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1 Short introduction to the package

1.1 Purpose

Reliable meteorological data are a basic requirement for hydrological and
ecological studies at the landscape scale. Given the large spatial variation
of meteorology over complex terrains, meteorological records from a single
weather station are often not representative of entire landscapes. Studies
made on multiple sites over a landscape require different meteorological se-
ries for each site; and other studies may require meteorological data series
for all grid cells of a landscape, in a continuous way. In these cases, spatial
correlation between the meteorology series of different sites or cells must be
taken into account. For example, the sequence of days with rain of con-
tiguous cells will normally be the same or very similar, even if precipitation
amounts differ. Finally, studies addressing the impacts of climate change on
forests and landscapes require downscaling coarse-scale predictions of global
or regional climate models to the landscape scale. When downscaling predic-
tions for several locations in a landscape, spatial correlation of downscaled
predictions is also important.

With the aim to assist research of climatic impacts on forests, the R
package meteoland provides utilities to estimate daily weather variables at
any position in complex terrains:

1. Spatial interpolation of daily weather records from meteorological sta-
tions.

2. Statistical downscaling of coarse-scale meteorological data (coming
from regional climate models or re-analyses) to the landscape scale.

1.2 Meteorological variables

Package meteoland assists in the estimation of the following meteorological
variables over lanscapes (units in parentheses):

• DOY: Day of the year (Julian day).

• MeanTemperature: Mean daily temperature (in degrees Celsius).

• MinTemperature: Minimum daily temperature (in degrees Celsius).

• MaxTemperature: Maximum daily temperature (in degrees Celsius).

• Precipitation: Daily precipitation (in mm of water).

• MeanRelativeHumidity: Mean daily relative humidity (in percent).

• MinRelativeHumidity: Minimum daily relative humidity (in percent).
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• MaxRelativeHumidity: Maximum daily relative humidity (in per-
cent).

• Radiation: Incoming radiation (in MJ/m2).

• WindSpeed: Wind speed (in m/s).

• WindDirection: Wind direction (in degrees from North).

• PET: Potential evapo-transpiration (in mm of water).

Although internally it uses specific units, meteoland allows reading and
writing meteology data in different units and formats.

1.3 Spatial variation of meteorology and topography

Package meteoland deals with two kinds of spatial structures: individual
points and grids. The package includes four S4 spatial classes, which are
defined as children of classes in package sp. Two classes are defined to
represent the variation of topographic features (i.e., elevation, slope and
aspect) over space:

• SpatialPointsTopography extends SpatialPointsDataFrame and rep-
resents the topographic features of a set of points in a landscape.

Class "SpatialPointsTopography" [package "meteoland"]

Slots:

Name: data coords.nrs coords bbox proj4string

Class: data.frame numeric matrix matrix CRS

Extends:

Class "SpatialPointsDataFrame", directly

Class "SpatialPoints", by class "SpatialPointsDataFrame", distance 2

Class "Spatial", by class "SpatialPointsDataFrame", distance 3

• SpatialGridTopography extends SpatialGridDataFrame and repre-
sents the continuous variation of topography over a grid.

Class "SpatialGridTopography" [package "meteoland"]

Slots:

Name: data grid bbox proj4string

Class: data.frame GridTopology matrix CRS
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Extends:

Class "SpatialGridDataFrame", directly

Class "SpatialGrid", by class "SpatialGridDataFrame", distance 2

Class "Spatial", by class "SpatialGridDataFrame", distance 3

Although they have the same slots as their parent S4 classes, the data
frames in SpatialPointsTopography and SpatialGridTopography have
only three variables: ‘elevation’ (in meters), ‘slope’ (in degrees) and ‘aspect’
(in degrees from North).

Two analogous spatial classes are used to represent the variation of daily
meteorology over space:

• SpatialPointsMeteorology extends SpatialPoints and represents
daily meteorology series for a set of points in a landscape.

Class "SpatialPointsMeteorology" [package "meteoland"]

Slots:

Name: dates data coords bbox proj4string

Class: Date vector matrix matrix CRS

Extends:

Class "SpatialPoints", directly

Class "Spatial", by class "SpatialPoints", distance 2

• SpatialGridMeteorology extends SpatialGrid and represents the
continuous variation of daily meteorology over a grid of cells.

Class "SpatialGridMeteorology" [package "meteoland"]

Slots:

Name: dates data grid bbox

Class: Date vector GridTopology matrix

Name: proj4string

Class: CRS

Extends:

Class "SpatialGrid", directly

Class "Spatial", by class "SpatialGrid", distance 2

In addition to their corresponding inherited slots, SpatialPointsMeteo-

rology and SpatialGridMeteorology have two additional slots: ‘dates’
(a vector of days specifying a time period), and ‘data’ (a vector of data
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frames with the meteorological data). Although both have a ‘data’ with
data frames, meteorological data is in different form in each class. In ob-
jects of SpatialPointsMeteorology, there is one data frame for each point
with variables in columns and dates in rows. In objects of SpatialGrid-

Meteorology, each data frames describes the meteorology over the grid for
one day, with grid cells in rows and variables in columns.

1.4 Reading and writing meteorological data

1.4.1 Point meteorology

Objects of class SpatialPointsMeteorology are stored using one ascii data
file for each spatial point. Package meteoland provides four input/output
functions for point meteorology:

• Function readmeteorologypoint() reads the meteorological data stored
in one ascii data file and returns a data frame.

• Function writemeteorologypoint() writes the meteorological data
of a single point as an ascii file in the file system.

• Function readmeteorologypointfiles() reads several ascii files and
returns an object of class SpatialPointsMeteorology.

• Functions writemeteorologypointfiles() writes several ascii files
in the disk, one per spatial point. Metadata (i.e. the spatial coordi-
nates of each point and the corresponding file path) is stored in an
additional file.

1.4.2 Grid meteorology

Objects of class SpatialGridMeteorology are stored using one netCDF file
per day, which also contains the date and spatial projection. The following
functions are available for input/output of grid meteorology:

• Function readmeteorologygrid() reads the meteorological data stored
in one netCDF file and returns a SpatialGridDataframe.

• Function writemeteorologygrid() writes the meteorological data of
a single date as a netCDF file.

• Function readmeteorologygridfiles() reads several netCDF files
and returns an object of class SpatialGridMeteorology.

• Function readmeteorologygridcells() reads several netCDF files
and returns an object of class SpatialPointMeteorology with the
meteorological data of a set of specified grid cells.
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• Functions writemeteorologygridfiles() writes several netCDF files
in the disk, one per date. Metadata (i.e. the dates and their corre-
sponding file path) is stored in an additional file.

1.5 Meteorology estimation functions

1.5.1 Spatial interpolation

Package meteoland provides two functions for interpolating meteorological
data (i.e., one for each data structure):

• Function interpolationpoints() interpolates weather for a set of
locations given in SpatialPointsTopography and returns an object
of class SpatialPointsMeteorology.

• Function interpolationgrid() interpolates weather for a whole grid
specified in SpatialGridTopography and returns an object of class
SpatialGridMeteorology.

Both functions require an object of class ‘MeteorologyInterpolation-

Data’, which contains the X-Y coordinates, the meteorological data and
topography of a set of weather stations as well as weather interpolation
parameters.

Class "MeteorologyInterpolationData" [package "meteoland"]

Slots:

Name: coords elevation

Class: matrix numeric

Name: slope aspect

Class: numeric numeric

Name: MinTemperature MaxTemperature

Class: matrix matrix

Name: SmoothedPrecipitation Precipitation

Class: matrix matrix

Name: SmoothedTemperatureRange RelativeHumidity

Class: matrix matrix

Name: Radiation WindSpeed

Class: ANY ANY
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Name: WindDirection WindFields

Class: ANY ANY

Name: WFIndex WFFactor

Class: ANY ANY

Name: params dates

Class: list Date

Name: bbox proj4string

Class: matrix CRS

Extends:

Class "MeteorologyProcedureData", directly

Class "Spatial", by class "MeteorologyProcedureData", distance 2

When calling functions interpolationpoints() or interpolationgrid(),
the user may require interpolation outputs to be written into the file sys-
tem, instead of being returned in memory. If interpolationpoints() is
called with export = TRUE, the function will write the data frame produced
for each point into an ascii text file. If interpolationgrid() is called
with export = TRUE, the function will write an netCDF file for each day.
Metadata files will also be written, so that results can later be loaded in
memory.

1.5.2 Statistical downscaling

Analogously to interpolation, two functions are available for statistical down-
scaling of coarse-scale meteorological data (i.e., one function for each data
structure):

• Function downscalingpoints() performs statistical downscaling of
coarse-scale weather data on a set of locations and it returns an ob-
ject of class SpatialPointsMeteorology containing corrected weather
predictions.

• Function downscalinggrid() performs statistical downscaling of coarse-
scale weather data over a grid and it returns an object of class Spa-

tialPointsMeteorology containing corrected weather predictions.

Donwscaling functions require an object of class ‘MeteorologyDownscal-

ingData’, which contains the X-Y coordinates and the coarse-scale meteoro-
logical data to be downscaled, which includes a historical (reference) period
and future (projected) period:

Class "MeteorologyDownscalingData" [package "meteoland"]
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Slots:

Name: coords historicdata futuredata params

Class: matrix ANY ANY list

Name: dates bbox proj4string

Class: Date matrix CRS

Extends:

Class "MeteorologyProcedureData", directly

Class "Spatial", by class "MeteorologyProcedureData", distance 2

The historical (reference) period is compared with fine-scale meteorological
data of the same period, and the routine uses this information to correct the
future (projected) period. Therefore, apart from the ‘MeteorologyDown-

scalingData’ object, the dowscaling functions require fine-scale historical
data (for a set of spatial points or a grid). Normally, these data will be the
result of spatial interpolation.

As before, when calling functions downscalingpoints() or downscal-

inggrid(), the user may require the outputs to be written into the file
system, instead of being returned in memory. If downscalingpoints() is
called with export = TRUE, the function will write the data frame produced
for each point into an ascii text file. If downscalinggrid() is called with
export = TRUE, the function will write a netCDF file for each day. Meta-
data files will also be written, so that results can later be loaded in memory.

2 Spatial interpolation of weather records

2.1 Overview

Landscape research studies conducted for historical periods can be perfomed
using meteorological records obtained from surface weather stations of the
area under study. For any target point, minimum temperature, maximum
temperature and precipitation are interpolated from weather records using
truncated Gaussian filters, while accounting for the relationship between
these variables and elevation (Thornton et al. 1997). Relative humidity
can be either interpolated (in fact, water vapour pressure is the variable
being interpolated) or predicted from temperature estimates, depending on
whether it has been measured in weather stations or not. Potential (i.e.
top-of-atmosphere) solar radiation is estimated taking into account latitude,
seasonality, aspect and slope, following Granier & Ohmura (1968). Potential
solar radiation is then corrected to account for atmosphere transmittance us-
ing the predictions of temperature range, relative humidity and precipitation
(Thornton & Running 1999). Finally, the wind vector (wind direction and
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wind speed) is interpolated by using weather station records and static wind
fields. In the following subsections we detail the general algorithm used to
obtain interpolation weights and the interpolation/estimation procedure for
each variable.

2.2 Interpolation weights

Thornton et al. (1997) suggested interpolating meteorological data using a
truncated Gaussian filter. Its form with respect to a central point p is:

W (r) = e−α·(r/Rp)2 − e−α (1)

if r ≤ Rp and W (r) = 0 otherwise. Here r is the radial distance from p,
Rp is the truncation distance and α is the shape parameter. The spatial
convolution of this filter with a set of weather station locations results, for
each target point, in a vector of weights associated with observations. The
following figure illustrates the Gaussian filter forRp = 500 and either α = 3.0
(continuous line) or α = 6.25 (dashed line):
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Rp is estimated so that it has lower values in data-rich regions and is in-
creased in data-poor regions. We require the user to specify N , the average
number of observations to be included for each target point. Rp is then var-
ied as a smooth function of the local density in such a way that this average
is achieved over the spatial domain. Estimation of Rp is as follows:
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1. A user-specified value is used to initialize Rp.

2. Interpolation weights Wi are calculated for all i = (1, ..., n) stations,
and the local station density is calculated as:

Dp =

∑n
i=1 (Wi/Ŵ )

π ·R2
p

(2)

where Ŵ is the average weight over the untruncated region of the
kernel, calculated as:

Ŵ =

(
1− e−α

α

)
− e−α (3)

3. A new Rp value is calculated as a function of N and Dp, as:

Rp =

√
N∗

Dp · π
(4)

where N∗ = 2N for the first I−1 iterations, and N∗ = N for the final
iteration.

4. The new Rp is substituted in step (2) and steps (2-4) are iterated a
specified number of times I. The final Rp value is used to generate
interpolation weights Wi.

Thornton et al. (1997) suggested to use this algorithm only once per point
(and variable to be estimated), but since missing meteorological values can
occur only in some days, we apply the algorithm for each target point and
day. The interpolation method for a given set of observations is defined by
four parameters R, I, N and α. Following Thornton et al. (1997), we set
R = 140000 meters and I = 3 by default. The other parameters depend on
the variable to be interpolated.

2.3 Temperature

Predictions for minimum temperature and maximum temperature are done
in the same way, so we refer to a general variable T . We focus on the
prediction of Tp, the temperature at a single target point p and for a single
day, based on observations Ti and interpolation weights Wi for the i =
(1, ..., n) weather stations. Prediction of Tp requires a correction for the
effects of elevation differences between observation points z1, ..., zn and the
prediction point zp. Thornton et al. (1997) established the relationship
between elevation and temperature using transformed variables (temporal
or spatial moving window averages) for temperature and elevation, instead
of the original variables, but we did not implement this feature here. A
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weighted least-squares regression is used to assess the relationship between
temperature and elevation. Instead of regressing zi on Ti, the independent
variable is the difference in elevations associated with a pair of stations, and
the dependent variable is the corresponding difference in temperatures. This
gives a regression of the form:

(T1 − T2) = β0 + β1 · (z1 − z2) (5)

where subscripts 1 and 2 indicate the two stations of a pair and β0 and β1

are the regression coefficients. Regression is performed using all possible
pairs of stations and the regression weight associated with each point is the
product of the interpolation weights associated with the stations in a pair.
The temperature for the target point, Tp is finally predicted as follows:

Tp =

∑n
i=1Wi · (Ti + β0 + β1 · (zp − zi))∑n

i=1Wi
(6)

where zp is the elevation of the target point and zi is the elevation of the
weather station.

2.4 Relative humidity

Relative humidity is a parameter not always recorded in weather stations.
When input station weather data does not include relative humidity, med-
fate allows estimating it directly from minimum and maximum tempera-
ture (Thornton et al. 1997). Assuming that minimum daily air temperature
Tmin,p at the target point is a good surrogate of dew-point temperature Td,p
(i.e. Td,p = Tmin,p; note that this assumption may not be valid in arid
climates), one can estimate actual vapor pressure ep (in Pa) as:

ep = 610.78 · e

(
17.269·Td,p
237.3+Td,p

)
(7)

and saturated vapor pressure es,p (in Pa) as:

es,p = 610.78 · e
(

17.269·Ta,p
237.3+Ta,p

)
(8)

where Ta,p = 0.606 · Tmax,p + 0.394 · Tmin,p is the average daily temperature.
Finally, relative humidity RHp (in percentage) is calculated as:

RHp = 100 · ep
es,p

(9)

When relative humidity has been measured at weather stations, inter-
polation should be preferred to estimation from minimum and maximum
temperature. However, because relative humidity cannot be corrected for
elevation differences between the station and the target climatic grid cell,
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relative humidity RHi of each weather station i has to be converted to dew-
point temperature Td,i before interpolation (Tymstra et al. 2010). To obtain
the dew-point temperature one first needs to calculate vapor pressure:

ei = es,i · (RHi/100) (10)

where es,i is the saturated water vapor pressure of station i, calculated as
indicated above. Then, dew-point temperature of station i is obtained from:

Td,i =
237.3 · ln(ei/610.78)

17.269− ln(ei/610.78)
(11)

As for temperature, a weighted least-squares regression is used to assess
the relationship between dew-point temperature and elevation. Again, the
independent variable is the difference in elevations associated with a pair
of stations, and the dependent variable is the corresponding difference in
dew-point temperature. This gives a regression of the form:

(Td,1 − Td,2) = β0 + β1 · (z1 − z2) (12)

where subscripts 1 and 2 indicate the two stations of a pair and β0 and β1

are the regression coefficients. The dew-point temperature for the target
point, Td,p is predicted as:

Td,p =

∑n
i=1Wi · (Td,i + β0 + β1 · (zp − zi))∑n

i=1Wi
(13)

where zp is the elevation of the target point and zi is the elevation of the
weather station. From the interpolated dew-point temperature one can ob-
tain actual vapour pressure ep and, together with saturated vapour pressure
at point p, one calculates relative humidity as indicated above. If saturated
vapour pressure is referred to average temperature Ta,p, then relative hu-
midity is average relative humidity RHa,p. If, instead, one refers saturated
vapour pressure to minimum and maximum daily temperatures one obtains,
respectively, maximum and minimum relative humidity values (RHmax,p,
RHmin,p). Because of the regression step, one must check that the predicted
relative humidity value stays within the physical limits 0% and 100%.

2.5 Precipitation

Predictions of precipitation are complicated by the need to predict both daily
occurrence and, conditioned on this, daily total precipitation. Thornton et
al. (1997) define a binomial predictor of spatial precipitation occurrence as
a function of the weighted occurrence at surrounding stations. The precipi-
tation occurrence probability POPp is:

POPp =

∑n
i=1Wo,i · POi∑n

i=1Wo,i
(14)
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where POi is the binomial precipitation occurrence in station i (i.e., POi = 0
if Pi = 0 and POi = 1 if Pi > 0) and Wo,i is the interpolation weight for pre-
cipitation occurrence. Once POPp is calculated, then precipitation occurs
if POPp is smaller than a critical value (i.e. POp = 1 if POPp < POPcrit
and POp = 0 otherwise). Conditional on precipitation occurrence we calcu-
late the prediction of daily total precipitation, Pp. Like with temperature,
Thornton et al. (1997) established the relationship between elevation and
precipitation using transformed variables (temporal or spatial moving win-
dow averages) for precipitation and elevation. Following their results, we
transform precipitation values using a temporal window with side of 5 days.
Weighted least-squares, where the weight associated with each point is the
product of the interpolation weights associated with the stations in a pair,
is used to account for elevation effects on precipitation. Unlike Thornton et
al. (1997), who used the same set of interpolation weights (i.e. Wo,i) for
precipitation occurrence and regression, we use a second set of interpolation
weights Wr,i for the calculation of regression weights. The dependent vari-
able in the regression function is defined as the normalized difference of the
precipitation observations Pi for any given pair of stations:(

P1 − P2

P1 + P2

)
= β0 + β1 · (z1 − z2) (15)

To obtain the predicted daily total Pp we use the following equation:

Pp =

∑n
i=1Wo,i · Pi · POi ·

(
1+f
1−f

)
∑n

i=1Wo,i · POi
(16)

where f = β0 + β1 · (zp − zi). Note the usage of interpolation weight Wo,i

(and not Wr,i). The form of prediction requires that |f | < 1. A parameter
fmax (with default fmax = 0.95 ) is introduced to force |f | = fmax whenever
|f | > fmax.

2.6 Radiation

Incident daily solar radiation is not interpolated, but estimated from topog-
raphy and measurements of temperature, humidity and precipitation.

Potential solar radiation is estimated from latitude, aspect and slope
according to Granier & Ohmura (1968). In particular, instant potential
solar radiation Rpot,s is calculated as:

Rpot,s = I0[(sinφ cosH)(− cosA sinZx)− sinH(sinA sinZx)

+(cosφ cosH) cosZx] cos δ

+[cosφ(cosA sinZx) + sinφ cosZx] sin δ (17)

where φ is the latitude, H is the hour angle measured from solar noon,
positively towards the west, A is the azimuth of the slope (aspect) and Zx is
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the zenith angle of the vector normal to the slope (equal to the slope angle)
and δ is the sun’s declination, which can be derived from the day of the year
J (Julian day):

δ = 0.4093 · sin(2 · π · (J/365)− 1.405) (18)

Daily potential radiation, Rpot is calculated by integrating instant potential
radiation over the day between sunrise (sr) and sunset (ss), using 20 min
(i.e. 1200 sec) intervals:

Rpot =
ss∑
s=sr

1200 ·Rpot,s (19)

Improving the method proposed in Thornton et al. (1997), Thornton &
Running (1999) calculate incident daily total solar radiation Rg as:

Rg = Rpot · Tt,max · Tf,max (20)

where Tt,max is the maximum (cloud-free) daily total transmittance and
Tf,max is the proportion of Tt,max realized on a given day (cloud correction).
The maximum daily total transmittance Tt,max is estimated as:

Tt,max =

[∑ss
s=sr Rpot,s · τ (Pz/P0)·mθ∑ss

s=sr Rpot,s

]
+ (αep · ep) (21)

where τ = 0.87 is the instantaneous transmittance at sea level, at nadir, for
a dry atmosphere; ep is the actual water vapor pressure (in Pa), estimated
as explained before; αep = −6.1 · 10−5Pa−1 is a parameter describing the
effect of vapour pressure on Tt,max; mθ = 1/ cos θ is the optical air mass at
solar zenith angle θ = sinφ · sin δ + cosφ · cos δ · cosH; and Pz/P0 is the
ratio between air pressure at elevation zp and air pressure at the sea level,
calculated as:

(Pz/P0) = (1.0− 2.2569 · 10−5 · zp)5.2553 (22)

In turn, Tf,max was empirically related to ∆T = Tmax − Tmin, the difference
between maximum and minimum temperatures for the target point:

Tf,max = 1.0− 0.9 · e−B·∆TC (23)

being C = 1.5 and B calculated from:

B = b0 + b1 · e−b2·∆̂T (24)

with b0 = 0.031, b1 = 0.201 and b2 = 0.185. In this last equation, ∆̂T is a
30-day moving average for the temperature range ∆T . For computational
reasons, we do not estimate ∆̂T from the 30-day moving window average of
predicted ∆T values, but from the interpolation of pre-calculated ∆̂T values
in weather stations. On wet days (i.e. if Pp > 0) the estimation of Tf,max is
multiplied by a factor of 0.75 to account for clouds.
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2.7 Wind

2.7.1 Simple wind interpolation

Simple wind interpolation for a target point p is as follows. Let vi be the
wind vector in weather station i. vi is initially expressed using polar co-
ordinates. Indeed, we have ui and θi, the wind speed and wind direction,
respectively. If we express vi in cartesian coordinates we have:

xi = ui · sin(θi) yi = ui · cos(θi) (25)

The predicted wind vector vp is the weighted average of the wind vectors
{vi} i = (1, ..., n) predicted for point p using the interpolation weights Wi

determined from the truncated Gaussian filter:

xp =

∑n
i=1Wi · xi∑n
i=1Wi

yp =

∑n
i=1Wi · yi∑n
i=1Wi

(26)

The polar coordinates of the predicted wind vector vp are:

up =
√
x2
p + y2

p θp = tan−1(xp/yp) (27)

2.7.2 Interpolation using wind fields

More precise wind interpolation requires a set of static wind fields cover-
ing the landscape of interest. Each of these wind fields has been calculated
assuming a domain-level combination of wind speed and wind direction.
The set of domain-level combinations should cover all possible winds in the
landscape under study. For example, one could decide to include the combi-
nations of eight different wind directions (i.e., N, NE, E, SE, ...) and three
wind speed classes. The wind estimation of a given target point depends on
both the wind observations at weather stations and these static wind fields.

In a given day (and before processing target points) we begin by identi-
fying, for each weather station i = (1, ..., n), the wind field mi correspond-
ing to a minimum difference between the observed wind vector vi and the
wind vector of the station in the wind field (i.e., minimum distance be-
tween the corresponding cartesian coordinates). The set of wind fields {mi}
i = (1, ..., n) chosen for each weather station conform the information for
wind interpolation in a given day.

Actual wind interpolation details for a target point p are as follows. We
first draw for each i = (1, ..., n) the wind vector vmi,p corresponding to
the location of the target point p in wind fields mi. Let umi,p and θmi,p
be the wind speed and wind direction of vmi,p, respectively. The cartesian
coordinates of vmi,p are:

xmi,p = umi,p · sin(θmi,p) ymi,p = umi,p · cos(θmi,p) (28)
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The predicted wind vector vp is the weighted average of the wind vectors
{vmi,p} i = (1, ..., n) predicted for point p using the interpolation weights
Wi determined from the truncated Gaussian filter:

xp =

∑n
i=1Wi · xmi,p∑n

i=1Wi
yp =

∑n
i=1Wi · ymi,p∑n

i=1Wi
(29)

The polar coordinates of the predicted wind vector vp are found as before.

3 Statistical downscaling of coarse-scale weather
data

Statistical downscaling is necessary when meteorological data is available
at a spatial scale that is too coarse for landscape-level analysis. This is
usually the case when taking predictions from global or regional climate
models. The general idea of downscaling to the landscape level is that a fine-
scale meteorological series is to be compared to coarse-scale series for the a
historical (reference) period. The result of this comparison can be used to
correct coarse-scale meteorological series for other periods (normally future
projections). In the case of most meteorological variables, the comparison
consists in calculating a bias using the reference period and applying this
bias to the future period. However, in the case of precipitation a different
procedure is needed.

3.1 Precipitation

TO DO: Describe precipitation quantile mapping (Gudmundsson et al. 2012).

3.2 Other variables

Other meteorological variables (temperature, relative humidity, radiation
and wind) are downscaled by simple bias correction applied monthly. Let x
be the meteorological variable observed for the target point in the reference
period, and u the same variable, but estimated at the coarse-scale for the
reference period. Monthm bias of the coarse-scale data (θm) is the average of
the difference between u and x over all nm days of month m in the reference
period:

θm =

nm∑
i=1

(ui − xi)/nm (30)

Month biases are used to correct the coarse-scale value of day i in the pro-
jected period using:

ci = ui − θm(i) (31)

where m(i) is the month of day i.
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Mean temperature, minimum temperature, maximum temperature, ra-
diation and wind speed are downscaled using this general bias correction
procedure. In the case of relative humidity, values are transformed to spe-
cific humidity, bias correction is applied to this variable and the result is
back-transformed to relative humidity. Since historic wind data is often not
available, if wind speed data is missing the coarse-scale wind estimate is
taken directly without correction.

4 Miscellaneous functions

4.1 Extraction of climatic netCDF data

NetCDF is a standard data format for meteorological data. In particular,
this format is used to store the predictions of global and regional climate
models. Function extractNetCDF() parses a set of NetCDFs and extracts
the daily meteorological data of a landscape boundary box for use within
meteoland. The function first identifies which cells in NetCDF data should
be extracted (according to the input boundary box), and the overall period.
For each cell to be processed, the function loops over all files (which can
describe different variables and time periods) and extracts the corresponding
data. The function transforms units to the units used in meteoland. If
specific humidity and mean temperature are available, the function also
calculates mean relative humidity.

4.2 Potential evapo-transpiration

Package meteoland provides a supplementary function to calculate poten-
tial evapo-transpiration (PET) using Penman’s formulation (Penman 1948;
1956). The code was taken from package ‘Evapotranspiration’, which
follows McMahon et al. (2013). Penman (1948) proposed an equation to
calculate potential evaporation that combined an energy equation based on
net incoming radiation with an aerodynamic approach. The Penman or
Penman combination equation is:

Epot =
∆

∆ + γ
· Rn
λ

+
λ

∆ + λ
· Ea (32)

where PET is the daily potential evaporation (in mm · day−1) from a sat-
urated surface, Rn is the daily radiation to the evaporating surface (in
MJ ·m−2 · day−1), ∆ is the slope of the vapour pressure curve (kPa · °C−1)
at air temperature, γ is the psychrometric constant (kPa · °C−1), and λ is
the latent heat of vaporization (in MJ · kg−1). Ea (in mm · day−1) is a
function of the average daily windspeed (u, in m · s−1), and vapour pressure
deficit (D, in kPa):

Ea = f(u) ·D = f(u) · (v∗a − va) (33)
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where v∗a is the saturation vapour pressure (kPa) and va the actual vapour
pressure (kPa) and f(u) is a function of wind speed, for which there are two
alternatives (Penman 1948; 1956):

f(u) = 1.313 + 1.381 · u (34)

f(u) = 2.626 + 1.381 · u (35)

If wind speed is not available, an alternative formulation for Epot is used as
an approximation (Valiantzas 2006):

PET ' 0.047·Rs·(Ta+9.5)0.5−2.4·(Rs
Ra

)2+0.09·(Ta−20)·(1−RHmean

100
) (36)

where Rs is the incoming solar radiation (in MJ ·m−2·day−1), Ta is the mean
daily temperature (in °C), Ra is the extraterrestrial solar radiation (in MJ ·
m−2 ·day−1) and RHmean is the mean relative humidity (in percent). Details
about the calculation of all these quantities can be found in McMahon et al.
(2013).

PET is normally calculated after meteorological data have been interpo-
lated (i.e. within functions interpolationpoints() and interpolation-

grid()) or downscaled (i.e. within functions downscalingpoints() and
downscalinggrid()), but PET series can also be calculated for a single
point using function penmanpoint(). For other formulations of PET, the
reader is referred to package ‘Evapotranspiration’.

4.3 Obtaining static wind fields

External software is necessary to calculate the set of wind fields for the
study area under different domain-level average situations. For this we rec-
ommend using WindNinja, a computer program that calculates spatially
varying wind fields for wildland fire applications. WindNinja allows simu-
lating the spatial variation of wind for one instant in time. It was developed
to be used by emergency responders within their typical operational con-
straints of fast simulation times (seconds), low CPU requirements (single
processor laptops), and low technical expertise. WindNinja is typically run
on domain sizes up to 50 kilometers by 50 kilometers and at resolutions
of around 100 meters. The program is free and can be downloaded from
www.firemodels.org.

The inputs for a basic run of WindNinja are an elevation data file for
the study area, a domain-averaged input wind speed and direction and a
specification of the dominant vegetation in the area. In order to obtain
a set of pre-computed rasters of wind direction and speed, we suggest the
following procedure:

• Export the elevation raster of the study area in one of the file formats
accepted by WindNinja (‘.asc’, ‘.tif’ or ‘.img’). In the case of a large
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study area (e.g. > 100 x 100 km) one should run WindNinja in subsets
of the area and then integrate the results (e.g., Sanjuan et al. 2014).

• Run WindNinja, using the elevation of the study area, for all combi-
nations of wind direction and wind speed class (for each wind speed
class an mean class value has to be chosen). Several combinations
of domain-level wind speed and wind direction can be specified for a
single run, and the program can also be run in batch mode.

• Read raster files created by WindNinja (a wind speed file, a wind
direction file) for each combination of domain-level wind speed and
direction.

Function readWindNinjaOutput() can be used to conduct this last step.
The function allows parsing all the ASCII raster files produced by WindNinja
for combinations of wind direction (e.g., 0, 45, 90, 135, 180, 225, 270 and
315 degrees) and wind speed (e.g., 2, 7 and 10 m/s). The function returns
a list with the following elements:

• The vector of domain-level wind directions corresponding to Wind-
Ninja Runs

• The vector of domain-level wind speed corresponding to WindNinja
Runs

• An object SpatialGridDataFrame containing the wind directions (in
degrees from North) for all WindNinja runs.

• An object SpatialGridDataFrame containing the wind speeds (in m/s)
for all WindNinja runs.
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