos.renyi.game.
The function rdpg.game will generate an RDPG. If it is called with the argu-
ment x, it uses the matrix x to generate the graph, with one vertex for each row



of z. If = is not given, it is generated uniformly inside the simplex.

Given an RDPG graph g, we may estimate the x vectors using rdpg.estimate.
For this one mush posit the dimension of the vectors. One RDPG graph, with
the estimated z points, is shown in Figure 4.

The picture in Figure 4 does not seem to be very impressive. The estimate
is not terribly good. The estimates will improve as n increases. The average
Frobenious error between the true probability matrix and the estimated one,
in this case, is 0.11. Increasing n to 1000, a similar experiment results in the
average Frobenious error of 0.02.

The estimates are not guaranteed to have valid dot products (values in [0,1])
or to be in the first quadrant. They are only unique up to rotations and flips.

3 Some New Graph Types

We have added some new graph types to the package to supplement those in
igraph.

We implement a version of barbell graphs in graph.barbell. The graph
consists of two “bells” — either two complete graphs or two cycles — connected
by a path. See the top two graphs in Figure 5.

Two other graphs that have a particular coloring property (the vertices and
edges can be colored so that every neighborhood has exactly the same number
of each color) are depicted in the bottom two graphs of Figure 5.

One interesting way of creating new graphs from old is via clique expansion.
Given a d-regular graph, we can replace very vertex with a d-clique. This can
be done with the function clique.expand.

mm ¢ <- graph.full(4) h <- clique.expand(g) k <- graph.truncated.tetrahedron()
graph.isomorphic(h,k)

4 Minimal Free Resolutions

See the vignette edgeideals, and the references therein, for information about
minimal free resolutions. For now we will simply consider an MFR to be a
matrix of graph invariants.

The code uses the following logic:

1. Check to see if the graph is of a particular form that allows fast calculation.
See Section 4.2

2. Check to see if the graph is in the pre-computed database. See Section
4.1

3. Determine if there is a splitting edge (an edge that allows the recursive
algorithm to progress). If so, recurse.

4. If no splitting edges exist:



> set.seed(2452)

> g <- rdpg.game (n=30,d=2)

> est <- rdpg.estimate(g,d=2)

> X <- procrustes(est$x,g$x)$X.new

> plot(g,layout=g$x,vertex.label="", vertex.size=2,rescale=FALSE,
+ xlim=c(min(X[,1],0),max(X[,1],1)),

+ ylim=c(min(X[,2],0),max(X[,2],1)))

> points(X,pch=20,col=2)

> segments(X[,1],X[,2],g%$x[,1],g%x[,2]1)

Figure 4: A random dot product graph, with the estimated points shown in red.
The black segments link the estimated point to the vertex.



par (mfrow=c(2,2))

g <- graph.barbell(7,5,2)

x <- layout.circle(graph.full(7))

y <- scale(layout.circle(graph.full(5)),center=c(-5,0),scale=FALSE)
z <- rbind(c(2,0),c(3,0))
plot(g,layout=rbind(x,y,z),vertex.label="")

g <- graph.barbell(7,5,2,full=FALSE)

x <- layout.circle(graph.full(7))

y <- scale(layout.circle(graph.full(5)),center=c(-5,0),scale=FALSE)
z <- rbind(c(2,0),c(3,0))
plot(g,layout=rbind(x,y,z),vertex.label="")

g <- graph.truncated.tetrahedron()

plot(g,vertex.label="")

g <- graph.martini.glasses()

plot(g,vertex.label="")

par (mfrow=c(1,1))
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Figure 5: Two barbell graphs (top), a truncated tetrahedron (bottom left) and
a “martinis glasses” graph (bottom right).



(a) If Singular is available, call it to compute the MFR.
(b) Else “fake it”.

The last case, “fake it” means to try to approximate the MFR (see the edgei-
deals vignette).
Let’s consider a typical result of calling mfr:

> g <- graph.famous("petersen")
> mfr(g)

$bettis
[1] 1 15 45 87 100 60 20 4

$graded

(,11 [,21 ,31 [,41 (,81 [,61 [,71 [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 15 30 10 0 0 0 0
[3,] 0 156 72 80 30 0 0
(4,] 0 0 5 20 30 20 4

O O O

$reg
[1] 4

$pd
(11 7

$punted
(11 0

attr(,"class")
[1] "mfr" "exact"

The attribute graded is the graded Betti number matrix. bettis are the total
Betti numbers, corresponding to the column sum of graded. The value pd is
the projective dimension of the edge ideal, which is one less than the number of
columns (it is the length of the non-trivial part of the resolution), and reg is the
regularity (Mumford-Castelnuovo regularity) of the ideal, the number of rows
of the graded resolution, and corresponds to a measure of how “complicated”
the graph is. Finally, the attribute punted indicates whether the code had to
call Singular, or, if Singular is unavailable, whether the code had to use an
approximation (and in this case if it is non-zero the resolution is not guaranteed
to be exact). Note that for the Petersen graph above (see Figure 6) we would
have to call Singular to compute the resolution if it wasn’t one of the graphs in
the database for which the MFR is pre-computed. See Section 4.1.

The MFR can be computed separately on the connected components of a
graph, and then the overall resolution can be computed from these. For example,



> x <- layout.concentric.circles(g,list(nodes=5:9))
> plot(g,vertex.label="",f vertex.size=2,layout=x)

Figure 6: The Petersen graph.



for two components with resolutions ' and 52 we have:

1 2
Bi,j = Z p,T *Bq,s‘

p+q=t,r+s=j

> g <- graph.famous ("petersen")

> g1 <- graph(c(0,1),directed=FALSE)
> g2 <- graph.disjoint.union(gl,g1)
> g3 <- graph.disjoint.union(g,g1)

> mfr(gl)

$bettis
(1] 11

$graded

[,11 [,2]
[1,] 1 0
[2,] 0 1

$reg
[1] 2

$pd
(11 1

$punted
[1]1 o

attr(,"class")
[1] "mfr" "exact"

> mfr(g2)

$bettis
[1] 1 21

$graded

[,11 [,2]1 [,3]
[1,] 1 0 0
[2,] 0 2 0
(3,1 o 0 1

10



$punted
(11 o

attr(,"class")

[1] "mfr" "exact"
> mfr(g3)

$bettis

[1] 1 16 60 132 187 160 80 24 4

$graded
(.11 [,21 [,3] [,4] [,8] [,6]1 [,71 [,8] [,9]

[1,] 1 0 0 0 0 0 0 0 0
[2,] 0 16 30 10 0 0 0 0 0
[3,] 0 0 30 102 90 30 0 0 0
(4,] 0 0 0 20 92 110 50 4 0
(5,1 0 0 0 0 5 20 30 20 4
$reg

[11 5

$pd

(1] 8

$punted

(11 0

attr(,"class")
[1] "mfr" "exact"

It is a fact that (B2 5 is always the size of the graph (the number of edges) and
that the other Betti numbers compute the number of certain types of induced
subgraphs, but it is not trivial to figure out which subgraphs are counted for
each Betti number.

Define an angle to be a graph on three vertices with two edges, and a triangle
is K3, the graph on three vertices with three edges. Finally, define a bars graph
to be a graph isomorphic to g2 above: a two component graph on 4 vertices in
which each component is a two vertex graph with one edge. Write #) for the
number of induced angles in a graph, #A for the number of induced triangles,
and #|| for the number of induced bars. It turns out that: Sz 3 = #) + 2#A
and 33,3 = #||.

> g <- graph.famous ("petersen")

> g1 <- graph(c(0,1),directed=FALSE)
> h <- graph.disjoint.union(g,gl1)

> mfr(g)

11



$bettis
[1] 1 15 45 87 100 60 20 4

$graded

(,11 [,21 [,3] [,4]1 [,8] L[,6] [,71 [,8]

[1,] 1 0 0 0 0 0 0
[2,] 15 30 10 0 0 0
[3,] 0 15 72 80 30 0
(4,] 0 0 5 20 30 20

O O O

$reg
(1] 4

$pd
[11 7

$punted
(1] o

attr(,"class")
[1] "mfr" "exact"

> mfr(h)

$bettis
[1] 1 16 60 132 187 160 80 24 4

$graded

0

0
0
4

(,11 [,21 (,31 [,41 [,81 [,6]1 [,71 [,8] [,9]

[1,] 1 0 0 0 0 0 0
[2,] 16 30 10 0 0 0
[3,] 0 30 102 90 30 0
(4,] 0 0 20 92 110 50
(5,1 0 0 0 5 20 30

O O O O

$reg
[1] 5

$pd
[1] 8

$punted
(11 0

attr(,"class")
[1] "mfr" "exact"

12

0
0
0
4
20

> O O O O



Note that we have doubled the number of bars without effecting the number of
angles or triangles in going from the Petersen graph to h. It is clear that we
have also added quite a bit of structure to the rest of the matrix, indicating
that the other Betti numbers are counting complicated combinations of induced
subgraphs some of which are not connected (like “bars”).

4.1 The Database mfrDB

The package comes with a database with a number of MFRs precomputed. This
makes it easier to calculate the MFR of small graphs. It is also useful for larger
graphs: when the recursive algorithm reaches a graph with no splitting edges,
it first checks the database to see if the graph has already been pre-computed,
allowing it to avoid a call to Singular (or a “punt” to an approximation).

The database contains (mostly) graphs which require Singular for the com-
putation of the minimal free resolution. There are 1951 graphs in the database,
of which 1943 required Singular (the rest are just there for convenience). See
create.mfr.database for more detail.

For graphs in the database, the attribute punted is set to 0, even if Singular
had to be called in order to compute the MFR for the graph originally. As we
saw above, the Petersen graph is in the database and the MFR indicates that
Singular was not called. However, we can check the database directly and see
that Singular had to be called in order to compute the MFR:

> g <- graph.famous ("petersen")
> mfrDB$mfrs[which.DB(g)]

[[1]1]
$bettis
[1] 1 15 45 87 100 60 20 4

$graded

(,11 [,21 [,3] [,4]1 [,8]1 [,6] [,71 [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 0 15 30 10 0 0 0 0
[3,] 0 0 15 72 80 30 0 0
[4,] 0 0 0 5 20 30 20 4

$reg
(1] 4

$pd
(11 7

$punted
(11 1

13



attr(,"class")
[1] "mfr" "exact"

Thus, Singular was called once on the graph in order to compute the MFR. It is
easy to see that the Petersen graph contains no splitting edges, and is not one
of the special cases (see Section 4.2), which is why it immediately fails all the
tests and must resort to a call to Singular.

4.2 Special Cases

There are a number of special cases that can be computed quickly. Most of
these take the parameter(s) that defines the graph and return the MFR for that
graph.

e Complete graphs.

> MFRComplete(11)

$bettis
[1] 1 55 330 990 1848 2310 1980 1155 440 99 10

$graded

(.11 [,21 [,3] [,4]1 (,8] C,e] [,71 [,8] [,91 [,10]1 [,11]
[1,] 1 0 0 0 0 0 0 0 0 0 0
[2,] 0 55 330 990 1848 2310 1980 1155 440 99 10

$reg
[1] 2

$pd
[1] 10

$punted
(11 o

attr(,"class")
[1] "mfr" "exact"

e Complete bipartite graphs.

> MFRCompleteBipartite(6,5)

$bettis
[1] 1 30 135 310 455 461 330 165 55 11 1

$graded

(,11 [,21 [,31 [,4] (.51 (.61 [,71 (.81 [,91 [,10] [,11]
t¢,J ¢+ o o o o0 O O o0 o0 0 O©

14



[2,] 0 30 135 310 455 461 330 165

$reg
(1] 2

$pd
[1] 10

$punted
[11 o

attr(,"class")
[1] "mfr" "exact"

e Cycles.

> MFRCycle(11)

$bettis
[1] 1 11 44 88 99 66 22 1

$graded

(,11 [,2]1 [,3] [,41 [,5]1 [,6] [,71 [,8]
[1,] 1 0 0 0 0 0 0
2,1 0 11 11 0 0 0 0
[3,] 0 0 33 66 33 0 0
(4,] 0 0 0 22 66 66 22
(5,] 0 0 0 0 0 0 0

=, O O O O

$reg
[11 5

$pd
[1] 7

$punted
(11 o

attr(,"class")
[1] "mfr" "exact"

e Paths.

> MFRPath(11)

$bettis
[1] 1 10 37 69 72 43 13 1

15



$graded
(,11 [,2] [,3] [,4] [,8] [,6] [,7]1 [,8]

[1,] 1 0 0 0 0 0 0 0
[2,] 0 10 9 0 0 0 0 0
[3,] 0 0 28 49 21 0 0 0
[4,] 0 0 0 20 50 40 10 0
[5,] 0 0 0 0 1 3 3 1
$reg

[11 5

$pd

(11 7

$punted

(11 o

attr(,"class")
[1] "mfr" "exact"

e Stars.

> MFRStar(11)

$bettis
[1] 1 10 45 120 210 252 210 120 45 10

$graded

1

(,11 [,21 [,31 [,41 [,5]1 [,6] C,71 [,8]1 [,91 [,10] [,11]

[1,] 1 0 0 0 0 0 0 0
[2,] 0 10 45 120 210 252 210 120

$reg
(1] 2

$pd
[1] 10

$punted
[11 o

attr(,"class")
[1] "mfr" "exact"

e Wheels with an odd number of vertices.

16
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> MFRWheel (11)

$bettis

[1] 1 20 90 215 325 337 250 131 46

$graded

[,11 [,2]1 [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 20 65 130 210
(3,] 0 0 25 75 75
(4,1 0 0 0 10 40

$reg
(1] 4

$pd
[1] 10

$punted
(11 o

attr(,"class")
[1] "mfr" "exact"

[,6]
0
252
25
60

[,7]
0
210
0
40

10

1

(.81 [,91 [,10] [,11]

0
120
0
11

0
45
0
1

0
10
0
0

0

1
0
0

Graphs whose complement is chordal. Note that complete graphs are a

special case of these.

> set.seed(5234)

> g <- rchordal(7,12)

> h <- graph.complementer(g)
> mfr(h)

$bettis
[11 1 9 17 12 3

$graded

[,11 [,2]1 [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 0 9 17 12 3

$reg
[1] 2

$pd
(1] 4

$punted

17



(11 o

attr(,"class")
[1] "mfr" "exact"

It is important to note that chordal.comp.mfr does not check that the
complement of the graph is chordal! It assumes that you have done this
check prior to calling the function. Thus it is best to let mfr take care of
things rather than calling chordal.comp.mfr yourself.

> mfr(g,check.database=FALSE)

$bettis
[1] 1 12 30 33 18 4

$graded
(,11 [,21 [,3] [,4]1 [,8] [,6]
] 1 0 0 0 0 0
2,] 0 12 25 20 7 1
] 0 0 5 13 11 3

$punted
(11 o

attr(,"class")
[1] "mfr" "exact"

> chordal.comp.mfr(g)

$bettis
[1] 1122520 7 1

$graded

(,11 [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 0 0
[2,] 0 12 25 20 7 1

18



(11 5

$punted
[11 o

attr(,"class")
[1] "mfxr" "exact"

This last is wrong. You must always check, using is.chordal.comp(g) or
equivalently is.chordal (graph.complementer(g)), to ensure that chordal.comp.mfr
is appropriate. The mfr code does this for you.

5 Partial Results

There is a small amount of code for producing partial Betti number results. In
particular, the functions betti2, betti3 and linearStrand. betti2 just the
size of the graph (f$2,2), and betti3 is the third column of the graded Betti
numbers, corresponding to the triangle/angle and bars calculations discussed
above.

The linear strand is the second (first non-trivial) row of the graded Betti
numbers. There are two versions: an exact calculation, and a lower bound. The
code always produces the exact result if the graph does not contain an induced
4-cycle. If it does, then the result depends on whether 1inearStrand was called
with exact=TRUE. If so, it runs a (very slow) algorithm to compute the exact
linear strand. If not, it runs a (slightly less slow, but still very slow) algorithm
to obtain a lower bound. It is almost always going to be faster than computing
the full MFR, though.

> set.seed(3452356)

> g <- rchordal(10,20)

> h <- graph.complementer(g)
> mfr(g)

$bettis
[1] 1 20 80 163 200 152 70 18 2

$graded
(.11 [,21 [,3] [,41 [,8] L,6] [,71 [,8] [,9]

[1,] 1 0 0 0 0 0 0 0 0
[2,] 0O 20 60 83 67 33 9 1 0
[3,] 0 0 20 80 133 119 61 17 2
$reg

(11 3

$pd

19



(11 8

$punted
(11 0

attr(,"class")
[1] "mfr" "exact"

> linearStrand(g)

Linear Strand of a Minimal Free Resolution:
1000020060083 067 0330901
Betti numbers are exact

> mfr(h)

$bettis
[1] 1 25 94 165 164 95 30 4

$graded

(,11 [,21 [,3] [,4]1 [,8] [,6] [,71 [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 0 25 94 165 164 95 30 4

$reg
(1] 2

$pd
(11 7

$punted
(11 0

attr(,"class")
[1] "mfr" "exact"

> linearStrand(h)

Linear Strand of a Minimal Free Resolution:
1 0025094 0 165 0 164 0 95 0 30 0 4
Betti numbers are exact

6 Scan Statistics

In spite of all the effort to implement good algorithms to compute the MFR
(both in the R/C code here and the Singular package) the fact is, the calculation
of the MFR for graphs with more than a few tens of vertices is impractical.

20



One way around this, is to give up on finding the MFR of the full graph, and
instead think locally. A scan statistic on a graph is a graph invariant applied to
a local region (in our case, the 1-neighborhood of a vertex). The local region is
chosen to have some maximal property (such as size of the induced subgraph),
and scanMFR returns the the MFR of this induced subgraph.

There’s good news and bad news about scan statistics. First, the induced
subgraph is the star of the induced subgraph of the open neighborhood, and so
we get a little savings there (the MFR of the star of a graph ¢g can be computed
easily from the MFR of ¢g). The bad news is that unless these subgraphs are
“small” we are still doomed.

> set.seed(5383)

> g <- erdos.renyi.game(n=100,p=.1)
> m <- scanMFR(g)

>m

Scan method: size
Minimal Free Resolution:
Total betti numbers:

1 36 271 1186 3601

Graded: 1 0 0 0 0 0
0 36 190 742 2423
0 0 81 309 485 425
0 0 0 135 595 1082
0 0 0 0 98 472
0 0 0 0 0 26

Note that in the above example, 822 = 36 < 100. Even here there are
limits. For example, in the above example, if we increase n from 100 to 1000,
Singular must be called, and the estimated time to complete is sometime after
the heat-death of the universe. We can attempt to compute just a few terms
in the linear strand, but even here we may be biting off far more than we can
chew.
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