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1 A Generalized Linear Mixed Model

We start by assuming that we observe a vector of data Y = (Y1, . . . , Yn) corresponding to a probability

model that depends on a (p + l)-dimensional parameter vector θ, a known n × p fixed effects design

matrix X, a known n × k known random effects design matrix Z , and a k-dimensional vector of

unobservable random effects U .

Let θ consist of p fixed effects coefficients β = (β1, . . . , βp)
T and l variance parameters, σ2 =

(σ2
1 , . . . , σ

2
l )T , associated to the random effects U . Our goal is to find maximum likelihood estimates

(MLEs) for the (p+ l)-dimensional parameter θ in a space Θ for a generalized linear mixed model.

We assume that the expected variable of Yi, can be written as a linear combination of the observable

and unobservable variables through a bijective “link” function g. Let Xi and Zi be the ith rows of the

matrices X and Z, and let E(Yi|U = u) = µi. Then

g(µi) = Xi β + Zi u, for i = 1, . . . , n.

Let U = (UT1 , . . . , U
T
l )T , and Z = (Z1 · · ·Zl) a decomposition for the vector U and the matrix Z.

We assume that Ui is a ki-dimensional vector with
∑l
i ki = k. Furthermore we assume that Ui has a

known distribution with variance that depends on the parameter σ2
i . In general let µ = (µ1, . . . , µn)

and let g(µ) denote the element-wise evaluation of g on the vector µ, then we can write mean our
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model as

g(µ) = X β +

l∑
i=1

Zi ui. (1)

Let hU (u) be the probability density function of U . We assume that conditional on U , the data

is generated from a probability model with probability mass function f(Y |θ,X,Z, U) and that we can

write its likelihood function in terms of µ = g−1(X β +
∑l
i=1 Zi ui), and σ2. Defining the model this

way yields to the following likelihood functions:

1. A complete likelihood function:

L(θ|X,Z,U) = f(y, u|θ,X,Z) = fY (y|θ,X,Z, u)hU (u|θ). (2)

2. And a marginal likelihood function:

L(θ|X,Z) =

∫
Rl

f(Y |θ,X,Z, U)hU (u|θ)du. (3)

Since the vector U is not observable we need to obtain the MLEs from 3. This means that before

maximizing the likelihood function we need to integrate out the vector of random effects.

The mcemGLM package focuses on three types of models for the marginal data:

1. Bernoulli data. We say that Yi
iid∼ Bernoulli(pi), for i = 1, . . . , n, with 0 < pi < 1, if Yi has

probability mass function

f(yi) = pyii (1− pi)1−yi , for yi = 0, 1.

With E(Yi) = pi, Var(Yi) = pi(1− pi), and g(pi) = log(pi/(1− pi)).

2. Poisson data. We say that Yi
iid∼ Poisson(µi) for i = 1, . . . , n, if Yi has probability mass function

f(yi) = e−µi
µyii
yi!

, for yi = 0, 1, 2, . . .

With E(Yi) = µi, Var(Yi) = µi, and g(µi) = log(µi).

2



3. Negative binomial data. We say that Yi
iid∼ neg-binom(µi, α), for i = 1, . . . , n, with µi > 0, and

α > 0, if Yi has probability mass function

f(yi) =
Γ(yi + α)

Γ(α) yi!

(
α

µi + α

)α(
µi

µi + α

)yi
, for yi = 0, 1, 2, . . .

With E(Yi) = µi, Var(Yi) = µi + µ2
i /α, and g(µi) = log(µi).

The expectation and variance of Yi can be found easily by using iterated expectation with respect

to a random variable M distributed gamma with shape parameter α, and rate parameter α/µ

and setting Yi|M = m ∼ Poisson(m).

By using this definition of the distribution of Yi we can treat the parameter α as the amount

of over-dispersion with respect to the Poisson distribution. The value α =∞ corresponds to no

over-dispersion.

By introducing α to the model notice that we need to estimate this extra parameter in addition

to β and σ2.

In addition to the model selection the mcemGLM package allows to specify two types of random effects.

Let Ik be an n× n identity matrix, Nn(µ,Σ) an n-dimensional multivariate normal distribution with

mean vector µ and covariance matrix Σ, and tn(ν, µ,Σ) an n-dimensional multivariate t distribution

with ν degrees of freedom, location vector µ and scale matrix Σ.

1. Normal distribution. We set Ui ∼ Nki(0, σ
2
i Iki) for i = 1, . . . , l, and set the Uis to be jointly

independent.

2. t distribution with known degrees of freedom ν. We set Ui ∼ tki(ν, 0, σ2
i Iki) for i = 1, . . . , l, and

set the Uis to be jointly independent.

2 The MCEM algorithm

The MCEM algorithm is a modification of the EM algorithm. The later assumes two sets of data an

observed data set Y and a set of missing data U .

The EM algorithm estimates the MLEs by an iterative algorithm. Let θ(t) denote the current
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estimate at the ith iteration. Let

Q(θ, θ(t)) = E
[
log f(y, u|θ,X,U)|y, θ(t)

]
. (4)

The next value, θ(t+1), is found by maximizing 4 with respect to θ. The expectation in 4 is taken

with respect to f(u|y, θ,X,Z) hence if we want to obtain its closed form we need f(y, u|θ,X,Z) and

fY (y|θ,X,Z). The later function is not available for the models we are considering, therefore we need

to resort to a numerical method to calculate this expectation.

The solution implemented in the mcemGLM package is to estimate 4 via a Markov chain Monte Carlo

(MCMC) step. This works by obtaining a sample ut,1, . . . , ut,m from a Markov chain with stationary

distribution f(u|y, θ,X,Z) and then maximizing

Q̂(θ) =

m∑
j=1

log f(y, ut,j |θ,X,Z) (5)

with respect to θ to obtain θ(t+1).

The algorithm is run until a termination condition has been reached or the maximum number of

iterations has been done.

3 The mcemGLM package

The package runs through the following steps:

1. Choose a starting value. The default method is to fit a model without random effects and using

the MLEs of the fixed coefficients as starting values for β. For σ we set a predefined value of 5.

2. Obtain the sample ut,1, . . . , ut,m. This is done by using a Metropolis–Hastings algorithm that

uses a multivariate normal random variable as its proposal. The standard deviation vector of

the proposal distribution is chosen by performing an auto–tuning step before the first iteration.

After each iteration the rejection rate of the chain is checked and if it is either too large (> 0.4)

or to small (< 0.1) the package performs an auto-tuning step before the next iteration.

3. After obtaining the sample 5 is maximized with respect all the parameters using the trust

function from the trust package. The maximizers are set as the current value of the estimator
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of the MLEs.

4. Steps 2 and 3 are repeated until the condition

max
i

{
|θ(t)i − θ

(t−1)
i |

|θ(t)i |+ δ

}
< ε

for specified values of δ and ε is met three consecutive times or a maximum number of iterations

have been performed.

The default values in the package are δ = 0.05 and ε = 0.01 but these can be easily changed by

the user. The default number of iterations is 80 and this value can also be changed by the user.

5. After terminating the iterative process another sample from the random effects is obtained to

estimate the information matrix of the model.

4 Using the mcemGLM package

> require(mcemGLM)

> data("simData.rdata")

> head(simData)

obs x1 x2 x3 z1 z2 z3 count count2

1 0 9.571463 5.924451 red D1 1 A 5 5

2 0 10.062451 5.358087 yellow D1 1 A 4 24

3 0 8.020461 4.755584 yellow D1 1 A 4 4

4 0 10.842312 5.610179 yellow D1 1 A 3 9

5 0 8.457872 2.882771 yellow D1 1 A 3 6

6 0 11.154501 4.942196 yellow D1 1 A 3 6

> summary(simData)

obs x1 x2 x3 z1 z2

Min. :0.00 Min. : 7.338 Min. :1.784 blue :65 D1:40 1:50

1st Qu.:0.00 1st Qu.: 9.332 1st Qu.:4.405 red :67 D2:40 2:50
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Median :0.00 Median : 9.995 Median :5.119 yellow:68 D3:40 3:50

Mean :0.39 Mean : 9.990 Mean :5.148 D4:40 4:50

3rd Qu.:1.00 3rd Qu.:10.629 3rd Qu.:5.808 D5:40

Max. :1.00 Max. :13.533 Max. :7.531

z3 count count2

A:100 Min. : 0.0 Min. : 0.00

B: 60 1st Qu.: 3.0 1st Qu.: 6.00

D: 40 Median : 4.5 Median : 12.00

Mean : 5.1 Mean : 16.16

3rd Qu.: 7.0 3rd Qu.: 20.00

Max. :18.0 Max. :108.00

The data consist of three fixed effects, x1, x2, and x3. The first two fixed effects are continuous

and x3 is a factor with three levels. There are three variables that we can use as variance components

z1 (5 levels), z2 (4 levels), and z3 (3 levels.) The component z2 can be nested within z1 and z3 is

crossed with these.

First we will consider a simple model based on this data using obs as the binary response.

4.1 A simple model

We will fit a model with one variance component, z3 and we will consider z1 as a fixed effect along

with x1.

The main model arguments for the mcemGLMM function are fixed and random. These specify the

fixed and random effects of the model. The response must be included in the fixed argument. In this

first example we are considering x1 and z1 as fixed and z3 as random. We can fit this model with the

following command:

> fit0 <- mcemGLMM(fixed = obs ~ x1 + z1,

+ random = ~0+z2,

+ data = simData,

+ family = "bernoulli",

+ vcDist = "normal")
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The rest of the used arguments are:

� data: argument contains the name of the data frame with the data.

� family: argument specifies the type of model to be fitted. The options are “bernoulli” for logistic

regression, “poisson” for Poisson count regression, and “negbinom” for negative binomial count

regression.

� vcDist: argument specifies the distribution of the random effects. The option are “normal”, and

“t”. In case of t random effects an extra argument with the degrees of freedom must be supplied.

We can start by taking a look at the coefficient and variance estimates with the summary command:

> summary(fit0)

Call:

mcemGLMM(fixed = obs ~ x1 + z1, random = ~0 + z2, data = simData,

family = "bernoulli", vcDist = "normal")

Two sided Wald tests for fixed effects coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3683592 1.6681565 1.4197464 0.15568152

x1 -0.3368267 0.1640034 -2.0537785 0.03999714

z1D2 1.3871167 0.4908233 2.8261021 0.00471182

z1D3 -1.0466774 0.6047379 -1.7307951 0.08348832

z1D4 0.4811148 0.4944886 0.9729543 0.33057603

z1D5 1.3291029 0.4907177 2.7084876 0.00675906

One sided Wald tests for variance components:

Estimate Std. Error z value Pr(>z)

z2 0.1080782 0.1508095 0.7166536 0.2367939
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We first get a print of the original call used to fit the model. The summary print out has two tables.

The first table shows the estimates, standard errors and z tests for the fixed effect coefficients. While

the second table contains the same information but for the variance estimates.

Now we can look at an ANOVA table based on Wald tests.

> anova(fit0)

Wald's Chi-squared ANOVA table

Df Wald Stat Pr(>W)

x1 1 4.218006 0.03999714

z1 4 24.562532 0.00006160

Each line corresponds to a test on the coefficients that are related to each variable. In the case of

a continuous variable or a binary this is equivalent to the z test performed with summary. When a

categorical variable has more than two categories anova will test run a chi–squared test on all the

coefficients that are related to that variable. In this case the chi–squared test for z1 tests if the

corresponding coefficients for D2, D3 , D4, and D5 are both equal to zero.

We can run multiple comparison tests for the levels of z1. First we need to create a contrast matrix

with each row representing a contrast that we want to test. In this case

> ctr0 <- rbind("D1 - D2" = c(0, 0,-1, 0, 0, 0),

+ "D1 - D3" = c(0, 0, 0,-1, 0, 0),

+ "D1 - D4" = c(0, 0, 0, 0,-1, 0),

+ "D1 - D5" = c(0, 0, 0, 0, 0,-1),

+ "D2 - D3" = c(0, 0, 1,-1, 0, 0),

+ "D2 - D4" = c(0, 0, 1, 0,-1, 0),

+ "D2 - D5" = c(0, 0, 1, 0, 0,-1),

+ "D3 - D4" = c(0, 0, 0, 1,-1, 0),

+ "D3 - D5" = c(0, 0, 0, 1, 0,-1),

+ "D4 - D5" = c(0, 0, 0, 0, 1,-1))

Notice that rows one and two are the contrasts that that compare the baseline, D1, to the other levels,

hence these will have equivalent test statistics as those obtained in summary. However contrasts.mcemGLMM
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accounts for multiple comparisons by adjusting the p–values via Bonferroni correction therefore it is

possible to obtain significance in summary and not in contrasts.mcemGLMM since this p–value will likely

be larger.

> contrasts.mcemGLMM(object = fit0, ctr.mat = ctr0)

Estimate Std. Err. Wald Adj. p-value

D1 - D2 -1.38711666 0.4908233 7.98685283 0.0471182493

D1 - D3 1.04667741 0.6047379 2.99565159 0.8348832049

D1 - D4 -0.48111479 0.4944886 0.94664003 1.0000000000

D1 - D5 -1.32910289 0.4907177 7.33590494 0.0675906430

D2 - D3 2.43379408 0.5883939 17.10926441 0.0003528974

D2 - D4 0.90600187 0.4715595 3.69134908 0.5469535980

D2 - D5 0.05801377 0.4654850 0.01553284 1.0000000000

D3 - D4 -1.52779221 0.5909675 6.68346045 0.0973115299

D3 - D5 -2.37578031 0.5894285 16.24614167 0.0005562275

D4 - D5 -0.84798810 0.4707865 3.24437836 0.7166887291

For this simple model it is possible to plot the predicted probabilities for each level of z1. These

estimates correspond to the population means, i.e., the random effects have been set to zero. Figure

4.1 shows the plots of the fitted probabilities as a function of x1 for the different levels of z1.

We can calculate the Pearson and deviance residuals of the model with the residuals command.

Figures 4.1 and 4.1 shows these plots.

To assess convergence we can look at trace plots of the MLE estimates and the value of the

loglikelihood function across the EM iterations. These are stored in the mcemGLMM object returned by

the function the mcemGLMM function on the fields mcemEST and loglikeVal. Figure 4.1 shows trace

plots at each EM iteration of these quantities.

We can also take a look at the trace plots of the Markov chain used to estimate the Q function.

Since this approximates an integral of dimension equal to the number of random effects it might not

be practical to look at all the chains. The last MCMC step is saved on the field randeff as a matrix.

Each column of this matrix corresponds to one random effect.

This matrix can be used to get predictions of the observed random effects.

9



> plot(simData$x1, predict(fit0, type = "response"), col = simData$z1, xlab = "x1")
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Figure 1: Fitted probabilities. Each color represent a level of z1

> colMeans(fit0$randeff)

z21 z22 z23 z24

-0.0427675 -0.1262861 0.3917916 -0.2262055

To see the sampling on the loglikelihood function we can plot the values of the complete loglikelihood

at each MCMC step of the last EM iteration. These values are stored in the loglikeMCMC field of the

mcemGLMM object.
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> plot(simData$x1, residuals(fit0, type = "deviance"))
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Figure 2: Deviance residuals
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> plot(simData$x1, residuals(fit0, type = "pearson"))
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Figure 3: Pearson residuals
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> par(mfrow = c(1, 2))

> ts.plot(fit0$mcemEST, main = "MLEs estimates",

+ xlab = "EM Iteration", ylab = "MLE value")

> ts.plot(fit0$loglikeVal, main = "Loglikelihood values",

+ xlab = "EM iteration", ylab = "Likelihood")
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Figure 4: MLEs estimates (left) and Loglikelihood value (right) after each EM iteration.
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> ts.plot(fit0$randeff[, 1], xlab = "MCMC iteration")
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Figure 5: Trace plot for MCMC output for the first random effect.
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> ts.plot(fit0$loglikeMCMC, xlab = "MCMC iteration")
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Figure 6: Trace plot for the complete loglikelihood function.
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4.2 Fitting a more complex model

To specify more than one random effect we need to put them into a list and state that there is no

intercept for that effect. In case of nested random effects if labels are repeated across it is necessary

to fit the lower level by using the interaction with the upper level.

In this specific example, the labels for z2, ”1”, ”2”, ”3”, and ”4”, are used for each level of z1. If

the labels of z2 are unique within z1 it is not necessary to use the interaction term. However it is

recommended to use the interaction form for the sake of clarity in the model statement.

> fit1 <- mcemGLMM(fixed = obs ~ x1 + x2 + x3,

+ random = list(~0+z1, ~0+z1:z2),

+ data = simData,

+ family = "bernoulli",

+ vcDist = "t",

+ df = c(5, 5))

The df argument specifies the degrees of freedom for each variance component in random. If vcDist

is “normal” this argument is not needed.

We can look at the summary and ANOVA of the model as before

> summary(fit1)

Call:

mcemGLMM(fixed = obs ~ x1 + x2 + x3, random = list(~0 + z1, ~0 +

z1:z2), data = simData, family = "bernoulli", vcDist = "t",

df = c(5, 5))

Two sided Wald tests for fixed effects coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0482656 2.1354187 0.4908946 0.62350096

x1 -0.5100424 0.1936848 -2.6333633 0.00845439

x2 0.5790644 0.1984313 2.9182112 0.00352046
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x3red 0.2188118 0.4477685 0.4886716 0.62507423

x3yellow 0.8289974 0.4815292 1.7215932 0.08514324

One sided Wald tests for variance components:

Estimate Std. Error z value Pr(>z)

z1 0.5924914 0.9113657 0.6501138 0.2578093

z1:z2 1.3353322 1.1893710 1.1227213 0.1307779

> anova(fit1)

Wald's Chi-squared ANOVA table

Df Wald Stat Pr(>W)

x1 1 6.934602 0.00845439

x2 1 8.515957 0.00352046

x3 2 3.139481 0.20809921

We can run multiple comparison tests for the levels of x3 as before

> ctr1 <- rbind( "blue - red" = c(0, 0, 0,-1, 0),

+ "blue - yellow" = c(0, 0, 0, 0,-1),

+ "red - yellow" = c(0, 0, 0, 1,-1))

> contrasts.mcemGLMM(object = fit1, ctr.mat = ctr1)

Estimate Std. Err. Wald Adj. p-value

blue - red -0.2188118 0.4477685 0.2387999 1.0000000

blue - yellow -0.8289974 0.4815292 2.9638830 0.2554297

red - yellow -0.6101857 0.4677397 1.7018277 0.5761474

Instead of performing a Wald test to test a fixed effect it is possible to run a likelihood ratio test

between two nested models. First we will fit a model without x3:
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> fit2 <- mcemGLMM(fixed = obs ~ x1 + x2,

+ random = list(~0+z1, ~0+z1:z2),

+ data = simData,

+ family = "bernoulli",

+ vcDist = "t",

+ df = c(5, 5),

+ controlEM = list(EMit = 3))

Now we can use the anova command to run the likelihood ratio test

> anova(fit1, fit2)

Test statistic value: 6.61765024168028

Degrees of freedom: 2

p value: 0.0365591

4.3 A Poisson model

To fit a Poisson model we only need to change the family argument in the mcemGLMM command. As

an example we will use the count variable in simData.

> fit3 <- mcemGLMM(fixed = count ~ x1 + x2 + x3,

+ random = list(~0+z2),

+ data = simData,

+ family = "poisson",

+ vcDist = "normal")

All the previous methods are available for this type of model.

> summary(fit3)

Call:

mcemGLMM(fixed = count ~ x1 + x2 + x3, random = list(~0 + z2),

data = simData, family = "poisson", vcDist = "normal")
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Two sided Wald tests for fixed effects coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.429668527 0.35016284 6.93868171 0.00000000

x1 -0.100594578 0.03139176 -3.20449005 0.00135302

x2 0.042484752 0.03066740 1.38533934 0.16594873

x3red -0.072106883 0.07945201 -0.90755269 0.36411460

x3yellow 0.002406589 0.07747179 0.03106407 0.97521845

One sided Wald tests for variance components:

Estimate Std. Error z value Pr(>z)

z2 0.003188614 0.006782275 0.4701393 0.3191277

> anova(fit3)

Wald's Chi-squared ANOVA table

Df Wald Stat Pr(>W)

x1 1 10.268757 0.00135302

x2 1 1.919165 0.16594873

x3 2 1.162212 0.55927940

> contrasts.mcemGLMM(object = fit3, ctr.mat = ctr1)

Estimate Std. Err. Wald Adj. p-value

blue - red 0.072106883 0.07945201 0.8236518816 1

blue - yellow -0.002406589 0.07747179 0.0009649761 1

red - yellow -0.074513472 0.07727556 0.9297908976 1
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> plot(simData$x1, predict(fit3),

+ main = "Predicted response values", xlab = "x1")
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Figure 7: Predicted values as a function of x1.

4.4 A negative binomial model

To fit a negative binomial model we need to specify the family argument to "negbinom". All the

previous methods ara available for this model. When we look at the summary of this model we get an

estimate of the overdispersion parameter and its standard error.

> fit4 <- mcemGLMM(fixed = count2 ~ x1 + x2 + x3,

+ random = list(~0+z1, ~0+z1:z2),

+ data = simData,

+ family = "negbinom",
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> par(mfrow = c(1, 2))

> ts.plot(fit3$mcemEST, main = "MLEs estimates",

+ xlab = "EM Iteration", ylab = "MLE value")

> ts.plot(fit3$loglikeVal, main = "Loglikelihood values",

+ xlab = "EM iteration", ylab = "Likelihood")
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Figure 8: MLEs estimates (left) and Loglikelihood value (right) after each EM iteration.

+ vcDist = "normal")

> summary(fit4)

Call:

mcemGLMM(fixed = count2 ~ x1 + x2 + x3, random = list(~0 + z1,

~0 + z1:z2), data = simData, family = "negbinom", vcDist = "normal")

Two sided Wald tests for fixed effects coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.21614618 0.57654418 7.31278944 0.00000000

x1 -0.15975518 0.04954114 -3.22469750 0.00126106
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x2 0.01458830 0.04912726 0.29694920 0.76650529

x3red -0.13490761 0.12613565 -1.06954383 0.28482469

x3yellow -0.01146224 0.13047303 -0.08785144 0.92999476

Overdispersion parameter beta:

Estimate Std. Error

theta 1.388511 0.1252373

One sided Wald tests for variance components:

Estimate Std. Error z value Pr(>z)

z1 0.05705629 0.09288859 0.6142443 0.26952695

z1:z2 0.18417139 0.08842985 2.0826835 0.01864004

> anova(fit4)

Wald's Chi-squared ANOVA table

Df Wald Stat Pr(>W)

x1 1 10.39867396 0.00126106

x2 1 0.08817883 0.76650529

x3 2 1.39625335 0.49751644

> contrasts.mcemGLMM(object = fit4, ctr.mat = ctr1)

Estimate Std. Err. Wald Adj. p-value

blue - red 0.13490761 0.1261357 1.143924013 0.8544741

blue - yellow 0.01146224 0.1304730 0.007717875 1.0000000

red - yellow -0.12344537 0.1294790 0.908972974 1.0000000
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> plot(simData$x1, predict(fit4))
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> par(mfrow = c(1, 2))

> ts.plot(fit4$mcemEST, main = "MLEs estimates",

+ xlab = "EM Iteration", ylab = "MLE value")

> ts.plot(fit4$loglikeVal, main = "Likelihood value",

+ xlab = "EM Iteration", ylab = "Likelihood")
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Figure 9: MLEs estimates and loglikelihood value after each EM iteration.
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