Minimal Free Resolutions of Edge Ideals

David J. Marchette

1 Introduction

We will assume all graphs are undirected and simple: no self-loops or multiple
edges. Given a graph, we can define the edge ideal as follows. Assign the labels
{z1,...,2,} to the n vertices of the graph. The edges inherit this labeling: if
there is an edge from vertex ¢ to vertex j, this edge now has the label z;z;. Thus
the set of edges is a set of square free quadratic monomials. We will utilize this
observation to construct a set of graph invariants, called the graded minimal
free resolution of the graph.

The package mfr contains code to compute minimal free resolutions of graphs,
under certain conditions. For certain classes of graphs, there are algorithms to
compute the minimal free resolution (MFR) without requiring more general
commutative algebra code. In this vignette we will restrict ourselves to those
cases where these algorithms exist. On a Unix machine, the Singular computa-
tional algebra system (http://www.singular.uni-k1.de, see [Greuel and Pfister(2002)]
and decker:2011) allows the mfr package to compute the MFR much more gen-
erally. This vignette will not make use of Singular. The mfr package depends on
the igraph package, and we will make use of the functionality that this provides
us.

To get started, we need a few definitions.

Definition 1.1. A graph is chordal if all induced cycles have at least one chord.

Figure 1 shows smallest non-chordal graph, a cycle on 4 vertices. This can
be made chordal by adding one edge, as in Figure 2.

Definition 1.2. The open neighborhood of a vertez v, denoted N(v), is the set
of vertices {w € V|vw € E}. That is, it consists of all neighbors of v. Note that
v & N(v). The closed neighborhood of v, denoted N[v] is the set N(v) U {v}.

Definition 1.3. The trivial graph is the graph with no edges; E = ().

Definition 1.4. The complete graph on n wvertices K,, is the graph with all
possible edges (this is graph. full in the package igraph). The complete bi-
partite graph K, , is the graph on m + n vertices in which the vertices are
partitioned into two disjoint groups, of size m and m, and all edges are be-
tween groups (bipartite) and all possible such edges are present (complete). See
graph. full.bipartite in igraph.

> g <- graph.ring(4,directed=FALSE)
> plot(g,layout=layout.circle)

Figure 1: A 4-cycle, a graph which is not chordal.

> h <- add.edges(g,c(1,3))
> plot(h,layout=layout.circle)

Figure 2: A chordal graph.

Definition 1.5. Given a graph G, define star(G) to be the graph defined by
adding a single vertex v to G, with edges from v to each vertex of G. We will
denote by star(n) the star on the trivial graph on n vertices. Thus star(n) = K1 ,
has order n + 1 and contains one vertex of degree n and n vertices of degree 1.

Note: our definition of Star differs slightly from graph.star, and is more
general.

> graph.star(4,mode="undirected")
Vertices: 4
Edges: 3

Directed: FALSE
Edges:

(0] 0 -1
[1] 0 -- 2
[2] 0 -- 3

> Star(3)

Vertices: 4

Edges: 3
Directed: FALSE
Edges:

[0] 0 -1

(11 0 - 2

21 0 -- 3

Note that in this case Star(n) = graph.star(n+1,mode="undirected")

> Star(Star(3))

Vertices: 5

Edges: 7
Directed: FALSE
Edges:

(0] 0 -1

[1] 0 -- 2

2] 0 -- 3

[3] 0 -- 4

4] 1 —- 4

5] 2 - 4

(6] 3 -4

Definition 1.6. A vertex v is simplicial if N(v) = K,, for some n.

Simplicial vertices will be the main tool we can use to make minimal free
resolutions computable for a large number of graphs. Essentially, as we will
see, as long a graph contains a simplicial vertex, the MFR of the graph can be
computed in terms of the MFRs of two smaller graphs. This gives a recursive
method for computing the MFR. We now proceed to define the MFR, of a graph.

2 Commutative Algebra

Suppose we have a graph G on n vertices {v1,...,v,}. Let k be a field (we may
assume for the purposes of this paper that k = Q). Let S = k[z1,...,xz,], the
ring of polynomials in n variables with coefficients in k. We will use the notation
v; to denote a vertex and x; the corresponding variable, so that it is clear when
we are talking about a graph, and when we are considering the algebraic object
S.

If you are not familiar with rings, ideals, modules and exact sequences,
you can skip this section and simply think of Betti numbers as invariants
of the graph that can be computed via various formulas. See for example
[Dummit and Foote(2004), Eisenbud(1994)].

Definition 2.1. The edge ideal of G is the ideal of S generated by the mono-
mials {x;x;|v;v; € E}. We write I(G) for the edge ideal of G.

For more information on edge ideals see [Jacques(2004)], [Jacques and Katzman(2005)],
[Stanley(1996)], [Villarreal(2001)], [Miller and Sturmfels(2005)].

We can now use the tools of commutative and algebraic geometry to learn
about a graph by studying its edge ideal. One such tool, the one we will be
focused on in this paper, is the minimal free resolution (MFR).

Definition 2.2. An augmented free resolution of an S-module M is an exact
sequence of the form

O+— M<+—Fy+— Fy<+—F, 1 ---+«—F, <0

where each F; is a free S-module (a direct sum of B; copies of S). The image of
F; in the sequence is called the ith syzygy module. Such a resolution is minimal
if m is minimal over all such, and each fB; is minimal. We define the minimal
free resolution of the edge ideal to be the minimal free resolution of I = IJ(G),
in which case the free resolution becomes:

04— I <0 g P gh B2 Grmt g PGB
The B; are called the Betti numbers. The length of the resolution is m. We

will refer to these as total Betti numbers to distinguish them from their graded
versions discussed below.

It is well known that minimal free resolutions always exist, and are unique up
to isomorphism ([Miller and Sturmfels(2005)]). Thus, the length of the minimal
free resolution of an edge ideal is well defined.

Definition 2.3. The projective dimension of an edge ideal is the length of the
mainimal resolution.

Note that 5y = size(G). There is a natural N grading on the ring k[x1, . . ., 5],
which gives a natural grading on the resolution.

04— I« P S(—j) «— P S(=5)" «— - «— P S(—j)’ms «— 0,

J J

where S(—j) is the shifted module obtained by shifting the degrees by j, so that
the corresponding maps remain degree 0. We will be concerned with methods
for computing the graded Betti numbers §; ;. The total Betti number §; is the
sum over j of f; ;.

3 Splitting

This section provides the main tool we will use to compute the Betti numbers for
our graph edge ideal. Theorem 3.1 provides the main recursive algorithm, and
Theorem 3.2 shows how to implement the algorithm to compute the minimal
free resolutions of chordal graphs.

Definition 3.1. An edge uv is a splitting edge if N[u] C N[v] or N[v] C N[u].
If uwv is a splitting edge, we will assume that the vertices are ordered so that
Nlu] C N[v].

Theorem 3.1 ([Ha and Van Tuyl(2006a)]). If uv is a splitting edge of G, then
foralli>1and j >0

K3

5,006 = s 0EN o) + 3 () Berongoas). ()
k=1

where n = [N[v]| =2, H=G\ N[v], B-10=1 and f_1,; =0 for j > 0. Recall

that we are using the convention that wv is ordered so that N[u] C Nv].
Proof. See [Ha and Van Tuyl(2006a)]. O

Lemma 3.1. A graph G has the property that all (non-trivial) induced subgraphs
H contain a splitting edge if and only if G is chordal. Here “non-trivial” refers
to the condition that H contain at least one edge.

Proof. (=) Assume G is not chordal. Then there is an induced cycle C,, with
n > 3 with no chord. But it is easy to see that any such cycle does not have a
splitting edge.

(<) If G is chordal, then it contains a simplicial vertex u. Since N(u) is a
clique, uv is a splitting edge for any v € N(u). Since any induced subgraph of
a chordal graph is chordal, we have the result. O

Lemma 3.2. For any chordal graph G there is a splitting edge e such that
G\ {e} is chordal. In fact, any edge incident on a simplicial vertex may be
chosen for e.

Proof. The only way removing an edge from G can make it non-chordal is if
it opens up an induced C4 with no chord. So in particular, we want to avoid
removing chords. Let v be a simplicial vertex. Any edge e incident to v is a
splitting edge. Further, it is not the chord of any cycle external to N[v]. Since
N[v] is complete, removing e cannot result in an induced cycle without a chord.
Thus, any edge incident to a simplicial vertex can be removed. O

We call a function s that takes a graph containing splitting edges and returns
one splitting edge a splitting edge selection strategy, or simply a strategy. We will
say that Equation (1) is recursive for a class of graphs if there is a strategy for
which it is recursive. We do not require that any arbitrary strategy will work,
only that there is at least one. The following theorem has been stated elsewhere
(see [Ha and Van Tuyl(2006b)]), but is usually stated without explicit proof.

Theorem 3.2. Under the strategy which selects splitting edges incident on sim-
plicial vertices, Equation (1) is recursive for a graph G if and only if G is
chordal.

Proof. This is immediate from the two lemmas and the fact that induced sub-
graphs of chordal graphs are chordal. O

This shows that the algorithm to apply Equation (1) recursively always works
to compute the minimal resolution of G whenever G is chordal, provided the
splitting edges are chosen appropriately. It is not the case, though, that it is
recursive no matter what splitting edge is chosen at each step. The simplest
example of this is shown in Figure 3.

It is clear that all edges in this graph are splitting and that this is a chordal
graph. Further, if we remove any edge from the outside cycle, any uv; or vv;,
the resulting graph is chordal. However, if we remove the diagonal, uv, the
resulting graph is not chordal, and furthermore, does not contain any splitting
edges. The two degree 2 vertices are simplicial, while the vertices on which the
diagonal are incident are not. The minimal free resolution is shown in Table 2.

m <- mfr(h)

z <- m$graded

rownames (z) <- c("$\\beta_{1 \\cdot}$", "$\\beta_{2 \\cdot}$")

colnames(z) <- c("$\\beta_{\\cdot 1}$","$\\beta_{\\cdot 2}$",
"$\\beta_{\\cdot 3}$","$\\beta_{\\cdot 4}$")

+ V VvV Vv Vv

mat <- xtable(z,caption="Graded minimal free resolution for h",
display=c("s",rep("d",ncol (m$graded))),
label="table:mfrstar")
print (mat,sanitize.text.function = function(x){x})

vV + + Vv

There are a few things to note about the MFR, displayed in Table 1.

> g <- graph.ring(4,directed=FALSE)
> h <- add.edges(g,c(1,3))
> plot(h,layout=layout.circle,

+ vertex.label=c(expression(v[1]),"u",expression(v[2]),"v"))
()
G (U
©)

Figure 3: A chordal graph where all edges are splitting.

B1 Bao Bz Ba
B 1 0 0 0
By 0 5 6 2

Table 1: Graded minimal free resolution for h

1. All the (nontrivial) Betti numbers are on a single row. In this case the
resolution is called linear. It turns out that whenever the complement
of a graph is chordal, the resolution of the graph is linear (and there
is a simple formula to compute the MFR). In fact, this is if and only
if: the resolution is linear if and only if the complement is chordal (see
[Horwitz(2007)] and [Dochtermann and Engstrodm]). In the case we are
considering, the complement of the graph is a the graph with the single
edge v1vo which is clearly a chordal graph.

2. B2 is the size of the graph (the number of edges). This is always true.

3. Define an angle to be an induced subgraph on three vertices containing
exactly two edges. There are two angles (£) in this graph, the induced
subgraphs of {u,v1,va} and {v,v1,v2} and there are two triangles (A),
{u,v;,v} for i = 1,2. In this case, we see that 833 = #2 + 2#A. This is
also always the case.

4. Let the graph on four vertices {vy,vq, v3,v4} with edges vivy and v3vg be
called “bars”. There are no induced bars subgraphs in this graph, and it
turns out the 333 = #bars. In fact, all Betti numbers can be viewed as
some combination of counts of various subgraphs, but it is not trivial to
determine this association for a given Betti number.

Note that the above leads one to posit that £z 4 is the number of induced
subgraphs isomorphic to h. We can test this by:

k1 <- graph.disjoint.union(h,h)

ml <- mfr(k1)$graded

k2 <- graph.disjoint.union(h,graph.ring(4,directed=FALSE))

m2 <- mfr(k2)$graded

k3 <- graph.disjoint.union(h,graph.ring(4,directed=FALSE),
graph.ring(4,directed=FALSE))

m3 <- mfr(k3)$graded

k4 <- add.edges (k3,c(0,6))

m4 <- mfr(k4)$graded

k5 <- add.edges (k3,c(3,6))

m5 <- mfr(k5)$graded

VVVVV +VVYVVYV

xtable(ml,
caption="Graded minimal free resolution for the disjoint union of 2 copies of h",
display=c(rep("d",ncol(m1)+1)),
label="table:mfri")

+ + + Vv

1 2 3 4 5 6 7
11 0 0 0o 0 0 0
2 0 10 12 4 0 0 O
3 0 0 25 60 56 24 4

Table 2: Graded minimal free resolution for the disjoint union of 2 copies of h

> xtable(m2,
+ caption="Graded minimal free resolution for the disjoint union of h and a 4-cycle",

+ display=c(rep("d",ncol(m2)+1)),
+ label="table:mfr2")
12 3 4 5 6 7
1 1.0 0 0O 0 0 O
2 0 9 10 3 0 00
3 0 0 20 44 37 14 2

Table 3: Graded minimal free resolution for the disjoint union of h and a 4-cycle

> xtable(m3,
+ caption="Graded minimal free resolution for the disjoint union of h and two 4-cycles",

+ display=c(rep("d",ncol(m3)+1)),
+ label="table:mfr3")
1 2 3 4 5 6 7 8 9 10
1 1 0 O 0 0 0 0 0 0 O
2 0 13 14 4 0 0 0 0 0 O
3 0 0 56 120 98 36 5 0 0 O
4 0 0 O 8 256 344 248 101 22 2

Table 4: Graded minimal free resolution for the disjoint union of h and two
4-cycles

From these examples we might think that B34 = 2#h + #(4 — cycles), but
it is more complicated than this, as seen if Table 5.

> xtable(m4,

+ caption="Graded minimal free resolution for the disjoint union of h and two 4-cycles, witl
+ display=c(rep("d",ncol(m4)+1)),

+ label="table:mfr4")

10

1 2 3 4 5 6 7 8§ 9 10
11 0 0 0 0 0 0 0 0 O
2 0 14 18 6 0 0 0 0 0 O
3 0 0 56 136 122 48 7 0 0 O
4 0 0 0 64 224 320 240 100 22 2

Table 5: Graded minimal free resolution for the disjoint union of h and two
4-cycles, with an added edge (k4)

> xtable(m5,
+ caption="Graded minimal free resolution for the disjoint union of h and two 4-cycles, witl

+ display=c(rep("d",ncol(m5)+1)),
+ label="table:mfr5")
1 2 3 4 5 6 7T 8 9 10
11 0 0 0 0 0 0 0 0 0
2 0 14 19 8 1 0 0 0 0 O
3 0 0 54 135 130 60 13 1 0 O
4 0 0 0 56 196 282 215 92 21 2

Table 6: Graded minimal free resolution for the disjoint union of h and two
4-cycles, with an added edge (k5)

As Tables 5 and 6 make clear, the Betti numbers are computing something
that is very dependent on the details of the structure of the graph.

> x <- layout.circle(h)
> x1 <-x

> x2 <- X

> x1[,1] <- x[,1]+3

> x2[,1] <- x[,1]+6

> y <- rbind(x,x1,x2)

Figure 4 depicts the three graphs k3, k4 and k5. As can be seen in this
Figure and Tables 4-6, very small differences in the graphs can produce large
differences in the minimal free resolutions, although the basic structure of the
resolutions are very similar.

4 Special Cases
The package contains code to compute the MFR of a number of special types

of graphs. The recursive code discussed above applies to all chordal graphs,
including trees. Also, the MFR, of the disjoint union of graphs is computable as

11

vV V.V Vv VvyVv

par (mfrow=c(3,1))

par (mar=c(0,0,0,0))
plot(k3,layout=y,vertex.label="",6vertex.size=1)
plot (k4,layout=y,vertex.label="" 6vertex.size=1)
plot (k5,layout=y,vertex.label="",6vertex.size=1)
par (mfrow=c(1,1))

Figure 4: The three graphs k3, k4 and kb.

12

a convolution of the MFRs of the individual components, so the code operates
on individual components of the graph separately, then puts the overall MFR
together from the individual parts.

Several other types of graphs whose MFRs are easily computable using rel-
atively simple formulas are:

e Empty graphs and complete graphs.
e Complete bipartite graphs.
e Cycles.

e Paths and stars. Although these are also computable using the recursive
algorithm for chordal graphs, there are explicit formulas for these special
cases which are coded directly.

e Graphs whose complement is a chordal graph.

In addition to this, the package contains a database of graphs for which the
minimal free resolutions have been precomputed. If the graph is isomorphic to
one of these, the MFR is returned without any calculations. This means that if
a graph is not chordal there is still some hope of calculating the MFR. Splitting
edges will be removed using the algorithm of Theorem 3.2 until no splitting
edges are available. If at any time the graph is one of the special types given
above, the MFR is computed using the specialized code. Otherwise the graph
is checked against the database, and if found, the MFR is returned.

If none of these approaches is applicable, then the result depends on whether
Singular is installed and available on the computer. If so, Singular is called to
compute the MFR. From a practical point of view, this will only work (in a
reasonable amount of time) if the graph has no more than about 20 vertices and
about 40 edges. Much more than this can take an inordinate amount of time.

If Singular is not available, an “approximation” is returned. Here the word
“approximation” is not used in a technical sense — there is no theory that tells
us how close the resulting estimated MFR is to the true value. Essentially what
the algorithm does is to pretend one of the edges is splitting (using a heuristic
to pick this) and then proceed as if it were splitting. It is true that sometimes
this gives the correct MFR, but there are no guarantees, and as Tables 5 and 6
have shown, very small changes to the graph can have large effects on the MFR,
and similarly using non-splitting edges in the recursion can have large effects on
the MFR.

Let’s look at this “approximation” with Tables 5 and 6 in mind. First we’ll
compute the MFR of a graph that requires a call to Singular. We’ll pick a graph
in the database, so the MFR has been precomputed.

> z <- mfr(graph.famous("Cubical"))$graded
> mca <- mfr(graph.famous("Cubical"),check.database=FALSE,nocode=TRUE, suppress.warning=TRUE,

The graph is not chordal, and nocode==TRUE
The results are likely to be approximate

13

So now z is the true MFR and mfa is the approximation. We have told mfr not
to look in the database (something that one typically only does for these types
of examples, or if the database becomes corrupted or needs to be regenerated),
and we’ve also specified that it is not to try to run Singular, even if we have it.

> xtable(z,caption="Minimal free resolution for the Platonic graph of the cube.",

+ display=rep("d",ncol(z)+1),
+ label="table:cube")

1 2 3 4 5 6 7

11 0 0 0o 0 0 O

2 0 12 24 14 0 0 O

30 0 6 24 32 16 3

Table 7: Minimal free resolution for the Platonic graph of the cube.

> xtable(mca,caption="Approximate minimal free resolution for the Platonic graph of the cube

+ display=rep("d",ncol (mca)+1),
+ label="table:cubea")

1 2 3 4 5 6 7

11 0 0 0 0 0 0

2 0 12 19 8 0 0 O

3 0 0 15 40 39 17 3

Table 8: Approximate minimal free resolution for the Platonic graph of the
cube.

Tables 7 and 8 give a feel for the types of errors that occur when using the
“approximation”. The bottom line is that if possible one should either stick
to graphs that can be processed by the code (chordal graphs, graphs whose
complement is chordal, cycles, etc., small graphs contained in the database,
etc.) or obtain Singular and make sure it interfaces correctly with the mfr code.
Future releases of this package will (we intend) have a version of the resolution
code that Singular uses, so that the reliance on Singular for some graphs will
go away.

5 Scan Statistics

One way to reduce the calculations of the MFR of a graph is to give up on trying
to get the MFR, of the full graph and instead focus on subgraphs. Suppose that
one wishes to use the MFR to make some type of inference on a graph, where the

14

> set.seed(12345)
> g <- kidney.egg.game(30,.1,5,.8)
> plot(g)

Figure 5: A kidney-egg graph with n =30, p =0.1, m =5, ¢ = 0.8.

inference in question is related to local structure of the graph rather than global
structure. For example, consider the goal of determining whether a graph is
“random” (by some given definition), or alternatively that there is a small group
of vertices whose induced subgraph has a non-random structure, or at least a
different structure than the overall graph as a whole.

The graph in Figure 5 is a kidney-egg graph: the graph is an independent
edge random graph, like erdos-renyi-game, in which there are two groups
of vertices: K containing 25 vertices and E containing 5 vertices. The edge
probabilities are p = 0.1 for any edge that is not between two vertices in E. For
pairs of vertices in E, the edge probability is ¢ = 0.8.

We cannot compute the MFR of this graph directly, unless we are lucky and
find that it is in the database (since the database may grow in time, it may be
that this graph can be processed without Singular in your version, but let us
assume the contrary, as is the case at the time of writing). We’d like to have
a test that can determine whether a graph is Erdos-Reny{ or whether there is

15

a small group of vertices with a larger inter-connectivity probability. We could
do this by using scan statistics.

The idea of a scan statistic on graphs was introduced in [Priebe et al(2005)].
One computes a statistic (graph invariant) on the induced subgraphs of the
neighborhoods of the vertices, and computes the maximum over these. The
function scanMFR allows us to do this in several ways.

> set.seed(12345)
> g <- kidney.egg.game(30,.1,5,.8)
> unlist (lapply(neighborhood(g,order=1),length))

(11 7 5 3 2 5 1 6 6 4 3 55 3 7 4 4 4 3 4 5 5
8

[26]
> unlist (lapply(neighborhood(g,order=1),function(x) ecount(subgraph(g,x))))

[1] 9 6 61017 5 2 1 6 0 6 6 5 2 5 4 2 8 4 3 4 2 3 7 5
[26] 13 1 7 5 2

The neighborhoods are all small, so we are confident we will be able to
compute the MFR of any neighborhood. One thing we might do is to pick the
neighborhood with the largest number of edges, and compute the MFR of this.
We could then compare this with the results of running such a computation on a
large number of Erdés-Renyi random graphs. By performing the Monte Carlo on
both a large number of Erdés-Reny{ random graphs (the null hypothesis) and a
large number of kidney-egg graphs (with various parameters) we can determine
the Betti numbers which are most powerful for performing the desired inference.

For now, let’s just see how to apply scanMFR.

> set.seed(12345)

> g <- kidney.egg.game(30,.1,5,.8)
> h <- erdos.renyi.game (30, .1)

> m1 <- scanMFR(g)$graded

> m2 <- scanlMFR(h) $graded

> xtable(ml,caption="Scan minimal free resolution for a kidney-egg graph.",
+ display=rep("d",ncol(m1)+1),
+ label="table:scan1")

12 3 4 5 6 7 § 9 10 11
11 0 0 0 0 0 0 0o 0 0 O
2 0 17 58 127 211 252 210 120 45 10 1
3 0 0 12 32 31 13 2 0 0 0 O

Table 9: Scan minimal free resolution for a kidney-egg graph.

16

> xtable(m2,caption="Scan minimal free resolution for a random graph.",

+ display=rep("d",ncol(m2)+1),
+ label="table:scan2")
1 2 3 4 5 6 7 8
1 1 0 0 0 O 0 0 O
2 0 10 25 3 35 21 7 1
3 0 O 2 3 1 0 0 O

Table 10: Scan minimal free resolution for a random graph.

Alternatively, we could compute the MFR of every neighborhood, and take
the maximum Betti number across these neighborhoods.

v

m3 <- scanMFR(g,method="maximum")$graded
m4 <- scanMFR(h,method="maximum")$graded

v

v

xtable (m3, caption="Scan minimal free resolution for a kidney-egg graph using method=\"maxi
display=rep("d",ncol (m3)+1),
label="table:scan3")

+ +

1 2 3 4 5 6 7 8§ 9 10 11
1 1 0 O 0 0 0 0 0 0 0 0
2 0 17 58 127 211 252 210 120 45 10 1
30 0 12 32 31 13 2 0O 0 0 O

Table 11: Scan minimal free resolution for a kidney-egg graph using
method="maximum”.

> xtable(m4,caption="Scan minimal free resolution for a random graph using method=\"maximum'

+ display=rep("d",ncol (m4)+1),
+ label="table:scan4")
1 2 3 4 5 6 7 8
11 0 0O 0O 0 0 0 O
2 0 10 25 3 3 21 7 1
30 0 2 3 1 0 0 O

Table 12: Scan minimal free resolution for a random graph using
method="maximum”.

In this case there is no difference, because the vertex with maximum size
and order is unique, and contributes all the large Betti numbers.

17

References

[Balakrishnan and Ranganathan(2000)] R. Balakrishnan and K. Ranganathan.
A Textbook of Graph Theory. Springer, New York, 2000.

[Decker et al(2011)] W. Decker, G.”"M. Greuel, G. Pfister and H. Schonemann.
Singular 3-1-8 - A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de, 2011.

[Dochtermann and Engstroom] Anton Dochtermann and Alexander En-
gstroom. Algebraic properties of edge ideals via combinatorial topology,
the electronic journal of combinatorics 16(2), 2009.

[Dummit and Foote(2004)] David™S. Dummit and Richard M. Foote. Abstract
Algebra. John Wiley & Sons, Inc, Hoboken, NJ, Third Edition, 2004.

[Eisenbud(1994)] David Eisenbud. Commutative Algebra: with a view toward
algebraic geometry. Springer, New York, 1994.

[Greuel and Pfister(2002)] David Eisenbud. A Singular Introduction to Com-
mutative Algebra. Springer, Berlin, 2002.

[Ha and Van Tuyl(2006a)] Huy Tai Ha and Adam Van Tuyl. Splittable ideals
and the resolutions of monomial ideals, 2006a.

[Ha and Van Tuyl(2006b)] Huy Tai Ha and Adam Van Tuyl. Monomial ideals,
edge ideals of hypergraphs, and their minimal graded free resolutions, 2006b.

[Horwitz(2007)] Noam Horwitz. Linear resolutions of quadratic monomial ide-
als, J. Algebra 318, 2007, 981-1001.

[Jacques(2004)] Sean Jacques. Betti numbers of graph ideals. PhD thesis, Uni-
versity of Sheffield, 2004.

[Jacques and Katzman(2005)] Sean Jacques and Mordechai Katzman. The
betti numbers of forests, 2005. URL http://arxiv.org/pdf/math.AC/
0501226. pdf.

[Miller and Sturmfels(2005)] Ezra Miller and Bernd Sturmfels. Combinato-
rial Commutative Algebra, volume 227 of Graduate Texts in Mathematics.
Springer, New York, 2005.

[Priebe et al(2005)] Carey E. Priebe, John M. Conroy, David™J. Marchette
and Youngser Park. Scan Statistics on Enron Graphs, Computational and
Mathematical Organization Theory, 11, 229-247, 2005.

[Stanley(1996)] Richard P. Stanley. Combinatorics and Commutative Algebra.
Birkhduser, Basel, second edition, 1996.

[Villarreal(2001)] Rafeal”H. Villarreal. Monomial Algebras, wvolume 238 of
Monographs and Textbooks in Pure and Applied Mathematics. Marcel
Dekker, Inc., New York, 2001.

18

