
Guide to the memuse Package

Drew Schmidt

July 17, 2013

Contents

1 Introduction 1

1.1 History . 1
1.2 License . 1

2 Installation 2

2.1 Installing from Source . 2
2.2 Installing from CRAN . 2

3 It Turns Out That Size Does Matter, and How You Are Using It Is Wrong 3

4 Using the memuse Package 4

4.1 Constructing memuse Objects . 4
4.2 Default Parameters . 4
4.3 Methods . 5
4.4 Package Demos . 5

5 Other 6

5.1 Comparison to object.size() . 6
5.2 Strings . 7

1 INTRODUCTION 1 of 8

1 Introduction

1.1 History

This package was born out of a ≈ 10 line function I wrote to estimate the memory usage of (non-allocated)
in-core, dense R objects of numeric (double precision) data. I need this in my life by a surprising amount,
so it made sense to actually create this thing instead of constantly doing ad hoc multiplications of
nrows× ncols× 8 then dividing by powers of 1024 (or 1000).

But then I got the great idea to make this application ∼enterprise ready∼ by adding a lot of unnecessary
and convoluted OOP, and this stupid package was born. This is sort of a love letter to other needlessly
complex programs, like the Enterprise Fizzbuzz1.

1.2 License

Figure 1: The GNU GPL Explained

This package is free software licensed under the GNU General Public License, version ≥ 2 (see Figure 1).
If you violate the terms of the GPL then Richard Stallman’s beard will sue you in internet court.

1If you are unfamiliar with the fizzbuzz, see my posts “Honing your R skills for Job Interviews” and “The Fizzbuzz that
Fortran Deserves”.

https://github.com/Mikkeren/FizzBuzzEnterpriseEdition
https://en.wikipedia.org/wiki/Bizz_buzz
http://librestats.com/2012/01/10/honing-your-r-skills-for-job-interviews/
http://librestats.com/2013/04/26/the-fizzbuzz-that-fortran-deserves/
http://librestats.com/2013/04/26/the-fizzbuzz-that-fortran-deserves/

2 INSTALLATION 2 of 8

2 Installation

The package consists entirely of R code, so everything should install fine no matter which platform you
use. You have several options

2.1 Installing from Source

The sourcecode for this package is available on GitHub. No binary is available from GitHub, only the
source. To install this (or any other) package from source on Windows, you will need to first install the
Rtools package. This package should install on Mac or Linux2 without problem.

The easiest way to install memuse from GitHub is via the devtools package by Hadley Wickham. With
this package, you can effectively install packages from GitHub just as you would from the CRAN. To
install memuse using devtools, simply issue the command:
✞ ☎

1 library(devtools)

2 install_github(repo="memuse", username="wrathematics")
✝ ✆

from R. Alternatively, you could download the sourcecode from github, unzip this archive, and issue the
command:
✞ ☎

R CMD INSTALL memuse -master
✝ ✆

from your shell.

2.2 Installing from CRAN

Assuming the CRAN actually lets this nonesense on their servers, then installation amounts to issuing
the command
✞ ☎

1 install.packages("memuse")
✝ ✆

from an R session. But you already knew that, didn’t you? So why are you still reading this?

2I’d just like to interject for a moment. What you’re referring to as Linux, is in fact, GNU/Linux, or as I’ve recently
taken to calling it, GNU plus Linux. Linux is not an operating system unto itself, but rather another free component of a
fully functioning GNU system made useful by the GNU corelibs, shell utilities and vital system components comprising a
full OS as defined by POSIX.

Many computer users run a modified version of the GNU system every day, without realizing it. Through a pecu-
liar turn of events, the version of GNU which is widely used today is often called Linux, and many of its users are not
aware that it is basically the GNU system, developed by the GNU Project.

There really is a Linux, and these people are using it, but it is just a part of the system they use. Linux is the
kernel: the program in the system that allocates the machine’s resources to the other programs that you run. The kernel is
an essential part of an operating system, but useless by itself; it can only function in the context of a complete operating
system. Linux is normally used in combination with the GNU operating system: the whole system is basically GNU with
Linux added, or GNU/Linux. All the so-called Linux distributions are really distributions of GNU/Linux.

http://cran.r-project.org/bin/windows/Rtools/Rtools216.exe
http://cran.r-project.org/web/packages/devtools/index.html
https://github.com/wrathematics/memuse/archive/master.zip

3 IT TURNS OUT THAT SIZE DOES MATTER, AND HOW YOU ARE USING IT IS WRONG3 of 8

3 It Turns Out That Size Does Matter, and How You Are Using

It Is Wrong

The core of the memuse package is the memuse class object. You can construct a memuse object via the
memuse() or mu() constructor. The constructor has several options. You can pass the size of the object,
the unit, the unit prefix (IEC or SI), and the unit names (short or long). The size is the number of bytes,
scaled by some factor depending on the unit. The unit is an abstract rescaling unit, like percent, used
for the sake of simple comprehension at larger scales; for example, kilobyte and kibibyte are the typical
storage units to represent “roughly a thousand” bytes (more on this later). Finally, the unit names are for
printing, i.e., controlling whether the long version (e.g., kilobyte) or short version (kB) is used. Table 1

IEC Prefix SI Prefix
Short Long Factor Short Long Factor
B byte 1 B byte 1
KiB kibibyte 210 kB kilobyte 103

MiB mebibyte 220 MB megabyte 106

GiB gibibyte 230 GB gigabyte 109

TiB tebibyte 240 TB terabyte 1012

PiB pebibyte 250 PB petabyte 1015

EiB exbibyte 260 EB exabyte 1018

ZiB zebibyte 270 ZB zettabyte 1021

YiB yobibyte 280 YB yottabyte 1024

Table 1: Units, Unit Prefices, and Scaling Factors for Byte Storage

gives a complete list of the different units for the different prefices.

So for example, 1 kilobyte (kB) is equal to 1000 bytes, but 1 kibibyte (KiB) is equal to 1024 bytes. And
so 1 kB is roughly 0.977 KiB.

There is a great deal of ambiguity in the public regarding the meaning of these terms. People, even
those who know the difference (myself included) almost overwhelmingly use, for example, gigabyte when
they mean gibibyte. The reason for this is obvious; “gibibyte” sounds fucking stupid. This actually
gets all the more confusing because in addition to many conflating — intentionally or otherwise — 1
megabyte (MB) with 1 mebibyte (MiB), internet service providers advertise their bandwidth speeds in
terms of bits3 instead of bytes using the same goddamn symbols. So for example, when an ISP reports
“15 MB” bandwidth speeds, they are actually offering 5 megabit, or 1.875 megabytes (MB), which is
1.788 mebibytes (MiB). They do this because they’re huge assholes.

Another example of this confusion is when people talk about ∼big data∼ . Often I/O people will use the
term “terabytes” or “exabytes” and mean it, even though many file-on-disk-size reporting utilities (such
as du) use the IEC prefix. Rescaling reported SI units into IEC units — the ones people are generally
more familiar with — is simple with the memuse package:
✞ ☎

1 > swap.prefix(mu(size=1, unit="tb", unit.prefix="SI"))

2 0.909 TiB

3 > swap.prefix(mu(size=1, unit="pb", unit.prefix="SI"))

4 0.888 PiB
✝ ✆

These sizes represent an impressive amount of data, but this ambiguity in naming conventions allows
people to lie a bit. For all of these reasons, since the package is meant to be useful for understanding R

31 byte is 8 bits

4 USING THE MEMUSE PACKAGE 4 of 8

object size, the default behavior is somewhat complicated, but can be summarized as trying to provide
what most people meant in the first place. We achieve this by offering several default string objects which
the user can easily control. These units are .UNIT, .PREFIX, and .NAMES.

In the sections to follow, we will further examine the above memuse functions, as well as the other utilities
the package offers.

4 Using the memuse Package

The following sections demonstrate the ways in which the user is meant to interact with the memuse

package. Hence the title.

4.1 Constructing memuse Objects

The memuse object is an S4 class object, which is a high-falootin way of saying it’s a data structure
with specialized interpreted context. Think of it like a list whose elements are always the same. The
specification is:

memuse =



















size

unit

unit.prefix

unit.names

This object has a prototype, sanity checking, and all kinds of other boring crap no one cares about.
What’s important is how to use this thing.

To construct a memuse object, you can use the memuse() or mu() constructors. These functions behave
identically; memuse() exists because I generally find it inappropriate to not have an object constructor
of the same name as the object, and mu() exists because if I have to type more than 5 characters, I’m
completely furious. I’m looking at you, suppressPackageStartupMessages(). . .

Precedence is given to unit.prefix= over unit= in the constructor. So for example, mu(10, "mb",

unit.prefix="IEC") will return 10.000 MiB. The assumption is that you either do not know or do not
care about the distinction between IEC and SI unit prefices, but are probably more familiar with IEC.

4.2 Default Parameters

So as you might have guessed from Section 3, the memuse object’s constructor is full of options you will
never use. In the constructor, the argument size= is a required argument with no default. However, the
constructors invoke the default parameters .UNIT, .PREFIX, and .NAMES. These are default data values
loaded into the package. They are, respectively, "best", "IEC", and "short". To change a package
default, for example "IEC" to "SI", simply execute:
✞ ☎

1 .PREFIX <- "SI"
✝ ✆

And from then on, the constructor will use SI units by default. This, and all other string values, are case
insensitive, in the sense that the correct case will be determined for the user, regardless of the input.
Similarly, the choices for .NAMES are "short" and "long", and are again case insensitive.

4 USING THE MEMUSE PACKAGE 5 of 8

On the other hand, .UNIT is slightly different. This defaults to "best" and like the weird guy at
work, should probably just be left alone. Functions that need to know an input unit, such as the
constructor mu(), have default argument unit=.UNIT. Realistically, you are probably better off modifying
that argument as necessary than changing .UNIT. For example, you want to construct a 100 KiB memuse

object, you probably just want to call
✞ ☎

1 mu(100, "KiB")
✝ ✆

This is equivalent to calling
✞ ☎

1 mu (102400)
✝ ✆

since the default .UNIT=best will make the choice to switch the units from b to KiB once you breach
1024 bytes. This sounds a lot more confusing than it really is.

4.3 Methods

Aside from the constructor, you have already seen one very useful method: swap.prefix(). In addition
to these, we have several other obvious methods, such as swap.unit(), swap.names(), print(), show(),
etc. But we also have some simple arithmetic, namely ‘+‘ (addition), ‘*‘ (multiplication), and ‘^‘

(exponentiation). So for example:
✞ ☎

1 > mu(100) + mu (200)

2 300.000 B

3 > mu(100) * mu (200) # 100*200/1024

4 19.531 KiB
✝ ✆

Other arithmetic of memuse objects is available, including division, as well as

Finally, we have the methods that inspired the creation of this entire dumb thing in the first place:
howbig() and howmany(). The former takes in the dimensions of a matrix (nrow rows and ncol columns)
and returns the memory usage (as the package namesake would imply) of the object. So for example, if
you wanted to perform a principal components decomposition on a 100,000 by 100,000 matrix via SVD
(as we have), then you would need:
✞ ☎

> howbig (100000 , 100000)

74.506 GiB
✝ ✆

Of ram just to store the data. Another interesting anecdote about this sized matrix is that we were able
to generate it in just over a tenth of a second. Pretty cool, eh?

As mentioned before, there is also the howmany() method which does somewhat the reverse of howbig().
Here you pass a memuse object and get a matrix size out. You can pass (exactly) one argument nrow

or ncol in addition to the memuse object; the method will determine the maximum possible size of the
outlying dimension in the obvious way. If no additional argument is passed, then the largest square
matrix dimensions will be returned.

4.4 Package Demos

In addition to all of the above, the memuse package includes several demos. You can execute them via
the command:

5 OTHER 6 of 8

List of Demos
✞ ☎

(Use Rscript.exe for windows systems)

Basic construction/use of memuse objects

Rscript -e "demo(demo , package=’memuse ’, ask=F, echo=F)"

Arithmetic

Rscript -e "demo(demo2 , package=’memuse ’, ask=F, echo=F)"

howbig/howmany examples

Rscript -e "demo(demo3 , package=’memuse ’, ask=F, echo=F)"
✝ ✆

5 Other

5.1 Comparison to object.size()

R contains a handy tool for telling you how big an already allocated object is, the object.size() function.
The functions in this package are essentially an extension of that function for un-allocated, dense objects,
provided your objects are numeric (more on this later).

So say we have the vector x <- 1.0. This should be using 8 bytes to store that 1.0 as a double, right?
Well. . .
✞ ☎

1 > object.size (1.0)

2 48 bytes
✝ ✆

So where is all that extra space coming from? Simply put, R objects are more than just their data.
They contain a great deal of very useful metadata, which is where all the nice abstraction comes from.
Whenever you create a vector, R keeps track of, for example, its length. If you do not appreciate this
convenience, go learn C and then get back to me.

For vectors, this overhead is 40 bytes, regardless of the type of data. Matrices, unsurprisingly cost more,
clocking in at 200 bytes overhead. It is worth noting that this overhead does not scale; it is on a per-object
basis. So we don’t need 40 bytes for each element of a vector when just 8 would do (in the case of double
precision values). We need 40 plus 8 per element:
✞ ☎

1 > # 2 elements

2 > 40+8*2

3 [1] 56

4 > object.size(rnorm (2))

5 56 bytes

6 > # 100.000 elements

7 > 40+1e5*8

8 [1] 800040

9 ‘> object.size(rnorm(1e5))

10 800040 bytes
✝ ✆

The story is slightly more complicated for integer data (and a lot more complicated for strings; see
the following section). On my machine (and probably yours, but not necessarily), ints costs 4 bytes.
However, R does some aggressive allocation:
✞ ☎

1 > object.size(1L:3L)

2 56 bytes

5 OTHER 7 of 8

3 > object.size(1L:4L)

4 56 bytes
✝ ✆

Here we see R allocating more bytes than it needs for integer vectors sometimes, choosing to allocate in
16 byte chunks rather than 8 byte chunks.

The memuse package does not adjust for this overhead, because it honestly just doesn’t matter. This
overhead is really not worth worrying about, and when you think about all the abstraction it buys you,
it’s a hell of a bargain. If you have a million R objects stored, you’re wasting less than one MiB (10242

bytes); so you would need a billion objects to use just about a GiB (10243 bytes) on overhead. And if
you’re doing that kind of silly shit, my advice would be to learn how to properly use data structures.

5.2 Strings

String objects have been avoided up until this point because they are much more difficult to describe
in general, unless they have a great deal of regularity imposed on them. In R, strings by default are
allocated to use 56 bytes (not counting overhead), unless they need more. I’m not sure why this value
was chosen, but 56 byte strings will allow for the storage of 7 chars (like a but not aa). Each char costs 1
byte, so there’s some fat overhead for the strings here, and almost certainly an additional byte held out
for the null terminator. So for example, recall that a vector allocates 40 bytes of overhead, so the vector
string letters should use 56× 26 + 40 bytes. We can easily verify that this is the case:
✞ ☎

1 > 56*26+40

2 [1] 1496

3 > object.size(letters)

4 1496 bytes
✝ ✆

If you have a string with more than 7 chars, R will allocate extra space in 8-16 byte blocks. After the
initial 8 byte allocation (7 chars + null terminator), if you need more you get an additional 8 bytes (in
reality this is probably a contiguous 16 byte allocation; I have not bothered to check). Beyond that,
storage is allocate in 16 byte blocks for each string. For example:
✞ ☎

1 > object.size(c(paste(rep("a", 7), collapse=""), "a"))

2 152 bytes

3 > object.size(c(paste(rep("a", 7+1), collapse=""), "a"))

4 160 bytes

5 > object.size(c(paste(rep("a", 7+8+1) , collapse=""), "a"))

6 176 bytes

7 > object.size(c(paste(rep("a", 7+8+16+1) , collapse=""), "a"))

8 192 bytes
✝ ✆

If you have a vector of strings with them of varying lengths, the allocation of individual elements is
handled on a case-by-case basis. Consider the following:
✞ ☎

1 > object.size(c(paste(rep("a", 7+8+16+1) , collapse=""), "a"))

2 192 bytes
✝ ✆

This object (the vector of 2 elements with first element “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa” and second
element “a”) is using 40 bytes for the vector, 56 + 8 + 16 + 16 bytes for the first element, and 56 bytes
for the second.

5 OTHER 8 of 8

For all of these reasons, and given the fact that I almost never (ever) deal with character data, I have not
bothered to make any attempt to extend, for example, howmany() or howbig(), to incorporate strings.
Deal with it, nerd.

	Introduction
	History
	License

	Installation
	Installing from Source
	Installing from CRAN

	It Turns Out That Size Does Matter, and How You Are Using It Is Wrong
	Using the memuse Package
	Constructing memuse Objects
	Default Parameters
	Methods
	Package Demos

	Other
	Comparison to `_12`12`$12=-1 object.size()
	Strings

