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Abstract

The package models MBBEFD distribution providing density, quantile, distribution
and random generation functions. In addition it provides exposure curves for the MBBEFD
distribution family.
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1. Introduction

The mbbefd package provides function to use Maxwell-Bolzano, Bose-Einstein, Fermi-Dirac
probability distributions, introduced by Bernegger (1997), within R statistical software (R
Core Team 2014).
Such kind of distributions are widely used in the pricing of non-life reinsurance contracts and
yet they are not present in any R package.

The paper is structured as follows: Section 2 discusses review the theory (mathematics and ac-
tuarial application) of MBBEFD distributions, Section 3 discusses one - inflated distributions,
Section 5 shows the MBBEFD second parametrization, Section ?? introduces the package’s
features. Applied examples are shown in Section 6 while the issue of fitting MBBEFD curves
to empirical data is discussed in Section 7.

2. Exposure curves

We first present the exposure curve of a random variable. The exposure curve naturally
arises in the insurance context when considering d as the normalized deductible and X the
normalized loss. That is respectively the ratio of the deductible value on the maximum
possible loss and the loss value on the maximum possible loss. This quantity is even more
appealing in the reinsurance context where the deductible is the priority and the maximum
possible loss is the sum of the priority and the limit of the reinsurance treaty, see Bernegger
(1997) and Mahler (2014).
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2.1. Definition

Let X be a random variable valued in the unit interval I = [0, 1] with distribution function
FX . The exposure curve function of X is defined as the ratio of the limited expected value
and the expectation

GX(d) =
E(min(X, d))

E(X)
,

for d ∈ [0, 1]. Since X is a positive random variable, we have

GX(d) =

∫ d
0 (1− FX(x))dx
∫ 1
0 (1− FX(x))dx

.

Note that the exposure curve is a concave function for d ∈]0, 1[.

There is a direct link between the distribution function and the exposure curve. Since

FX(x) =

(
1−

G′
X(x)

G′
X(0)

)
11[0,1[(x) + 11[1,+∞[(x),

defining the exposure curve or the distribution function is equivalent. The exposure curve is
also a concave increasing function, see e.g. Antal (2003).

2.2. Examples

Uniform distribution

The most trivial example of exposure curve is obtained for the uniform distribution on I. We
consider FX(x) = x leading to

GX(d) = d(2− d).

Example: beta distribution

A more interesting example is obtained for the Beta distribution on I (e.g. Johnson, Kotz,
and Balakrishnan (1994)) for which the density is fX(x) = xa−1(1−x)b−1/β(a, b) for x ∈]0, 1[
and a, b > 0 where β(., .) denotes the beta function, see e.g. Olver, Lozier, Boisvert, and Clark
(2010). The distribution function is obtained in terms of the incomplete beta ratio function
FX(x) = β(x; a, b)/β(a, b) = I(x; a, b). We get

GX(d) =
a+ b

a
− I(d; a, b)

b

a
−

da(1− d)b

aβ(a, b)
,

where β(.; ., .) denotes the incomplete beta function.

2.3. Empirical exposure curve

We recall that the empirical cumulative distribution of a sample X1, . . . , Xn is the following
step function

Fn(t) =
1

n

n∑

i=1

11Xi≤t.
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Similarly, we define the empirical exposure curve function as

Gn(t) =
1
n

∑n
i=1min(Xi, t)
1
n

∑n
i=1Xi

.

2.4. Use case

The uniform and the beta distributions are already implemented in R with d,p,q,runif and
d,p,q,rbeta functions. We add a new function computing the exposure curve as well as for
the non-parametric version Gn.

R> library(mbbefd)

R> ecunif(0:4/4)

[1] 0.0000 0.4375 0.7500 0.9375 1.0000

R> ecbeta(0:4/4, 3, 2)

[1] 0.0000000 0.4111328 0.7604167 0.9599609 1.0000000

R> eecf(rbeta(100, 3, 2))

Empirical Exposure Curve Function

Call: eecf(rbeta(100, 3, 2))

x[1:100] = 0.16479, 0.19761, 0.20338, ..., 0.94344, 0.96718

3. One-inflated distributions

3.1. Characterizations

Let us consider a continuous distribution function F0 of a random variable X0. The corre-
sponding distribution function of the one-inflated random variable X1 is

F1(x) = (1− p1)F0(x) + p111[1,+∞[(x).

There is no density but an improper density (1− p)F ′
0(x) and a probability mass p1 at x = 1.

3.2. The one-inflated beta distribution

We consider the one-inflated beta distribution. Using Section 2.2.2, we obtain the following
distribution function

FX(x) =





0 if x < 0
I(x; a, b)(1− p1) if 0 ≤ x < 1
1 if x ≥ 1
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where I(x; a, b) denotes the incomplete beta ratio function. This leads to a non-null proba-
bility at x = 1, P (X = 1) = p1. The improper density function is

f̃X(x) = (1− p1)
xa−1(1− x)b−1

β(a, b)
.

The expectation is

E(X) = p1 + (1− p1)
a

a+ b
.

The exposure curve is

GX(d) =
(1− p1)

(
1− I(d; a, b) b

a+b −
da(1−d)b

(a+b)β(a,b)

)
+ p1d

p1 + (1− p1)
a

a+b

.

3.3. Use case

Classical one-inflated distributions are implemented in the package:

R> doibeta(0:4/4, 3, 2, 1/2)

[1] 0.00000 0.28125 0.75000 0.84375 0.50000

R> poibeta(0:4/4, 3, 2, 1/2)

[1] 0.00000000 0.02539063 0.15625000 0.36914062 1.00000000

4. The MBBEFD distribution, first parametrization

We denote this first parametrization by MBBEFD(a, b). We define the parameter domain
Da,b as

Da,b = {(a, b) ∈ R
2, a+ 1 > 0, a(1− b) > 0, b > 0} ∪ {(a, b), a = +∞, b < 1}. (1)

Let us note that this domain includes two particular sets Da,1 = {(a, 1), a + 1 > 0} and
D0,b = {(0, b), b > 0}.

4.1. Characterization by the exposure curve

The MBBEFD distribution is defined by the following exposure curve for (a, b) ∈ Da,b

∀x ∈ I, GX(x) =





ln(a+bx

a+1
)

ln( a+b
a+1

)
if a(1− b) > 0

1−bx

1−b if a = +∞ and b < 1

x if a = 0 or b = 1.

(2)

The two special cases of a(1− b) = 0 correspond to Da,1 and D0,b. Note that the denominator
is a normalizing constant to ensure the term belongs to [0, 1].
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4.2. Distribution, density and quantile functions

Differentiating GX , we obtain the following distribution function for (a, b) ∈ Da,b

∀x ∈ I, FX(x) =





(
1− (a+1)bx

a+bx

)
11[0,1[(x) + 11[1,+∞[(x) if a(1− b) > 0

(1− bx)11[0,1[(x) + 11[1,+∞[(x) if a = +∞ and b < 1

11[1,+∞[(x) if a = 0 or b = 1.

(3)

Note that the MBBEFD distribution is a mixed-type distribution with mass probability at
x = 1

P (X = 1) =
(a+ 1)b

a+ b
= pa,b, (4)

which equals to 1 when a(1 − b) = 0. In other words, for Da,1 and D0,b, X has a Dirac
distribution at x = 1. When a = +∞, the total loss probability is P (X = 1) = b.

For a(1− b) > 0, the improper density function is

f̃X(x)





−a(a+1)bx ln(b)
(a+bx)2

11[0,1[(x) if a(1− b) > 0

− ln(b)bx11[0,1[(x) if a = +∞ and b < 1

0 if a = 0 or b = 1.

(5)

The quantile function is

∀p ∈ [0, 1], qX(p) =





ln
(

(1−p)a
a+p

)

ln(b) 11[0,1−pa,b[(p) + 11[1−pa,b,1](p) if a(1− b) > 0
ln(1−p)
ln(b) 11[0,1−b[(p) + 11[1−b,1](p) if a = +∞ and b < 1

11]0,1](p) if a = 0 or b = 1.

(6)

4.3. Moments

Using the definition of the exposure curve, we have E(X) = 1/G′
X(0). The expectation for

MBBEFD(a, b) is

E(X) =
ln( a+b

a+1)

ln(b)
(a+ 1).

When a = 0 or b = 1, the expectation is simply E(X) = 1.

5. The MBBEFD distribution, second parametrization

5.1. Parameter domain

For fitting purposes and for verifying parameter constraints, Bernegger (1997) proposed a
second parametrization MBBEFD(g, b). Using the following parameter g = 1/pa,b, it is
possible to reformulate the MBBEFD(a, b). That is

g =
a+ b

(a+ 1)b
⇔ a =

(g − 1)b

1− gb
.
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So g ≥ 1 guarantees that a+b
(a+1)b ∈ [0, 1], in addition to b > 0. The special case g = 1 leading

to a Dirac distribution at x = 1 corresponds to a(1− b) = 0 in the previous parametrization.
The parameter domain is

D̃g,b =
{
(g, b) ∈ R

2, b > 0, g ≥ 1
}
.

5.2. Characterization by the exposure curve

The exposure curve is defined for x ∈ [0, 1] as

GX(x) =





ln(
(g−1)b
1−b

+ 1−gb

1−b
bx)

ln(gb) if g > 1, b 6= 1, b 6= 1/g
ln(1+(g−1)x)

ln(g) if g > 1, b = 1
1−bx

1−b if g > 1, bg = 1

x if g = 1 or b = 0

(7)

Note that the case g > 1, bg = 1 implies g = 1/b, b < 1.

5.3. Distribution, density and quantile functions

The resulting distribution function is

FX(x) =





(
1− 1−b

(g−1)b1−x+1−gb

)
11[0,1[(x) + 11[1,+∞[(x) if g > 1, b 6= 1, b 6= 1/g(

1− 1
1+(g−1)x

)
11[0,1[(x) + 11[1,+∞[(x) if g > 1, b = 1

(1− bx)11[0,1[(x) + 11[1,+∞[(x) if g > 1, bg = 1

11[1,+∞[(x) if g = 1 or b = 0

(8)

As in the previous parametrization, there is a non-null probability at x = 1,

P (X = 1) = 1/g. (9)

The improper density function is for x ∈]0, 1[

f̃X(x) =





− (1−b) ln(b)b1−x

((g−1)b1−x+1−gb)2
if g > 1, b 6= 1, b 6= 1/g

g−1
(1+(g−1)x)2

if g > 1, b = 1

− ln(b)bx if g > 1, bg = 1
0 if g = 1 or b = 0

(10)

The quantile function is

∀p ∈ [0, 1], qX(p) =





(
1−

ln
(

gb−1
g−1

+ 1−b
(1−p)(g−1)

)

ln(b)

)
11[0,1−1/g[(p) + 11[1−1/g,1](p) if g > 1, b 6= 1, b 6= 1/g

p
(1−p)(g−1)11[0,1−1/g[(p) + 11[1−1/g,1](p) if g > 1, b = 1
ln(1−p)
ln(b) 11[0,1−1/g[(p) + 11[1−1/g,1](p) if g > 1, bg = 1

11]0,1](p) if g = 1 or b = 0
(11)
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5.4. Moments

Let us compute the first two moments.

E(X) = 1/G′
X(0) =





ln(gb)(1−b)
ln(b)(1−gb) if g > 1, b 6= 1, b 6= 1/g
ln(g)
g−1 if g > 1, b = 1
b−1
ln(b) if g > 1, bg = 1

1 if g = 1 or b = 0

6. Examples of MBBEFD curves

The curve can be use to price property coverage and associate reinsurance treaties. Suppose
a property expected loss to be 40K, MPL to be 2MLN. An XL coverage is available with
a retention of 1Mln. The exposure curve that characterize the property is the usual one.
Therefore the percentage of loss net and ceded is determined as it follows

R> net<-mbbefdExposure(x=1/2, a=0.2,b=0.04)*40000

R> ceded<-40000-net

and the expected loss as a percentage of total insured value is

R> expectedLoss<-1/dG(x=0,a=0.2,b=0.04)*40000

R> expectedLoss

[1] 24000

Similarly, it is possible to draw the underluying suvival curve S (x) = G′(x)
G′(0) using Figure 1.

The probability of a maximum loss for such exposure curve is obtained evaluating the survival
function at 1

R> pTotalLoss<-1-pmbbefd(q=1,a=0.2,b=0.04)

R> pTotalLoss

[1] 0.2

Similarly, it is possible to assess the mean of the distribution underlying the exposure curve

Quantile functions, distribution functions and density functions are defined as well. For
example, the 60th percentile of the distribution above defined (i.e., how bad can be in 60%
of cases in terms of destruction rate) is

R> qmbbefd(p=0.6,a=0.2,b=0.04)

[1] 0.7153383

whilst a loss worse than 80% of IV could happen in
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R> 100*(1-pmbbefd(q=0.8,a=0.2,b=0.04))

[1] 33.0895

cases out of 100.

It would be possible to simulate variates from the MBBEFD distribution using the random
generation command rmbbefd.

R> simulatedLosses<-rmbbefd(n=10000,a=0.2,b=0.04)

R> mean(simulatedLosses)

[1] 0.5979536

R> sum(simulatedLosses==1)/length(simulatedLosses)

[1] 0.1947

Finally another way to show the probability of total loss to be greater than zero is to show
that the (numerical) integral between 0 and 1 of the density function is lower than 1, that is
1− F (1−).

R> integrate(dmbbefd,lower=0, upper=1, a=0.2, b=0.04)

0.8 with absolute error < 2.4e-13

7. Fitting MBBEFD curves

Bernegger (1997) suggests an iterative process, based on the method of moments, in order to
estimate the parameter of the distribution function, starting from known values of p = 1

g The
algoritm outilined is:

1. Try p0 = m2, being m2 the second empirical moment. Obtain g0 =
1
p0
.

2. Solve for b0 the equation E [x] = m0 =
ln(g0∗b0)

b0
1−b0

1−g0∗b
.

3. Get the second theoretical moment, E
[
x2
]
of x from estimated b0 and g0.

4. Compare E
[
x2
]
to the empirical moment. Repeat the process modifying p until the

theoretical second moment is close to the empirical one enough (the second moment is
an increasing function of p).

Fitting a MBBEFD distribution is not easy. The result is sensible to initial values and appears
to be instable. We have applied the first three steps of this process in order to obtain initial
estimates of a and b to feed the Maximum Likelihood estimation process using fitdistrplus

package, Delignette-Muller, Pouillot, Denis, and Dutang (2015). We show two example one
using both artificial data or real one (from package copula, Jun Yan (2007)).
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Figure 2: Exposure curve example
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R> #get data

R> data1<-rmbbefd(n=1000,a = .2,b=.04)

R> data(loss, package = "copula")

R> data2<-pmin(1,pmax(0,loss$loss/loss$limit)) #capping loss data to lim

R> #functions used to initialize the parameters

R> #using one iteration of Method of Moments

R>

R> #method of moments

R>

R> giveFunction2Minimize<-function(mu,g) {

+ out = function(b) (mu - (log(g*b)*(1 - b))/( log(b)*(1 - g*b)) )^2

+ return(out)

+ }

R> giveFunction2Integrate<-function(b,g) {

+ out = function(x) x^2*dmbbefd(x,b=b,g=g)

+ return(out)

+ }

R> giveInits<-function(x) {

+ m0<-mean(x)

+ m2<-mean(x^2)

+

+ #p<=1/g

+

+ p0=m2 #m2 upper limit of p0

+ g=1/p0

+

+ #equate 1rst moment to get the mean

+ myMin<-giveFunction2Minimize(mu=m0,g=g)

+ b<-nlm(f=myMin,p=.1)$estimate

+

+ #return a

+ a=(g-1)*b/(1-g*b)

+ out<-list(a=a, b=b)

+ return(out)

+ }

R> ###fitting process

R>

R> library(fitdistrplus)

R> #using close starting points

R> est1<-fitdist(data=data1,distr = "mbbefd",method = "mle",start=list(a=.9,b=.14))

R> est1

Fitting of the distribution ' mbbefd ' by maximum likelihood

Parameters:

estimate Std. Error

a 0.18582390 0.02784803

b 0.03784101 0.00598667
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R> #using estimated starting points

R> inits2<-giveInits(x=data2)

R> est2<-fitdist(data=data2,distr = "mbbefd",method = "mle",start=inits2)

R> est1

Fitting of the distribution ' mbbefd ' by maximum likelihood

Parameters:

estimate Std. Error

a 0.18582390 0.02784803

b 0.03784101 0.00598667
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