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Abstract

In this paper, we describe the R package mediation for conducting causal mediation
analysis in applied empirical research. In many scientific disciplines, the goal of researchers
is not only estimating causal effects of a treatment but also understanding the process
in which the treatment causally affects the outcome. Causal mediation analysis is fre-
quently used to assess potential causal mechanisms. The mediation package implements
a comprehensive suite of statistical tools for conducting such an analysis. The package
is organized into two distinct approaches. Using the model-based approach, researchers
can estimate causal mediation effects and conduct sensitivity analysis under the stan-
dard research design. Furthermore, the design-based approach provides several analysis
tools that are applicable under different experimental designs. This approach requires
weaker assumptions than the model-based approach. Finally, we also implement a statis-
tical method for dealing with multiple (causally dependent) mediators, which are often
encountered in practice.
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1. Introduction

Scholars across a range of disciplines are increasingly interested in identifying causal mecha-
nisms, going beyond the estimation of causal effects. Once they ascertain that certain variables
causally affect the outcome, the next natural step is to understand how these variables exert
their influence. The standard procedure for analyzing causal mechanisms in applied research
is called mediation analysis, where a set of linear regression models are fitted and then the
estimates of “mediation effects” are computed from the fitted models (e.g., Haavelmo 1943;
Baron and Kenny 1986; Shadish, Cook, and Campbell 2001; MacKinnon 2008). In recent
years, however, causal mechanisms have been studied within the modern framework of causal
inference with an emphasis on the assumptions required for identification. This approach has
highlighted limitations of earlier methods and pointed the way towards a more flexible esti-
mation strategy. In addition, new research designs have been proposed for identifying causal
mechanisms.

In this paper, we introduce a full featured R package, mediation, for studying causal mecha-
nisms. The mediation package allows users to (1) investigate the role of causal mechanisms
using different types of data and statistical models, (2) explore how results change as iden-
tification assumptions are relaxed, and (3) calculate quantities of interest under alternative
research designs. We focus on the demonstration of the functionalities available through the
mediation package. The statistical theory that underlies the procedures implemented in the
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mediation package is presented elsewhere along with various empirical examples (Imai, Keele,
and Yamamoto 2010c; Imai, Keele, Tingley, and Yamamoto 2011; Imai, Keele, and Tingley
2010a; Imai, Tingley, and Yamamoto 2012).

The mediation package is freely available for download via the Comprehensive R Archive
Network (CRAN) and runs on a variety of computing platforms. In addition, a Stata version
of the package is available but has a more limited functionality (Hicks and Tingley 2011).
The first version of the mediation package appeared at CRAN in 2009, and Imai, Keele,
Tingley, and Yamamoto (2010b) discuss an earlier version of the package. Over the last three
years, however, we have dramatically improved the package, which as a result has a significant
number of new functionalities and improvements. The current paper thus provides an up-to-
date description of the analyses that can be conducted via the mediation package. To install
the mediation package, use the following standard syntax for installing an R package,

> install.packages("mediation")

where users may be prompted with the selection of CRAN mirror from which the package
will be downloaded. This step needs to be done only once (unless one wishes to update the
mediation package to the new version).

In the next section, we present an overview of the mediation package. We then describe the
functionalities of the package for the model-based causal mediation analysis (Section 3), the
design-based causal mediation analysis (Section 4), and the analysis of causally dependent
multiple mediators (Section 5). Finally, Section 6 concludes.

2. Overview of the mediation Package

The mediation package consists of several main functions as well as various methods for
summarizing output from these functions (e.g. plot and summary). The package requires
little programming knowledge on the user’s side. Figure 1 illustrates the basic structure
of the mediation package, which distinguishes between model-based and design-based infer-
ence. Model-based inference has been standard practice in the mediation analysis to date.
In the experimental setting, the treatment variable is randomized and the mediating and
outcome variables are observed. Imai et al. (2010a) show that a range of parametric and
semi-parametric models may then be used to estimate the average causal mediation effect,
defined below, and other quantities of interest. This modeling approach relies on the se-
quential ignorability assumption for point identification, which as Imai et al. (2010a) show,
provides a general purpose algorithm for calculation of quantities of interest. In contrast,
design-based inference primarily employs the features of the experimental design and does
not require the sequential ignorability assumption. The formal identification properties of
these designs are studied by Imai et al. (2012) and the examples from experimental and ob-
servational studies are contained in Imai et al. (2011, 2012). We refer readers to these papers
for the details about the statistical methods implemented via the mediation package.

Before describing the functions available in mediation, we briefly define the quantities of inter-
est that our software is designed to estimate. Here, we use the potential outcomes framework
to define these quantities. Let Mi(t) denote the potential value of a mediator of interest for
unit i under the treatment status Ti = t. Let Yi(t,m) denote the potential outcome that
would result if the treatment and mediating variables equal t and m, respectively. Consider a

http://cran.r-project.org/web/packages/mediation
http://cran.r-project.org/web/packages/mediation
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Figure 1: Structure of the mediation package as of version 4.0.

standard experimental design where only the treatment variable is randomized. We observe
only one of the potential outcomes, and the observed outcome, Yi, equals Yi(Ti,Mi(Ti)) where
Mi(Ti) represents the observed value of the mediator Mi. With this notation, the total unit
treatment effect can be written as,

τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0)). (1)

We can decompose this total effect into the two components. First, the causal mediation
effects are represented by (Robins and Greenland 1992; Pearl 2001),

δi(t) ≡ Yi(t,Mi(1))− Yi(t,Mi(0)), (2)

for each treatment status t = 0, 1. All other causal mechanisms can be represented by the
direct effects of the treatment as,

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t)), (3)

for each unit i and each treatment status t = 0, 1. Together, we see that they sum up to the
total effect,

τi = δi(t) + ζi(1− t) (4)

for t = 0, 1. The case of multiple candidate mediating variables requires additional notation
and is discussed in Section 5. The average causal mediation effects (ACME) δ̄(t) and the
average direct effects (ADE) ζ̄(t), represent the population averages of these causal mediation
and direct effects.

Identification of the ACME requires an additional assumption beyond the strong ignorability
of the treatment, which is sufficient for identifying the average total effect of the treatment.
Let Xi be a vector of the observed pre-treatment confounders for unit i. The key identifying
assumption is called sequential ignorability and can be written as,
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Assumption 1 (Sequential Ignorability (Imai et al. 2010c))

{Yi(t′,m),Mi(t)} ⊥⊥ Ti | Xi = x, (5)

Yi(t
′,m) ⊥⊥ Mi(t) | Ti = t,Xi = x, (6)

where 0 < Pr(Ti = t | Xi = x) and 0 < p(Mi = m | Ti = t,Xi = x) for t = 0, 1, and all x and

m in the support of Xi and Mi, respectively.

Equation (5) is the standard strong ignorability of the treatment assignment and is satis-
fied, for example, if the treatment is randomized (possibly conditional on Xi). However,
equation (6) requires that the mediator is also ignorable given the observed treatment and
pre-treatment confounders. This additional assumption is quite strong because it excludes the
existence of (measured or unmeasured) post-treatment confounders as well as that of unmea-
sured pre-treatment confounders. This assumption, therefore, eliminates the need to consider
multiple mediators that are causally related to each other (see Section 5 for the method that
is designed to deal with such a scenario).

3. Model-based Causal Mediation Analysis

In this section, we briefly discuss the functionalities of the mediation package for the model-
based causal mediation analysis under the assumption of sequential ignorability. Many of
these functionalities are described in detail in Imai et al. (2010b), but the current version of
the package accommodates a larger class of statistical models.

The model-based causal mediation analysis proceeds in two steps. First, the researchers
specify two statistical models, the mediator model for the conditional distribution of the
mediator Mi given the treatment Ti and a set of the observed pre-treatment covariates Xi

and the outcome model for the conditional distribution of the outcome Yi given Ti, Mi,
and Xi. These models are fitted separately and then their fitted objects comprise the main
inputs to the mediate function, which computes the estimated ACME and other quantities of
interest under these models and the sequential ignorability assumption. Since the sequential
ignorability assumption is untestable, we recommend that the researchers conduct a sensitivity
analysis via the medsens function, which can be applied to certain statistical models. We now
illustrate these functionalities with an empirical example.

3.1. Estimation of the Average Causal Mediation Effects

The mediate function takes various standard model objects (such as lm and glm), which
correspond to mediator and outcome models, and returns the estimates of the average causal
mediation effects along with other causal quantities of interest. The output of the mediate

function can be passed to the plot and summary functions in order to obtain graphical and
numerical summaries, respectively. The mediate function automatically detects the type of
models used for the mediator and outcome models and calculate the estimates of the ACME
and other quantities of interest via the general algorithms described in Imai et al. (2010a). Our
estimation strategy overcomes the limitation of the standard methods based on the product
or difference of coefficients, which is only applicable when both the mediator and outcome
models are linear regressions. In contrast, the algorithms used in the mediation package nest
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Outcome Model Types
Mediator Model Types Linear GLM Ordered Censored Quantile GAM Survival

Linear (lm) X X X∗ X X X∗ X
GLM (glm/bayesglm) X X X∗ X X X∗ X
Ordered (polr/bayespolr) X X X∗ X X X∗ X
Censored (tobit via vglm) - - - - - - -
Quantile (rq) X∗ X∗ X∗ X∗ X∗ X∗ X
GAM (gam) X∗ X∗ X∗ X∗ X∗ X∗ X∗

Survival (survreg) X X X∗ X X X∗ X

Table 1: Types of Statistical Models That Can be Used with the mediate Function. Aster-
isks, ∗, indicate the model combinations that can only be estimated using the nonparametric
bootstrap (i.e. with the argument boot = TRUE for the mediate function).

this as a special case and accommodates a greater range of statistical models as shown in
Table 1.

We now illustrate the use of the mediate function with an empirical example based on the
framing data of Brader, Valentino, and Suhat (2008). This data set is a part of the mediation
library and can be loaded via the following syntax,

> ## load the package

> library(mediation)

> ## load the framing data

> data(framing)

A brief description of each variable in the data can be obtained through a help file,

> ?framing

Brader et al. (2008) conducted a randomized experiment where subjects are exposed to differ-
ent media stories about immigration and the authors investigated how their framing influences
attitudes and political behavior regarding immigration policy. They posit the role of anxiety
as the mediating variable for the causal effect of framing on public opinion. We first fit the
mediator model where the measure of anxiety (emo) is modeled as a function of the framing
treatment (treat) and pretreatment covariates (age, educ, gender, and income). Next, we
model the outcome variable, which is a binary variable indicating whether or not the par-
ticipant agreed to send a letter about immigration policy to his or her member of Congress
(cong_mesg). The explanatory variables of the outcome model include the mediator, treat-
ment status, and the same set of pre-treatment variables as those used in the mediator model.
In this example, the treatment is expected to increase the level of respondents’ emotional re-
sponse, which in turn is hypothesized to make subjects more likely to send a letter to his or
her member of Congress. We use the linear least squares regression and the probit regression
for the mediator and outcome models, respectively.

> ## Mediator Model

> med.fit <- lm(emo ~ treat + age + educ + gender + income, data = framing)
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> ## Outcome Model

> out.fit <- glm(cong_mesg ~ emo + treat + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

We now use the mediate function to estimate the ACME and average direct effects. As the
inputs to this function, we must specify the model fits (in this case med.fit and out.fit)
as well as the names of the treatment and mediating variables, which are represented as the
arguments treat and mediator, respectively. Here, we use the default number of simulations,
which is sims = 1000, to calculate the uncertainty estimates but one may wish to increase
this number if the estimates vary too much from one simulation to another. In addition,
we use a robust heteroskedasticity consistent variance-covariance matrix from the sandwich
package (vcovHC). Finally, like most functions in R, the results of the mediate function can be
summarized numerically by the summary function, which calculates point estimates, confidence
intervals, and the p-values, for the average direct, indirect, and total effects. The syntax is
now given as,

> library(sandwich)

> med.out <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo",

+ robustSE = TRUE)

> summary(med.out)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Estimate 95% CI Lower 95% CI Upper p-value

Mediation Effect_0 0.0823 0.0287 0.1394 0.01

Mediation Effect_1 0.0828 0.0290 0.1403 0.01

Direct Effect_0 0.0129 -0.0969 0.1324 0.80

Direct Effect_1 0.0134 -0.1098 0.1419 0.82

Total Effect 0.0957 -0.0370 0.2233 0.16

Proportion via Mediation_0 0.7777 -3.6875 6.1015 0.35

Proportion via Mediation_1 0.7946 -3.2064 5.5794 0.32

Mediation Effect (Ave.) 0.0825 0.0290 0.1398 0.01

Direct Effect (Ave.) 0.0131 -0.1028 0.1369 0.82

Proportion via Mediation (Ave.) 0.7861 -3.4473 5.8407 0.34

Sample Size Used: 265

Simulations: 1000

One new feature in the tabular output from the mediate functions is the addition of p-
values for the various estimates. In this example, the estimated ACMEs are statistically
significantly different from zero but the estimated average direct and total effects are not. The
results suggest that the treatment in the framing experiment may have increased emotional
response, which in turn made subjects more likely to send a message to his or her member of



Dustin Tingley, Teppei Yamamoto, Kosuke Imai, Luke Keele 7

Congress. Here, since the outcome is binary all estimated effects are expressed as the increase
in probability that the subject sent a message to his or her Congressperson.

In addition, we can use the bootstrap rather than the Quasi-Bayesian Monte Carlo simulation
for variance estimation via the boot = TRUE argument,

> med.out <- mediate(med.fit, out.fit, boot = TRUE, treat = "treat",

+ mediator = "emo")

> summary(med.out)

Causal Mediation Analysis

Confidence Intervals Based on Nonparametric Bootstrap

Estimate 95% CI Lower 95% CI Upper p-value

Mediation Effect_0 0.0852 0.0360 0.1372 0.01

Mediation Effect_1 0.0863 0.0364 0.1354 0.00

Direct Effect_0 0.0117 -0.1069 0.1331 0.84

Direct Effect_1 0.0128 -0.1182 0.1397 0.83

Total Effect 0.0980 -0.0354 0.2344 0.15

Proportion via Mediation_0 0.8697 -10.5984 5.6789 0.27

Proportion via Mediation_1 0.8805 -9.5876 5.1905 0.24

Mediation Effect (Ave.) 0.0857 0.0357 0.1364 0.01

Direct Effect (Ave.) 0.0122 -0.1143 0.1368 0.83

Proportion via Mediation (Ave.) 0.8751 -10.1450 5.4349 0.26

Sample Size Used: 265

Simulations: 1000

The output now indicates that the bootstrap is used for inferences. As expected, the results
are largely the same. In general, so long as computing power is not an issue, analysts should
estimate confidence intervals via the bootstrap with more than 1000 resamples, which is the
default number of simulations.

As an alternative to the numerical summary, using the output from the mediate function
as the input to the plot command provides a graphical summary of the three parameters
(indirect, direct, and total effects) along with their confidence intervals. Figure 2 shows the
result of plotting the med.out object.

Finally, it is possible that the ACMEs are conditional on the treatment value. In such a
situation, the researcher can add an interaction term between the treatment and mediator
to the outcome model. Then, the mediate function automatically detects the change in the
specification and estimates the ACME conditional on treatment status. In the output given
below, the estimated ACME now varies with treatment status.

> med.fit <- lm(emo ~ treat + age + educ + gender + income, data=framing)

> out.fit <- glm(cong_mesg ~ emo * treat + age + educ + gender + income,
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Figure 2: Graphical Display of Results from the mediate Function.

+ data = framing, family = binomial("probit"))

> med.out <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo",

+ robustSE = TRUE)

> summary(med.out)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Estimate 95% CI Lower 95% CI Upper p-value

Mediation Effect_0 0.07566 0.02772 0.13416 0.01

Mediation Effect_1 0.09727 0.03524 0.16526 0.01

Direct Effect_0 -0.00562 -0.11336 0.11730 0.97

Direct Effect_1 0.01599 -0.10688 0.14317 0.77

Total Effect 0.09165 -0.03434 0.22160 0.19

Proportion via Mediation_0 0.71160 -5.80774 7.23452 0.38

Proportion via Mediation_1 0.95637 -6.66466 8.09910 0.34
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Mediation Effect (Ave.) 0.08646 0.03351 0.14606 0.01

Direct Effect (Ave.) 0.00518 -0.10992 0.12924 0.89

Proportion via Mediation (Ave.) 0.83398 -6.14542 7.53353 0.37

Sample Size Used: 265

Simulations: 1000

3.2. Moderated Mediation

One important feature of the mediate function is the analysis of moderated mediation. Often
analysts hypothesize that the magnitude of the ACME depends on (or moderated by) a pre-
treatment covariate. Such a pre-treatment covariate is called a moderator. In the framing
example, the ACME may be much stronger among older respondents than younger ones. In
other words, the ACME may be moderated by age. While earlier versions of the mediation
package did not allow for this moderated mediation analysis, that functionality has now been
added. To use this functionality, the researchers must alter both the statistical models as
well as the syntax for the mediate function. First, the mediator and outcome models should
contain the moderator and its interaction terms with respect to the treatment and mediating
variables. For example, we may modify the previous models as follows,

> med.fit <- lm(emo ~ treat * age + educ + gender + income, data=framing)

> out.fit <- glm(cong_mesg ~ emo + treat * age + emo * age + educ + gender

+ + income, data = framing, family = binomial("probit"))

Once the two models are estimated, the researcher must specify the levels of the moderator
at which effects will be calculated by the mediate function. In the current example, this can
be done by setting the age covariate to a specific value. To allow the mediation effects to be
moderated by age, we set the value of age to be 20 in one model and 60 in another model.
More complicated moderated mediations involving multiple moderators could be specified by
expanding the list of the covariates.

> med.age20 <- mediate(med.fit, out.fit, treat = "treat",

+ mediator = "emo", covariates = list(age = 20))

> med.age60 <- mediate(med.fit, out.fit, treat = "treat",

+ mediator = "emo", covariates = list(age = 60))

> summary(med.age20)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

(Inference Conditional on the Covariate Values Specified in `covariates')

Estimate 95% CI Lower 95% CI Upper p-value

Mediation Effect_0 0.07102 0.00290 0.16742 0.14
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Mediation Effect_1 0.08643 0.00442 0.19187 0.10

Direct Effect_0 0.22793 -0.00763 0.48355 0.09

Direct Effect_1 0.24333 -0.00861 0.49539 0.06

Total Effect 0.31436 0.07163 0.55358 0.01

Proportion via Mediation_0 0.21228 0.00868 1.04061 0.36

Proportion via Mediation_1 0.27135 0.01233 1.03694 0.27

Mediation Effect (Ave.) 0.07873 0.00335 0.17961 0.10

Direct Effect (Ave.) 0.23563 -0.00812 0.48846 0.08

Proportion via Mediation (Ave.) 0.24181 0.01030 1.03878 0.31

Sample Size Used: 265

Simulations: 1000

> summary(med.age60)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

(Inference Conditional on the Covariate Values Specified in `covariates')

Estimate 95% CI Lower 95% CI Upper p-value

Mediation Effect_0 0.0807 0.0173 0.1556 0.04

Mediation Effect_1 0.0728 0.0148 0.1422 0.04

Direct Effect_0 -0.0835 -0.2121 0.0779 0.23

Direct Effect_1 -0.0914 -0.2355 0.0845 0.24

Total Effect -0.0107 -0.1629 0.1585 0.91

Proportion via Mediation_0 -0.3275 -17.0518 16.3395 0.83

Proportion via Mediation_1 -0.2645 -14.7755 15.3084 0.83

Mediation Effect (Ave.) 0.0768 0.0161 0.1480 0.03

Direct Effect (Ave.) -0.0875 -0.2244 0.0812 0.24

Proportion via Mediation (Ave.) -0.2960 -15.9656 15.8239 0.83

Sample Size Used: 265

Simulations: 1000

Thus, the researcher receives two different sets of output. In the first output, the average
mediation effect is estimated for those who are 20 years old. In contrast, the second output
applies to those who are 60 years old.

3.3. Non-Binary Treatment Variables

Experimental manipulations are often complex and go beyond simple treatment and control
conditions. In the framing experiment, for example, the researchers actually used a 2 × 2
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Outcome Model Types
Mediator Model Types Linear Binary Probit

Linear X X
Binary Probit X -

Table 2: The Types of Models That Can Be Handled by medsens for Sensitivity Analysis.

factorial design. That is, each subject was exposed to two different binary treatments, yielding
four different experimental manipulations. In the analysis presented above, we have focused
on a comparison of one of these conditions relative to the other three conditions. The mediate
function, however, has the capability to handle more complex experimental contrasts, which
can be represented by a non-binary treatment variable.

Here, instead of using the binary treat variable, we use a variable named cond, which records
which of the four conditions the subject was randomly exposed to. Using the control.value

and treat.value options, the user can calculate the specific contrast of interest. For example,
the comparison between the second and third conditions can be done with the following code.

> med.fit <- lm(emo ~ cond + age + educ + gender + income, data = framing)

> out.fit <- glm(cong_mesg ~ emo + cond + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

> med23.out <- mediate(med.fit, out.fit, treat = "cond", mediator = "emo",

+ control.value = 2, treat.value = 3)

> summary(med23.out)

Similarly, the researcher can compare the first and fourth experimental conditions via the
following syntax,

> med14.out <- mediate(med.fit, out.fit, treat = "cond", mediator = "emo",

+ control.value = 1, treat.value = 4)

> summary(med14.out)

Nothing changes in the format of the output, but the contrasts differ depending on the
categories chosen for comparison by the researcher. In the case of a continuous treatment
variable, the researcher would specify two values of the treatment to make the contrast (Imai
et al. 2010a). For example, the causal mediation effects can be defined for any two levels of
the treatment,

δi(t; t1, t0) ≡ Yi(t,Mi(t1))− Yi(t,Mi(t0)), (7)

where t1 6= t0. The corresponding average causal mediation effect is defined as δ̄(t; t1, t0) ≡
E(δi(t; t1, t0)). Thus, the researcher can set control.value to t0 and treat.value to t1. The
researcher may also vary the value of t1, while fixing the base line value of t0, to examine how
the ACME changes as the function of t1.

3.4. Sensitivity Analysis for Sequential Ignorability

Sequential ignorability is a strong assumption, and therefore a sensitivity analysis is recom-
mended. The mediation package allows the researcher to conduct a sensitivity analysis for
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the possible existence of unobserved pre-treatment covariates. Specifically, the output of the
mediate function can be passed to the medsens function, which then computes the values of
causal quantities as a function of sensitivity parameters. Both summary and plot functions
are available for sensitivity analysis, and they display the results in the tabular and graphical
form, respectively. Since derivation of sensitivity formulas must be done on a case-by-case
basis, the range of options for conducting sensitivity analyses is somewhat limited. Table 2
gives the model combinations currently supported by the medsens function.

In our running example, after computing the ACME, we conduct a sensitivity analysis by
passing the object from mediate to the medsens function. We first choose as the sensitivity
parameter the correlation ρ between the residuals of the mediator and outcome regressions
(Imai et al. 2010c,a). If there exist unobserved pre-treatment confounders which affect both
the mediator and the outcome, we expect that the sequential ignorability assumption is vio-
lated and ρ is no longer zero. The sensitivity analysis is conducted by varying the value of
ρ and examining how the estimated ACME changes. The following syntax can be used to
conduct this analysis,

> ## Mediation model

> med.fit <- lm(emo ~ treat + age + educ + gender + income, data = framing)

> ## Outcome model

> out.fit <- glm(cong_mesg ~ emo + treat + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

> ## Computing the ACME etc.

> med.out <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo",

+ robustSE = TRUE)

> ## Sensitivity analysis

> sens.out <- medsens(med.out, rho.by = 0.1, effect.type = "indirect")

> ## Summary output

> summary(sens.out)

Mediation Sensitivity Analysis: Average Mediation Effect

Sensitivity Region: ACME for Control Group

Rho Med. Eff. 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] 0.3 0.0053 -0.0085 0.0170 0.09 0.0493

[2,] 0.4 -0.0095 -0.0287 0.0019 0.16 0.0877

Rho at which ACME for Control Group = 0: 0.3

R^2_M*R^2_Y* at which ACME for Control Group = 0: 0.09

R^2_M~R^2_Y~ at which ACME for Control Group = 0: 0.0493

Sensitivity Region: ACME for Treatment Group

Rho Med. Eff. 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] 0.3 0.0061 -0.0093 0.0199 0.09 0.0493

[2,] 0.4 -0.0113 -0.0352 0.0022 0.16 0.0877
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Figure 3: Graphical Display of Results from the medsens Function. Results as a Function of
ρ.

Rho at which ACME for Treatment Group = 0: 0.3

R^2_M*R^2_Y* at which ACME for Treatment Group = 0: 0.09

R^2_M~R^2_Y~ at which ACME for Treatment Group = 0: 0.0493

where rho.by = 0.1 specifies that ρ will vary from −0.9 to 0.9 by 0.1 increments, and
effect.type = "indirect" means that sensitivity analysis is conducted for the ACME. Al-
ternatively, specifying effect.type = "direct" performs sensitivity analysis for the ADE
and "both" returns sensitivity analysis for the ACME and ADE.

The tabular output from the summary function displays the values of ρ at which the confidence
intervals contain zero for the ACME. For both the control and treatment conditions, the
confidence intervals for the ACME contain zero when ρ equals 0.3 and 0.4. An alternative
but mathematically equivalent way to conduct sensitivity is in terms of the product of R2 (or
coefficients of determination) statistics from the mediator and outcome models. Discussed
in more detail elsewhere (Imai et al. 2010c, 2011, 2010a), the first row captures the point at
which the ACME is 0 as a function of the proportions of residual variance in the mediator
and outcome explained by the hypothesized unobserved confounder. The second line uses the
total variance instead of residual variance. We use R∗2 for residual variance and R̃2 for total
variance. For example, when the product of the original variance explained by the omitted
confounding is .049 the point estimate for ACME would be 0.

A graphical display is often more intuitive and useful for the sensitivity analysis, especially
for the R2 interpretations. This can be done, as before, by passing the object from the
medsens function to the plot function. The plot function allows the researcher to graphically
summarize the results of sensitivity analysis either in terms of ρ (sens.par = "rho") or R2

statistics (sens.par = "R2").

> plot(sens.out, sens.par = "rho", main = "Anxiety", ylim = c(-0.2, 0.2))

When using the R2 statistic version of sensitivity analysis the user must specify whether
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Figure 4: Graphical Display of Results from the medsens Function. Results as a Function of
R̃2.

the hypothesized confounder affects the the mediator and outcome variables in the same
direction or in different directions. This matters because the sensitivity analysis is in terms
of the product of R2 statistics. In the current example, we assume that the confounder
influences both variables in the same direction by setting sign.prod = "positive" (rather
than sign.prod = "negative"). Here, we plot the total variance version of the sensitivity
analysis. The bold line represents the various combinations of the R2 statistics where the
ACME would be 0 (in this case the product equals .049). The graphical display also presents
the corresponding contour plots for other products of the R2 statistics.

> plot(sens.out, sens.par = "R2", r.type = "total", sign.prod = "positive")

4. Design-Based Causal Mediation Analysis

An alternative approach to model-based inference is to use different research designs that are
specifically designed for identifying causal mechanisms. Imai et al. (2012) propose several
such designs and describe the assumptions required for the identification of causal mediation
effects under each of the designs. In this section we briefly illustrate how to use our software
to calculate the estimates of the quantities of interest under each design.

4.1. Single Experiment Design

The single experiment design randomizes the treatment variable and measures the mediating
and outcome variables. In Section 3, we discussed estimation functions that can be used with
parametric and semi-parametric models. If the researchers wish to pursue a completely non-
parametric approach the mediation package offers two options via the mediate.sed function.
First, the researchers can continue to make the sequential ignorability assumption and non-
parametrically estimate the ACME. This approach works only when the mediator variable is
discrete. Second, the sharp bounds on the ACME can be computed under the assumption
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that only the treatment is randomized. Unfortunately, Imai et al. (2012) derive the bounds
in the case with all binary variables (treatment, mediator, and outcome) and show that the
bounds are never informative about the sign of the ACME (i.e., they always cover 0).

Most mediation analysis proceeds under the sequential ignobility assumption. Those analyses
also tend to be model-based, but they need not be. Imai et al. (2010c) outline a design-based
estimator for the ACME for when the mediator is discrete. This estimator for the ACME
is fully nonparametric. One drawback to this estimator is that one can encounter mediator-
treatment combinations for which there are no subjects because of data sparsity. Standard
error calculation for this estimator is based on either the Delta method or the nonparametric
bootstrap.

The mediate.sed function requires the names of the outcome, mediator, and treatment vari-
ables, along with the name of the data frame that contains these variables. When SI = TRUE,
the function will return the point estimates under the sequential ignorability assumption, and
otherwise the results will be a set of sharp bounds for the ACME. The method for inference
also differs slightly from the mediate function. When boot = TRUE the bootstrap is used,
but when boot = FALSE, the Delta method is used to compute standard errors.

Below, we present an example using the framing data from Brader et al. (2008). The treatment
variable is the same as before, i.e., treat, and the mediator is anx, which refers to a subject’s
reported level of anxiety. This four level measure is one component of the emo variable that
was previously used as the mediator and in the data all treatment-mediator combinations are
present (a requirement for the estimator). The outcome variable in this example is english

and measures on a four point scale how much someone supports English only laws, from
strongly support to strongly oppose. Note that the mediate.sed function only take numeric
variables as arguments. Variables that are stored as factors must be converted to numeric
variables as we show below.

> framing$english <- as.numeric(framing$english)

> framing$anx <- as.numeric(framing$anx)

> sed.est <- mediate.sed("english", "anx", "treat", data = framing, SI = TRUE,

+ boot = TRUE)

> summary(sed.est)

Design-Based Causal Mediation Analysis

Single Experiment Design with Sequential Ignorability

Confidence Intervals Based on Nonparametric Bootstrap

Mediation Effect_0: 0.1021 95 % CI -0.6028 0.8495

Mediation Effect_1: 0.07066 95 % CI -0.2108 0.3461

Sample Size Used: 265

The results from the summary function display the mediation effects along with the default
95% confidence intervals. In this example both δ̄(0) and δ̄(1) are not significantly different
from 0.
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4.2. Parallel Design

An alternative to the single experiment design is the “parallel design” proposed by Imai et al.
(2012). In this design there are two separate experiments that are run in parallel with subjects
randomly assigned to one of the two experiments. The first experiment follows the single
experiment design. In the second experiment, subjects are randomly assigned to treatment
or control. Then, a randomly selected set of subjects in each condition is assigned a value
of the mediating variable. A key assumption of this design is that the manipulation of the
mediating variable is possible and has no direct effect on the outcome variable.

Under the parallel design, the ACME is not point identified without an additional assumption.
The mediation package offers two options via the mediate.pd function. First, the researchers
can assume no interaction between the treatment and mediating variables by setting NINT =

TRUE. In this case, the mediate.pd function will calculate the ACME along with its boot-
strap confidence intervals. Second, the assumption of no-interaction between treatment and
mediator can be dropped via NINT = FALSE, and then the sharp bounds can be calculated for
the ACME. These bounds may be informative about the sign (i.e., do not cover 0) and are
always narrower compared to the bounds under the single experiment design where the only
assumption is randomization of the treatment.

For illustration, we simulated data based on the media framing experiment by Brader et al.
(2008) by creating a population distribution of potential mediators and outcomes (see Imai
et al. (2012) for more details). We then sampled 1000 cases from this distribution. In this
example, out represents the outcome variable (immigration attitudes), med represents the me-
diator (anxiety), and ttt represents the treatment. All variables are binary. manip represents
whether the subject had the mediator manipulated (−1 if mediator is manipulated down, 0
if no manipulation, and 1 if manipulated up). First, the no-interaction assumption is made
and options for the number of bootstrap simulations and confidence intervals are specified. In
this case, the mediation effect is estimated at −0.12 with 95% confidence intervals spanning
[−0.21,−0.03]. In the second example, the no interaction assumption is dropped and the
sharp bounds are calculated to span [−0.3, 0.3] for the control condition and [0.2, 0.77] for the
treatment condition.

> data(boundsdata)

> pd <- mediate.pd("out", "med", "ttt", "manip", boundsdata,

+ NINT = TRUE, sims = 1000, conf.level = 0.95)

> summary(pd)

Design-Based Causal Mediation Analysis

Parallel Design (with No Interaction Assumption)

Mediation Effect: -0.1236 95 % CI -0.21581 -0.03392

Sample Size Used: 1000

> pd1 <- mediate.pd("out", "med", "ttt", "manip", boundsdata, NINT = FALSE)

> summary(pd1)

Design-Based Causal Mediation Analysis
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Parallel Design (Interaction Allowed)

Lower Upper

Mediation Effect_0: -0.3207 0.3303

Mediation Effect_1: 0.2006 0.7680

Sample Size Used: 1000

4.3. Parallel Encouragement Design

In many situations, perfect manipulation of the mediating variable may be difficult. In the
parallel encouragement design, subjects are split into two separate experiments. The first
experiment is based on the single experiment design. In the second experiment subjects are
randomly assigned to the treatment and control conditions and then, within each condition,
a subset of subjects are randomly encouraged to have a high or low value of the mediator.
Both the mediator and outcome variable are then measured. The mediate.ped function
reports the sharp bounds on two estimands. First is the ACME and second is the ACME
for the “compliers” who respond to the encouragement. The calculation of these bounds is
accomplished via a standard linear programming approach as discussed in Imai et al. (2012).

The parallel encouragement design requires the analyst to specifically design some form of
encouragement. The functionality of the mediate.ped closely mirrors that of mediate.sed.
The key difference is that the analyst must also include an indicator for encouragement. For
illustration, we simulated data based on the media framing experiment by Brader et al. (2008).
We did this by creating a population distribution of potential mediators and outcomes, and
compliance types. We then randomly draw the joint probabilities of the causal types and
assign an encouragement status for those in the encouragement condition (see Imai et al.
(2012) for more details). Based on the encouragement condition and encouragement status
(enc, −1 if mediator is encouraged down, 0 if no encouragement, and 1 if encouraged up), the
observed binary values of the mediator (med.enc) and outcome (out.enc) are determined.
Using this simulated data we can then pass it through the mediate.ped function for the
parallel encouragement design.

> data(boundsdata)

> ped <- mediate.ped("out.enc", "med.enc", "ttt", "enc", boundsdata)

> summary(ped)

Design-Based Causal Mediation Analysis

Parallel Encouragement Design

Lower Upper

Population ACME_0: -0.4341 0.3237

Complier ACME_0 -0.1465 0.2077

Population ACME_1: -0.02014 0.74339

Complier ACME_1: 0.01137 0.70721

Sample Size Used: 1000
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Here, the results from mediate.ped function are a set of sharp bounds. We see that for the
compliers, the sharp bounds on ACME under the treatment condition are informative as they
do not cross 0.

4.4. Crossover Encouragement Design

The fourth experimental design included in the mediation package is the crossover encour-
agement design. Under this design, subjects are exposed to two experiments. In the first
experiment, the treatment variable is randomized and the mediator and outcome variables
observed. In the second experiment, the treatment condition is set to the opposite value
from the first period, but an encouragement is given to a randomly selected set of subjects
so that the mediator variable will take on the value observed in the first experiment. Under
this design, the ACME is point identified for the set of subjects that are able to have their
mediator value manipulated (known as “pliable units”). A crucial identification assumption
is that the first experiment does not influence behavior in the second experiment. For this
experimental design the mediate.ced function calculates point estimates and the bootstrap
is used for estimates of uncertainty.

For illustration, we simulated data based on the identification assumptions necessary for this
design. Y2 is the value of the outcome variable in the second experiment, M1 and M2 are the
mediator values for the first and second experiment, T1 is the value of the treatment in the first
experiment, and Z indicates whether the subject’s mediator value in the second experiment
is encouraged to take on the value opposite to that observed in the first experiment. All
variables are binary.

> data(CEDdata)

> ced <- mediate.ced("Y2", "M1", "M2", "T1", "Z", CEDdata, sims = 100)

> summary(ced)

Design-Based Causal Mediation Analysis

Crossover Encouragement Design

Pliable ACME_0: 0.09069 95 % CI -0.1197 0.3228

Pliable ACME_1: 0.1194 95 % CI -0.02302 0.34015

Sample Size Used: 2000

The results from the mediate.ced function are point estimates and confidence intervals for
the ACME under the treatment and control conditions. These estimates apply only to the
pliable units. In this example, both values of the ACME are positive but the 95% confidence
intervals overlap with zero.

5. Analysis of Causally Dependent Multiple Mechanisms

Our discussion so far has focused on a single mediator, M . Frequently, however, researchers
take measurements of more than one mediating variable in a given study. Accounting for
alternative mechanisms is indeed crucial for the identification of the mechanism of primary
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interest, especially when such mechanisms are causally not independent. This is because the
alternative dependent mediators affect both the mediator of primary interest and the outcome
variable, which, by definition, violates the sequential ignorability assumption (Assumption 1).

5.1. The Methodology

Imai and Yamamoto (2011) develop a framework for dealing with multiple, causally related
mediators (or equivalently, post-treatment mediator-outcome confounders). We briefly review
this framework. First, let Wi(t) denote the vector of the potential values of those alternative
mediators given treatment status t. To allow the causal dependence of both the primary
mediator and outcome on W , we write the potential mediator and outcome as Mi(t, w) and
Yi(t,m,w), respectively. The observed values of these potential response variables can then
be expressed as Wi = Wi(Ti), Mi = Mi(Ti,Wi(Ti)), and Yi = Yi(Ti,Mi(Ti,Wi(Ti)),Wi(Ti)).
The causal mediation effects can now be reexpressed using these notations as,

δi(t) = Yi(t,Mi(1,Wi(1)),Wi(t))− Yi(t,Mi(0,Wi(0)),Wi(t)),

for t = 0, 1. Note that this quantity represents the treatment effects that are transmitted
through the mediator of primary interest Mi, irrespective of whether they also come through
the alternative mediators Wi or not. Therefore, the quantity of interest remains unchanged
from the previous sections, except that the existence of the other mediators are now explicitly
taken into consideration.

The framework of Imai and Yamamoto (2011) is based on the following varying coefficient
linear structural equations model,

Mi(t, w) = α2 + β2it+ ξ>2iw + µ>2itw + λ>2ix+ ε2i, (8)

Yi(t,m,w) = α3 + β3it+ γim+ κitm+ ξ>3iw + µ>2itw + λ>3ixi + ε3i, (9)

where E(ε2i) = E(ε3i) = 0 without loss of generality. Although these equations may resemble
a traditional linear structural equations model at a first glance, they are considerably more
flexible because the coefficients are all allowed to vary arbitrarily across individual units.

Imai and Yamamoto (2011) propose two strategies for the analysis of the average causal medi-
ation effects, δ̄(t) ≡ E(δi(t)). First, it can be shown that the ACME is point identified under
the above model and sequential ignorability (a weaker version allowing for post-treatment
confounding; see Imai and Yamamoto) if the homogeneous interaction assumption is satisfied.
This additional assumption is formally written as,

Yi(1,m,Wi(1))− Yi(0,m,Wi(0)) = Bi + Cm

for any m. The assumption states that the degree of interaction between the treatment and
the primary mediator is constant across individual units, which may or may not be plausible
depending on the empirical context.

Second, when this assumption is violated, one can express the sharp bounds on the ACME
as functions of a parameter representing the degree of the violation, and conduct a sensitivity
analysis. The sensitivity parameter here is the standard deviation of the coefficient on the
treatment-mediator interaction term, i.e.,

σ ≡
√
V(κi),
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and the expression for the sharp bounds are given in Imai and Yamamoto (2011, footnote
6). Researchers can then analyze robustness to the potential violation of the homogeneous
interaction assumption by examining how the location and width of the bounds vary as σ
changes.

The sensitivity analysis can also be formulated in terms of two alternative sensitivity parame-
ters, both based on coefficients of determination as in the single mediator case (see Section 3.4).
Specifically, we use the proportion of the residual or total variance of the outcome variable
that would be explained by allowing the heterogeneity in the treatment-mediator interaction
in the outcome model. These parameters are formally defined as

R2∗ =
V(κ̃iTiMi)

V(η3i(Ti,Mi,Wi))
and R̃2 =

V(κ̃iTiMi)

V(Yi)
, (10)

where κ̃i = κi − E(κi). Researchers may find these parameters to be easier to interpret in
substantive terms, as they represent how important it would be to incorporate the interaction
heterogeneity in order to explain the variation in the outcome model. Imai and Yamamoto
(2011) show that these parameters have a one-to-one relationship with σ, implying that the
ACME can also be written as a function of R2∗ or R̃2.

5.2. Single Experiment Design

The above framework has been implemented in the mediation package as the multimed func-
tion. The function takes a data frame containing the necessary variables (outcome, primary
mediator, alternative mediators, treatment, and pre-treatment covariates if any) and outputs
an object of class multimed, a list consisting of estimated bounds along with uncertainty
estimates. Note that the theoretical framework accommodates more than one post-treatment
confounder, and the current version of multimed accommodates multiple post-treatment con-
founders (version 4.2 or later).

The functionality of multimed differs in important ways from mediate. First, there is not a
separate function for sensitivity analysis. Instead, a sensitivity analysis is conducted within
the function along with the estimates of the mediation effects. Second, the arguments for the
multimed function are rather different. Here, the names of the outcome (outcome), primary
mediator (med.main), alternative mediators (med.alt) and treatment (treat) variables are
passed to the function along with a vector of the names of the pre-treatment covariates to
condition on (covariates). In the multimed function, inference can only be done with the
nonparametric bootstrap.

To illustrate the use of the function we revisit the media framing example in Section 3. Here,
we use a different outcome variable immigr, which is a five category measure of whether
immigration should be increased or decreased (treated as a continuous measure). The main
mediator is the same composite measure of anxiety, emo, and the treatment and pretreatment
covariates are defined as before. We now introduce an alternative mediator p_harm, which
is an eight category measure of the perceived economic harm of immigrants. The reasoning
behind the inclusion of this variable is that the media framing treatment may also affect
participants’ opinion about immigrants by changing their factual belief about the economic
impact of increased immigration, which may also affect the level of anxiety and therefore
confound the mediator-outcome relationship.

> Xnames <- c("age", "educ", "gender", "income")
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> m.med <- multimed(outcome = "immigr", med.main = "emo", med.alt = "p_harm",

+ treat = "treat", covariates = Xnames,

+ data = framing, sims = 1000)

> summary(m.med)

Causal Mediation Analysis with Confounding by an Alternative Mechanism

Estimates under the Homogeneous Interaction Assumption:

Estimate CI lower CI upper

ACME(treated) 0.06447 -0.09053 0.22

ACME(control) 0.12397 0.01923 0.23

ACME(average) 0.10870 0.00956 0.21

Total 0.41752 0.16693 0.66

Sensitivity Analysis:

Values of the sensitivity parameters at which ACME first crosses zero:

sigma(bounds) sigma(CI) R2s(bounds) R2s(CI) R2t(bounds) R2t(CI)

ACME(treated) 0.0299 0.0000 0.0300 0.0000 0.0178 0.00

ACME(control) 0.0489 0.0173 0.0800 0.0100 0.0474 0.01

ACME(average) 0.0423 0.0173 0.0600 0.0100 0.0356 0.01

The summary function produces two tables. The first table shows the estimated ACME and
total treatment effect and their confidence intervals (default at 95%) under the homogeneous
interaction assumption. Three variants of the ACME are shown: the ACME conditional on
the treatment group, the control group, and the weighted average of the two with the weights
being equal to the proportions of the treatment and control groups. The second table shows
key summary results from the sensitivity analysis with respect to possible heterogeneity in
treatment-mediator interactions. Specifically, the table presents the values of σ (column 1),
R2∗ (column 3), and R̃2 (column 5) at which the true estimated ACMEs equal zero. The
remaining columns (2, 4 and 6) show those values for the confidence bands of the three
ACMEs.

The results from the multimed function can also be analyzed graphically using the plot

function. One can produce two types of plots, corresponding to the two tables in the summary

output. First, one can plot the point estimates under the homogeneous interaction assumption
by setting the type argument to "point", as shown below. The output is in Figure 5.

> plot(m.med, type = "point")

Second, the results from the sensitivity analysis with respect to σ, R2∗ or R̃2 can be plotted. In
this case, the type argument can be used to specify which parameter(s) the estimated ACME
should be plotted against. The possible values are "sigma", "R2-residual", or "R2-total".
One can also choose the types of the ACME from "treated", "control" and "average" via
the tgroup argument. In the example below, we plot the estimated ACME for both treatment
and control conditions as a function of σ and R̃2. The output is in Figure 6.

> oldpar <- par(mfrow = c(2,2))

> plot(m.med, type = c("sigma", "R2-total"), tgroup = c("treated", "control"))

> par(oldpar)
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Figure 5: Graphical Summary of the Results from the multimed Function under the Homo-
geneous Interaction Assumption.

5.3. Parallel Design

Imai and Yamamoto (2011, Section 7) show that the above framework can also be applied
to the data collected under the parallel design. As discussed in Section 4.2, the parallel
design consists of two separate experiments to which subjects are randomly selected. In one
experiment, only the treatment is randomized and the researcher observes the mediator and
outcome variables, whereas in the other experiment both the treatment and mediator are
randomly manipulated and the outcome variable is measured and recorded.

Unlike the single experiment design, one need not assume any kind of sequential ignorability
under the parallel design. This is due to the existence of the second experimental group where
both the treatment and mediator are randomly assigned. This implies that there is no need to
explicitly incorporate an alternative mediator in the analysis, for any kind of post-treatment
confounding (observed or unobserved) is allowed to exist in the natural causal process to
identify the ACME under the parallel design using the proposed framework.

To apply the framework for the parallel design, one can use the multimed function with slightly
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Figure 6: Graphical Summary of Sensitivity Analysis using the multimed Function. Results
as a Function of σ and R̃2.

modified inputs. First, the med.alt is no longer needed because the estimation framework is
agnostic about what particular alternative mechanisms are confounding the mediator-outcome
relationship. Second, one need to supply an additional variable (experiment) indicating
whether units are assigned to the experiment with (1) or without (0) mediator manipulations.
Finally, the design argument must be set to "parallel", as opposed to the default value of
"single". For illustration, we again use the simulated data introduced in Section 4.2 and
apply the varying coefficient linear structural equations framework.

> m.med.para <- multimed(outcome = "out", med.main = "med", treat = "ttt",

+ experiment = "manip", design = "parallel",

+ data = boundsdata, sims = 1000)

> summary(m.med.para)

Causal Mediation Analysis with Confounding by an Alternative Mechanism

Estimates under the Homogeneous Interaction Assumption:
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Estimate CI lower CI upper

ACME(treated) 0.362 0.235 0.49

ACME(control) 0.307 0.186 0.43

ACME(average) 0.322 0.203 0.44

Total 0.206 0.134 0.28

Sensitivity Analysis:

Values of the sensitivity parameters at which ACME first crosses zero:

sigma(bounds) sigma(CI) R2s(bounds) R2s(CI) R2t(bounds) R2t(CI)

ACME(treated) 0.779 0.543 0.370 0.180 0.344 0.17

ACME(control) 0.627 0.425 0.240 0.110 0.223 0.10

ACME(average) 0.665 0.462 0.270 0.130 0.251 0.12

The plot function can also be used in the same manner as in the single experiment case.
The key differences between the above analysis and Section 4.2 are threefold. First, the
point estimates in the first summary table here only rely on the homogeneous interaction
assumption, not the stronger assumption of no interaction. Second, however, the estimates
here depend on the additional assumption of additivity, which is embodied in the varying
coefficient structural equations model in equations (8) and (9). The additivity assumption
may not be plausible in some applications and needs to be carefully examined. Finally, the
second summary table shows the result of the sensitivity analysis where the homogeneous
interaction assumption is gradually relaxed until an arbitrary interaction heterogeneity is
allowed. This may be preferred to the nonparametric bounds approach in Section 4.2, which
offers less nuanced information about how robust the point estimates are to the violation of
the identification assumption.

6. Concluding Remarks

In this paper, we described the functionalities of the mediation package, which allows applied
researchers to conduct causal mediation analysis in a variety of settings. The package imple-
ments a general algorithm for estimating causal mediation effects with a variety of statistical
models. Since the causal mediation analysis under the standard research design requires a
strong and untestable assumption, we recommend sensitivity analysis which is also imple-
mented via our package. Finally, this strong identification assumption can be relaxed by
adopting alternative research designs and we show how to use our package to conduct causal
mediation analysis under those new designs. The literature on causal mediation analysis is
fast growing and we expect new methods to be developed in the coming years. We hope
that the mediation package can serve as a platform to which other researchers can add new
methods and functionalities.
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