
An Introduction to Estimating Monte Carlo

Standard Errors with R Package mcmcse

Dootika Vats

July 30, 2015

Contents

1 Introduction 2

2 An MCMC Example 2

3 Estimating Monte Carlo Standard Error 4

4 Confidence Regions 7

5 Effective Sample Size 8

6 Graphical Diagnostics 9

1

1 Introduction

The R package mcmcse provides estimates of Monte Carlo standard errors
for Markov chain Monte Carlo (MCMC) algorithms. This package is useful
when estimating means and quantiles of functions of the MCMC output.
In addition to MCMC output, the package can be used for time series and
other correlated processes.
The package is predominantly useful after MCMC output has been obtained
by the user. In addition to estimating the Monte Carlo standard errors, the
package also provides basic graphical diagnostics and calculation of effective
sample size. Various features in the package can be implemented using both
multivariate and univariate methods.

2 An MCMC Example

To illustrate the use of our package, we present the following simple multi-
variate AR(1) process. The process is defined for t = 1, 2, 3, . . . is defined
as,

yt = w +Ayt−1 + εt,

where w is a constant vector in Rp, yt ∈ Rp, A is a p × p matrix and
εt ∼ Np(0, C). In our example, we let A and C be diagonal matrices. The
invariant distrbution for this process is F = Np(0, V) where V is a function
of A and C.
The function mAr.sim in package mAr draws samples from the above model.
We let p = 3.

library(mAr)

Loading required package: MASS

p <- 3

A <- diag(c(.1, .5, .8))

C <- diag(rep(2, 3))

set.seed(100)

chain <- mAr.sim(w = rep(2,p), A = A, C = C, N = 10000)

For using the mcmcse package the rows of the MCMC output should store
each iteration of the algorithm. Thus the output should have n rows and p

columns. We will denote each row i of the out put as (y
(1)
i , y

(2)
i , y

(3)
i).

This vignette will discuss estimating two sets of features of interest of F .

2

• the expectation of y, EF y

• the expectation of sum of the second moments of all components of y,
EF (y(1)2 + y(2)2 + y(3)2).

Suppose first we are interested in estimating µ = EF y. Then the estimator
for that is just the sample mean

µn =
1

n

n∑
t=1

yt.

µn is obtained using the usual colMeans function.

colMeans(chain)

X1 X2 X3

2.213455 3.989894 9.990273

Due to a central limit theorem argument,

√
n(µn − µ)

d→ Np(0,Σ). (1)

Alternatively, we could also be interested in estimating say the sum of the
second moments of each component of y. In this case, we define the function
g : R3 → R as g((x1, x2, x3)) = x21 +x22 +x23. This is defined in R by creating
a function that takes a vector argument.

g <- function(x)

{
return(sum(x^2))

}

The Monte Carlo estimate for g is

µg,n =
1

n

n∑
t=1

g(yt),

and a CLT of the following form may be available

√
n(µg,n − µ)

d→ Np(0,Σg). (2)

Finding the estimate and the Monte Carlo standard errors for EF g are
explained in the following section.

3

3 Estimating Monte Carlo Standard Error

Using the mcmcse package we can estimate Σ in (1) with the mcse.multi

function.

library(mcmcse)

mcmcse: Monte Carlo Standard Errors for MCMC

Version 1.1-1 created on 01-08-2015.

copyright (c) 2012, James M. Flegal, University of California,Riverside

John Hughes, University of Minnesota

Dootika Vats, University of Minnesota

For citation information, type citation("mcmcse").

Type help("mcmcse-package") to get started.

mcerror_bm <- mcse.multi(x = chain, method = "bm",

size = "sqroot", g = NULL, level = .95, large = FALSE)

mcerror_bart <- mcse.multi(x = chain, method = "bartlett",

size = "cuberoot", g = NULL, level = .95, large = FALSE)

mcerror_tuk <- mcse.multi(x = chain, method = "tukey",

size = "sqroot", g = NULL, level = .95, large = FALSE)

• x takes the n× p MCMC data. x can take only numeric entries in the
form of a matrix or data frame. The rows of x are the iterations of
the MCMC.

• method = ‘‘bm’’, ‘‘bartlett’’, ‘‘tukey’’ calculates the estimate
using the batch means method and spectral variance methods with the
modified-Bartlett and Tukey-Hanning windows.

• size is the batch size for the bm method and the truncation point for
tukey and bartlett methods. size = ‘‘sqroot’’ sets the size as
b
√
nc and size = ‘‘cuberoot’’ sets it at bn1/3c. An integer value

of size less than n is also valid.

• g is a function that is applied to each row of x and represents the
features of interest of the process. Since here we are interested in only
means, g is NULL. g will be explained in later examples.

• level is the confidence level of the resulting confidence region. This
is required to calculate the volume of the confidence region.

4

• large is a logical argument. If large is TRUE the volume of the con-
fidence region is the large sample volume obtained using χ2 critical
values. By default, volume is calculated using F distribution critical
values.

mcse.multi returns a list with multiple components. cov stores the estimate
of Σ obtained using the method chosen, vol returns the volume to the pth
root of the resulting confidence region, est stores the estimate of g applied
on the Markov chain and nsim, critical and size are useful to remember
the methods used to calculate Σ.

mcerror_bm$cov

[,1] [,2] [,3]

[1,] 2.1818978 -0.2932679 0.8416831

[2,] -0.2932679 7.1329697 1.9953946

[3,] 0.8416831 1.9953946 44.2180584

mcerror_bart$cov

[,1] [,2] [,3]

[1,] 2.4769750 0.1504705 0.3108498

[2,] 0.1504705 7.5311309 -0.2104305

[3,] 0.3108498 -0.2104305 36.2779449

mcerror_tuk$cov

[,1] [,2] [,3]

[1,] 2.5605087 0.1785598 1.291766

[2,] 0.1785598 7.1818559 1.107386

[3,] 1.2917665 1.1073863 46.506845

rbind(mcerror_bm$est, mcerror_bart$est, mcerror_tuk$est)

X1 X2 X3

[1,] 2.213455 3.989894 9.990273

[2,] 2.213455 3.989894 9.990273

[3,] 2.213455 3.989894 9.990273

c(mcerror_bm$vol, mcerror_bart$vol, mcerror_tuk$vol)

[1] 0.1370514 0.1335043 0.1384341

5

Note: The estimates are not affected by the choice of the method.

Note: The batch means estimators are significantly faster to calculate than
the spectral variance estimators. The user is advised to use the default
method = ‘‘bm’’ for large input matrices.

Note: cov returns an estimate of Σ and not Σ/n.

If the diagonals of Σ are σ2ii, the function mcse and mcse.mat returns σii/
√
n.

mcse does it for one component and mcse.mat does it for all diagonals.

mcse(x = chain[,1], method = "bm", g = NULL)

$est

[1] 2.213455

##

$se

[1] 0.01477125

mcse.mat(x = chain, method = "bm", g = NULL)

est se

X1 2.213455 0.01477125

X2 3.989894 0.02670762

X3 9.990273 0.06649666

In order to estimate µn,g and Σg as in (2), we use the R function g we had
defined before. Recall that g should be a funcation that takes vector inputs.

g

function(x)

{

return(sum(x^2))

}

mcerror_g_bm <- mcse.multi(x = chain, g = g)

mcerror_g_bm$cov

[,1]

[1,] 18247.05

6

mcerror_g_bm$est

[1] 130.4437

4 Confidence Regions

Using the function confRegion in the package, the user can create joint
confidence regions for two parameters. The input for this function is the
output list from the mcse.multi function. The function uses the attributes
critical, est and nsim from the mcse.multi output list.

plot(confRegion(mcerror_bm, which = c(1,2), level = .90), type = 'l', asp = 1)

lines(confRegion(mcerror_bart, which = c(1,2), level = .90), col = "red")

−0.0015 −0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015

−1
e−

03
−5

e−
04

0e
+0

0
5e

−0
4

1e
−0

3

x

y

• which should be a vector of size 2 that indicates the two components
for which the confidence ellipse is to be constructed.

• level is the confidence level of the confidence region. The default is
.95

NOTE: The argument confRegion calls on the function ellipse in package
ellipse to draw the ellipse.

7

NOTE: Since the confidence region is created for two parameters only, the
size of the ellipse is determined by setting p = 2 irrespective of the original
dimension of the problem.

To determine the effect of the confidence level, we draw two regions with
difference confidence levels.

plot(confRegion(mcerror_bm, which = c(1,2), level = .95), type = 'l', asp = 1)

lines(confRegion(mcerror_bm, which = c(1,2), level = .90), col = "red")

−0.002 −0.001 0.000 0.001 0.002

−0
.00

15
−0

.00
05

0.0
00

0
0.0

00
5

0.0
01

0
0.0

01
5

x

y

5 Effective Sample Size

multiESS and ess are two functions that calculate the effective sample size
of a correlated sample. ess calculations are based on Gong and Flegal (2015)
and is component-wise, and multiESS utilizes the multivariate nature of the
problem.

ess(chain)

X1 X2 X3

9381.155 3670.521 1165.908

Since ess produces a different estimate for each component, conservative
practice dictates choosing the smallest of the values. multiESS returns one

8

estimate of the effective sample size based on the whole sample. The function
calls mcse.multi function to obtain a batch means estimate of Σ. The user
can provide another estimate of Σ using the covmat argument.

multiESS(chain)

[1] 3455.318

multiESS(chain, covmat = mcerror_bart$cov)

[1] 3446.062

6 Graphical Diagnostics

The function estvssamp plots the Monte Carlo estimates versus the sample
size for a component of the MCMC output. This plot indicates whether the
Monte Carlo estimate has stabilized.

estvssamp(chain[,1])

0 2000 4000 6000 8000 10000

2.
20

2.
25

2.
30

2.
35

2.
40

Estimates vs Sample Size

Sample Size

M
C

 E
st

im
at

e

Additionally, if p is not too small, due to the central limit theorem in (1)
and an estimate of Σ using the mcse.multi function, a QQ plot of the stan-
dardized estimates gives an idea of whether asymptopia has been achieved.
We generate a new Markov chain with p = 50.

9

p <- 50

A <- diag(seq(.1, .9, length = p))

C <- diag(rep(2, p))

set.seed(100)

chain <- mAr.sim(w = rep(2,p), A = A, C = C, N = 10000)

For this new Markov chain, we find an estimate of Σ to use for the qqTest

function.

mcerror_bm <- mcse.multi(chain, method = "bm")

qqTest(x = chain, covmat = mcerror_bm$cov)

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Thus, we see here that the chain has not quite reached asymptopia.

References

Gong, L. and Flegal, J. M. (2015). A practical sequential stopping rule for
high-dimensional markov chain monte carlo. Journal of Computational
and Graphical Statistics, (just-accepted):00–00.

10

