
Making and using bathymetric maps in R with

marmap

Eric Pante & Benoit Simon Bouhet

June 17, 2014

Contents

1 Introduction 1

2 A quick tutorial 2
2.1 Getting data into R . 2
2.2 Plotting bathymetric data . 2
2.3 Using bathymetric data for further analysis 6
2.4 Using bathymetric data for least-cost path analysis 11
2.5 Landscape Genetics . 14
2.6 3D plotting . 14
2.7 Preparing maps in the Pacific antimeridian region 16

3 Data import and export strategies in marmap 17
3.1 Overview of the different import and export strategies available

in marmap . 17
3.2 Importing bathymetric data from GEBCO: readGEBCO.bathy() 18
3.3 Getting bathymetric data from an xyz file: read.bathy() 19
3.4 Getting bathymetric data from NOAA: local SQL database . . . 20

4 Miscellaneous 21
4.1 Interactions with other packages 21

1 Introduction

In this vignette we introduce marmap, a package designed for manipulating
bathymetric data in R. marmap uses simple latitude-longitude-depth data in
ascii format and takes advantage of the advanced plotting tools available in
R to build publication-quality bathymetric maps. Functions to query data
(bathymetry, sampling information...) directly by clicking on marmap maps are
available. Bathymetric and topographic data can also be used to constrain the
calculation of realistic shortest path distances. Such information can be used

1

in molecular ecology, for example, to evaluate genetic isolation by distance in a
spatially-explicit framework.

2 A quick tutorial

In this section, we will produce bathymetric maps of Papua New Guinea, Hawaii
and the NW Atlantic.

2.1 Getting data into R

Launch R. Navigate to your work folder (for example, with setwd()). Then
launch the marmap package. The simplest way to get bathymetric data into
R for use with marmap is to use the getNOAA.bathy() function. It queries
the ETOPO1 dataset (Armante and Eakins 2009) hosted on the NOAA server,
based on coordinates and a resolution given by the user (please note that this
function depends on the availability of the NOAA server!). In one line, we can
get the data into R and start plotting:

> library(marmap)

> getNOAA.bathy(lon1 = 140, lon2 = 155, lat1 = -13, lat2 = 0,

resolution = 10) -> papoue

> summary(papoue)

Bathymetric data of class 'bathy', with 91 rows and 79 columns

Latitudinal range: -13 to 0 (13 S to 0 N)

Longitudinal range: 140 to 155 (140 E to 155 E)

Cell size: 10 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8750 -3123 -1540 -1641 -4 3711

First 5 columns and rows of the bathymetric matrix:

-13 -12.833333 -12.666667 -12.5 -12.333333

140 -36 -35 -35 -35 -35

140.166667 -35 -34 -34 -34 -33

140.333333 -33 -32 -32 -32 -31

140.5 -30 -30 -30 -29 -29

140.666667 -28 -28 -27 -27 -27

summary.bathy() helps you check the data ; because bathy is a class, and R
an object-oriented language, you just have to use summary(). R will recognize
that you are feeding summary() an object of class bathy. This is also true for
plot.bathy and plot().

2.2 Plotting bathymetric data

We can now use plot.bathy() (or plot(), because R will recognize the object
is of class bathy) to map the data. You can see that the 10 minute resolution
is a bit rough, but enough to demonstrate how marmap works (to increase the

2

resolution, simply change the value for the resolution argument to a smaller
value).

> plot(papoue)

Longitude

La
tit

ud
e

140 145 150 155

−
10

−
5

0

We can now use some of the options of plot.bathy() to make the map more
informative. First, we can plot a heat map, using the built in color palette. We
can also add a scale in kilometers.

> plot(papoue, image = TRUE)

> scaleBathy(papoue, deg = 2, x = "bottomleft", inset = 5)

3

140 142 144 146 148 150 152 154

−
14

−
12

−
10

−
8

−
6

−
4

−
2

0

Longitude

La
tit

ud
e

217 km

The bpal options allows you to use a custom color palette, which can be
easily prepared with the R function colorRampPalette(). We store the color
ramp in the object called blues, and when we call it in plot.bathy(), we
specify how many colors need to be used in the palette (here 100).

> colorRampPalette(c("red","purple","blue","cadetblue1",

"white")) -> blues

> plot(papoue, image = TRUE, bpal = blues(100))

4

140 142 144 146 148 150 152 154

−
14

−
12

−
10

−
8

−
6

−
4

−
2

0

Longitude

La
tit

ud
e

For maps using the image option of plot.bathy(), you might see that the
PDF rendering of your map is slightly different from the way it looks in R: the
small space between cells becomes visible. This is probably due to the way your
system handles PDFs. A simple way around this phenomenon is to export the
map in a raster (rather than vector) format. You can use the tiff(), jpeg(),
bmp() or png() functions available in R. This map looks a little crowded ; let’s
dim the isobaths (dark grey color and lighter line width), and strengthen the
coastline (black color and thicker line width). The deepest isobaths will be hard
to see on a dark blue background ; we can therefore choose to plot these in
light grey to improve contrast. The option drawlabel controls whether isobath
labels (e.g. “-3000”) are plotted or not.

> plot(papoue, image = TRUE, bpal = blues(100),

deep = c(-9000, -3000, 0), shallow = c(-3000, -10, 0),

step = c(1000, 1000, 0), lwd = c(0.8, 0.8, 1),

col = c("lightgrey", "darkgrey", "black"),

lty = c(1, 1, 1), drawlabel = c(FALSE, FALSE, FALSE))

5

140 142 144 146 148 150 152 154

−
14

−
12

−
10

−
8

−
6

−
4

−
2

0

Longitude

La
tit

ud
e

2.3 Using bathymetric data for further analysis

We can use the get.transect() and plotProfile() functions to extract and
plot a depth cross section from the papoue dataset. get.transect() will use
the coordinates you input to calculate the coordinates and depths along your
transect, and calculate the great circle distance separating each point along the
transect from the point of origin (in kilometers).

> get.transect(papoue, 151, -6, 153, -7, distance = TRUE)

lon lat dist.km depth

1 151.0000 -6.000000 0.00000 73

2 151.1667 -6.083333 20.62796 -4650

3 151.3333 -6.166667 41.25328 -5474

4 151.5000 -6.250000 61.87610 -6072

5 151.6667 -6.333333 82.49630 -6755

6 151.8333 -6.416667 103.11374 -5383

7 152.0000 -6.500000 123.72859 -5216

8 152.1667 -6.583333 144.34070 -5185

9 152.3333 -6.666667 164.94996 -4542

10 152.5000 -6.750000 185.55650 -4274

11 152.6667 -6.833333 206.16021 -4117

12 152.8333 -6.916667 226.76095 -4385

13 153.0000 -7.000000 247.35888 -4757

We can plot that information on a map and make a cross section plot with
plotProfile(). Again, the very low resolution of the dataset produces an

6

analysis with little information. You can get transect information and make a
cross-section plot by directly clicking on the map, using the locator option of
get.transect().

> get.transect(papoue, 151, -6, 153, -7,

distance = TRUE) -> transect

> plotProfile(transect)

0 50 100 150 200 250

−
70

00
−

50
00

−
30

00
−

10
00

Distance from start of transect (km)

D
ep

th
 (

m
)

We can also use get.depth() to retrieve depth information by either clicking
on the map or by providing a set of longitude/latitude pairs (see help pages).
This is helpfull to get depth information along a GPS track record for instance.
If the argument distance is set to TRUE, the haversine distance (in km) from
the first data point on will also be computed. The output will look like this:

> get.depth(papoue, distance=TRUE)

Waiting for interactive input: click any number of times on the map, then press 'Esc'
Lon Lat Depth Dist.km

1 146.0200 -2.601702 -758 0.0000

2 147.6167 -1.844152 -583 196.3933

3 149.3193 -2.607345 -2121 366.4942

4 150.7295 -4.249027 -2289 553.8867

get.sample() can be used in combination with a table containing sampling
information to retrieve sample information by clicking on the map. Let’s make a
fake table of sampling data and use it for plotting and use with get.sample():

> x = c(142.1390, 142.9593, 144.0466, 145.9141,

145.9372, 146.0115, 145.9141, 146.8589,

146.6651, 147.1772, 147.2856, 152.7475,

152.5025, 152.7816, 152.9010, 153.2314)

> y = c(-2.972065, -3.209449, -3.391399, -4.675720,

-4.914153, -5.130116, -5.329641, -2.587792,

-2.897221, -3.250368, -2.720080, -6.005769,

-6.211152, -6.326915, -5.990206, -6.023344)

> paste("station",1:16, sep = "") -> station

> data.frame(x, y, station) -> sampling

7

We have now created a small table that we can use for further analysis. Let’s
plot them on a map:

> head(sampling) # a preview of the first 6 lines of the dataset.

x y station

1 142.1390 -2.972065 station1

2 142.9593 -3.209449 station2

3 144.0466 -3.391399 station3

4 145.9141 -4.675720 station4

5 145.9372 -4.914153 station5

6 146.0115 -5.130116 station6

> plot(papoue, image = TRUE, bpal = blues(100),

deep = c(-9000, -3000, 0), shallow = c(-3000, -10, 0),

step = c(1000, 1000, 0), lwd = c(0.8, 0.8, 1),

col = c("lightgrey", "darkgrey", "black"),

lty = c(1, 1, 1), drawlabel = c(FALSE, FALSE, FALSE))

> # add points from the sampling.csv, and add text to the plot:

> points(sampling$x, sampling$y, pch = 21, col = "black",

bg = "yellow", cex = 1.3)

> text(152, -7.2, "New Britain\nTrench", col = "white", font = 3)

140 142 144 146 148 150 152 154

−
14

−
12

−
10

−
8

−
6

−
4

−
2

0

Longitude

La
tit

ud
e

●
● ●

●
●
●●

●
●

●

●

●●●
●●

New Britain
Trench

By clicking on the map, we can select the area in the New Britain Trench, to
get information on the sampling stations of that area. get.sample() will detect
that there are samples in the area selected, and return the locations relative for
these samples.

8

> # click twice on the map to delimit an area:

> get.sample(papoue, sampling, col.lon = 1, col.lat = 2)

x y station

12 152.7475 -6.005769 station12

13 152.5025 -6.211152 station13

14 152.7816 -6.326915 station14

15 152.9010 -5.990206 station15

16 153.2314 -6.023344 station16

We can use the depth data when plotting points:

> # make a table of fake sampling information, with fake depth

> samp.depth = sample(seq(-3000, -1000, by = 50), size = 16)

> data.frame(sampling$x, sampling$y, samp.depth) -> sp

> names(sp) <- c("lon", "lat", "depth")

> head(sp)

lon lat depth

1 142.1390 -2.972065 -2300

2 142.9593 -3.209449 -2550

3 144.0466 -3.391399 -1700

4 145.9141 -4.675720 -1000

5 145.9372 -4.914153 -2150

6 146.0115 -5.130116 -1500

> # plot map

> par(mai=c(1,1,1,1.5))

> plot(papoue, deep = c(-4500, 0), shallow = c(-50, 0), step = c(500, 0),

lwd = c(0.3, 1), lty = c(1, 1), col = c("grey", "black"),

drawlabels = c(FALSE, FALSE))

> scaleBathy(papoue, deg = 3, x = "bottomleft", inset = 5)

> # set color palette

> max(-sp$depth, na.rm = TRUE) -> mx

> colorRampPalette(c("white", "lightyellow", "lightgreen",

"blue", "lightblue1", "purple")) -> ramp

> blues <- ramp(mx)

> # plot points and color depth scale

> points(sp[,1:2], col = "black", bg = blues[-sp$depth],

pch = 21, cex = 1.5)

> library(shape)

> colorlegend(zlim = c(mx, 0), col = rev(blues), main = "depth (m)",

posx = c(0.85, 0.88))

9

Longitude

La
tit

ud
e

140 145 150 155

−
15

−
10

−
5

0

326 km

● ● ●

●●●●

●●
●
●

●●●●●

0

500

1000

1500

2000

2500

3000

depth (m)

The function get.area() can be used to calculate the projected surface area
(the projecting surface being the ocean surface). For example, in the case of the
Hawaiian Archipelago, we can calculate the surface area of the bathyal (1,000
to 4,000 m) and abyssal regions (4,000 to about 6,000 m).

> data(hawaii)

> get.area(hawaii, level.inf = -4000, level.sup = -1000) -> bathyal

> get.area(hawaii, level.inf = min(hawaii), level.sup = -4000) -> abyssal

> round(bathyal$Square.Km, 0) -> ba

> round(abyssal$Square.Km, 0) -> ab

The function get.area() returns a surface area in square kilometers ($Square.Km),
and a matrix of zeros and ones delimiting the area of interest. The $Lon, $Lat
and $Area objects can be used to display these areas:

> plot(hawaii, lwd = 0.2)

> image(bathyal$Lon, bathyal$Lat, bathyal$Area,

col = c("transparent", rgb(0.7, 0, 0, 0.3)), add = TRUE)

> image(abyssal$Lon, abyssal$Lat, abyssal$Area,

col = c("transparent", rgb(0.7, 0.7, 0.3, 0.3)), add = TRUE)

> legend("bottomleft",

legend = c(paste("bathyal:", ba, "km2"),

paste("abyssal:", ab, "km2")),

fill = c(rgb(0.7, 0, 0, 0.3), rgb(0.7, 0.7, 0, 0.3)))

10

Longitude

La
tit

ud
e

−162 −160 −158 −156 −154

16
18

20
22

24

bathyal: 88064 km2
abyssal: 644281 km2

2.4 Using bathymetric data for least-cost path analysis

marmap contains functions to facilitate least-cost path analysis that are based
on the raster and gdistance packages (van Etten 2012a, 2012b). gdistance

calculates routes in a heterogeneous landscape, taking obstacles into account.
These obstacles can be defined in marmap based on bathymetric data. We will
use the Hawaiian islands as our playground for this section.

> data(hawaii, hawaii.sites)

> sites <- hawaii.sites[-c(1,4),]

> rownames(sites) <- 1:4

We first compute a transition to be used by lc.dist to compute least cost
distances between locations. The transition object generated by trans.mat

contains the probability of transition from one cell of a bathymetric grid to
adjacent cells, and depends on user defined parameters. trans.mat is especially
usefull when least cost distances need to be calculated between several locations
at sea. The default values for min.depth and max.depth ensure that the path
computed by dist.geo will be the shortest path possible at sea avoiding land
masses. The path can be constrained to a given depth range by setting manually
min.depth and max.depth. For instance, it is possible to limit the possible
paths to the continental shelf by setting max.depth=-200. Inaccuracies of the
bathymetric data can occasionally result in paths crossing land masses. Setting
min.depth to low negative values (e.g. -10 meters) can limit this problem.

trans1 is a transition object contained only by land masses. trans2 is
a transition object that makes travel impossible in waters shallower than 200
meters depth. This step takes a little time.

11

> trans1 <- trans.mat(hawaii)

> trans2 <- trans.mat(hawaii, min.depth = -200)

We can now use these transition objects to calculate least cost distances for
trans1 and trans2. The output of lc.dist is a list of geographic positions
corresponding to the least-cost path.

> out1 <- lc.dist(trans1, sites, res = "path")

|===| 100%

> out2 <- lc.dist(trans2, sites, res = "path")

|===| 100%

We use the lapply function to extract information from these lists and plot
lines. Thick orange lines correspond to least-cost paths only constrained by
landmasses Thin black lines are paths constrained by the 200 m isobath. We
store the result of lapply in a dummy variable to avoid printing of unnecessary
information. The coastline is in black, the 200 m isobath is in blue, and isobaths
between 5000 and 200 m depth are in grey. Our sampling points are in blue.

> plot(hawaii, xlim = c(-161, -154), ylim = c(18, 23),

deep = c(-5000, -200, 0), shallow = c(-200, 0, 0),

col = c("grey", "blue", "black"), step = c(1000, 200, 1),

lty = c(1, 1, 1), lwd = c(0.6, 0.6, 1.2),

draw=c(FALSE, FALSE, FALSE))

> points(sites, pch = 21, col = "blue", bg = col2alpha("blue", .9),

cex = 1.2)

> text(sites[,1], sites[,2], lab = rownames(sites),

pos = c(3, 4, 1, 2), col = "blue")

> lapply(out1, lines, col = "orange", lwd = 5, lty = 1) -> dummy

> lapply(out2, lines, col = "black", lwd = 1, lty = 1) -> dummy

12

Longitude

La
tit

ud
e

−161 −160 −159 −158 −157 −156 −155 −154

18
19

20
21

22
23

1

2

3

4

The option res of lc.dist controls whether path coordinates or distances
between points (in kilometers) are outputted. Let’s see how these different
scenarios (no constraint: great-circle distance, dist0 ; avoid landmasses: dist1
; avoid areas shallower than 200 m: dist2) effect distances between sampling
points:

> library(fossil)

> dist0 <- round(earth.dist(sites), 0)

> dist1 <- lc.dist(trans1, sites, res = "dist")

> dist2 <- lc.dist(trans2, sites, res = "dist")

> dist0

1 2 3

2 226

3 387 381

4 355 517 331

> dist1

1 2 3

2 230

3 391 401

4 365 529 334

> dist2

1 2 3

2 230

13

3 423 403

4 365 533 334

Note: You can check out the help file for lc.dist to see how we can combine
these functions with cross-section calculations and plotting.

2.5 Landscape Genetics

The distance objects created in the section above are formatted as matrices
that can be used in R or exported to be used in GenePop (Rousset 2008),
TESS (Durand et al 2009), or other software. As an example, these distances
can be used to perform a Mantel test, as implemented in the package ade4

(mantel.rtest() function ; Chessel and Dufour 2004, Dray et al 2007, Dray
and Dufour 2007). The matrices produced in marmap are ready for use with
ade4. For export and use in external programs, the function write.matrix()

of the MASS package (Venables and Ripley 2002) will be helpful.

2.6 3D plotting

R contains tools to plot data in three dimensions. We can use the function
wireframe() of the package lattice to make a 3D representation of the NW
Atlantic and its seamount chains. wireframe() is not part of marmap, and was
therefore not meant to work with objects of class bathy. We need to use the
function unclass() to make our data available to wireframe(). Make sure
to adjust the aspect option of wireframe(), to minimize vertical exaggeration
and biased latitude / longitude aspect ratio.

data(nw.atlantic)

atl <- as.bathy(nw.atlantic)

library(lattice)

wireframe(unclass(atl), shade = TRUE, aspect = c(1/2, 0.1))

The marmap function get.box() can be coupled with the lattice function
wireframe to produce 3D plots of belt transects of given width. Let’s use the

14

NW Atlantic data to investigate these functions, and look at the New England
and Corner Rise seamount chains.

> data(nw.atlantic) ; atl <- as.bathy(nw.atlantic)

> plot(atl, xlim = c(-70, -52),

deep = c(-5000, 0), shallow = c(0, 0), step = c(1000, 0),

col = c("lightgrey", "black"), lwd = c(0.8, 1),

lty = c(1, 1), draw = c(FALSE, FALSE))

> get.box(atl, x1 = -68.6, x2 = -53.7, y1 = 42.4, y2 = 32.5,

width = 3, col = "red") -> out

Longitude

La
tit

ud
e

−70 −65 −60 −55

30
35

40
45

●

●

> library(lattice)

> wireframe(out, shade = TRUE, zoom = 1.1,

aspect = c(1/4, 0.1),

screen = list(z = -60, x = -55),

par.settings = list(axis.line = list(col = "transparent")),

par.box = c(col = rgb(0, 0, 0, 0.1)))

15

row

column

2.7 Preparing maps in the Pacific antimeridian region

The antimeridian (or antemeridian) is the 180th meridian and is located about
in the middle of the Pacific Ocean, east of New Zealand and Fidji, west of Hawaii
and Tonga. If you want to prepare a map of the Aleutian Islands (Alaska), your
latitude values may, for example, go from 165 to 180 degrees East, and 180 to
165 degrees West. Crossing the antemeridian means that you will need to down-
load data for the eastern (165 to 180) and the western (-180 to -165) portions
of the area of interest (for example, GEBCO will tell you “The Westernmost
is more Easterly than the Easternmost. Please amend your search query” if
you try to download data for the Aleutians in one step). getNOAA() has an
argument to deal with the antemeridian region. For the Aleutians, you would
use the antimeridian argument. summary.bathy() can interpret antimeridian
areas as well. When you plot your antimeridian region, the default behavior
of plot.bathy() is to scale longitudes from 0 to 360 degrees (170E to 170W
would be displayed as 170, 190 instead of 170, -170). You can use the argument
axes=FALSE in plot.bathy() and add correct labels with antimeridian.box().
We have set the default behavior of plot.bathy() in this way to remind the
user that the scale of the bathy object, in the antimeridian region, goes from 0
to 360; if you need to plot points on the map, you need to take this into account
(i.e. a point at -170 longitude must be plotted using 190, not 170 or -170).

> getNOAA.bathy(165,-145,50,65, resolution=5,

+ antimeridian=TRUE) -> aleu

> summary(aleu)

> plot(aleu, image=TRUE,

16

+ bpal=list(c(0,max(aleutians),grey(.7),grey(.9),grey(.95)),

+ c(min(aleutians),0,"darkblue","lightblue")),

+ land=TRUE,lwd=0.1,axes=FALSE)

> plot(aleutians,n=1,lwd=.8,add=T)

> antimeridian.box(aleu)

Alternatively, it is possible to import two compatible bathy objects (for
instance from GEBCO), one for the eastern part and one for the western part
of the area of interest. The function collate.bathy takes care of the stitching
process: relabelling longitudes in the 0-360 degrees range, removing duplicated
data (i.e. the data for longitude 180 is often present once in each individual
dataset and thus needs to be removed once), etc. Providing that we downloaded
two files “east.nc” and “west.nc” from the GEBCO website, creating a proper
bathy object for the antimeridian region is as simple as:

> a <- getGEBCO.bathy("east.nc")

> b <- getGEBCO.bathy("west.nc")

> stitched <- collate.bathy(a,b)

3 Data import and export strategies in marmap

3.1 Overview of the different import and export strategies
available in marmap

getNOAA.bathy() is the easiest way to load data into R, but it depends on
the NOAA download protocol, and one must have an internet connection (see
above). However, setting the keep argument to TRUE will save on disk the data
downloaded from the NOAA servers when the function is called for the first
time. Any subsequent call to getNOAA.bathy() with the same list of argu-
ments (i.e. same longitudes, latitudes and resolution) will preferentially load
the dataset saved on disk in the current working directory. This allows the
users to run scripts without having to query the NOAA servers and download
the same data again and again, making the use of getNOAA.bathy() possible
even off-line. read.bathy() allows import of data into R, and this data can be
located on a drive ; an internet connection is therefore not mandatory. This is
a good way to import data that have been saved locally on your drive, and may
be faster than re-downloading data from the NOAA server at the beginning of
each R session. If the user is building maps routinely, we propose two functions
to create a local database that can be accessed from within R. These functions

17

Function Job Input Output Internet

getNOAA.bathy() downloads data
from NOAA
server

coordinates of
bounding box
and resolution

data matrix of
class bathy

yes

readGEBCO.bathy() imports data
from GEBCO
file

name of ex-
ternal file in
netCDF format

data matrix of
class bathy

no

read.bathy() imports data
into R

name of exter-
nal file with xyz
data

data matrix of
class bathy

no

setSQL() creates a local
SQL database
of bathymetric
data

name of exter-
nal file with xyz
data

an SQL
database

no

subsetSQL() queries a local
SQL database

coordinates of
bounding box
and resolution

data matrix of
class bathy

no

as.xyz() converts a
dataset of class
bathy into an
xyz table

dataset of class
bathy (an R ob-
ject)

an xyz table
(an R object)

no

as.bathy() converts an xyz
table into an
dataset of class
bathy

an xyz table
(an R object)

dataset of class
bathy (an R ob-
ject)

no

are setSQL() and subsetSQL().

3.2 Importing bathymetric data from GEBCO: readGE-
BCO.bathy()

readGEBCO.bathy() provides a data source alternative to the NOAA-hosted
ETOPO1 data. The GEBCO data, hosted on the British Oceanographic Data
Center server, is available at the 30 second and 1 minute resolutions. Both types
can be imported using readGEBCO.bathy(), using the ncdf package to load
netCDF data into R. The argument db specifies whether data was downloaded
from the 30 arcseconds database (GEBCO 08) or the 1 arcminute database
(GEBCO 1min, the default). A third database type, GEBCO 08 SID, is avail-
able from the website. This database contains a Source IDentifier (SID) spec-
ifying which grid cells have depth information based on soundings; it does not
contain bathymetry or topography data. readGEBCO.bathy can read this type
of database with db = "GEBCO_08", and only the SID information will be in-
cluded in the object of class bathy. Therefore, to display a map with both the
bathymetry and the SID information, you will have to download both datasets
from GEBCO, and import and plot both independently. Here is an example for
the region of the Mediterranean Sea including Corsica and Sardinia:

> readGEBCO.bathy("gebco_08_7_38_10_43_corsica.nc", db="GEBCO_08") -> med

> summary(med) # the bathymetry data

18

> readGEBCO.bathy("gebco_SID_7_38_10_43_corsica.nc", db="GEBCO_08")-> sid

> summary(sid) # the SID data

a pretty custom color palette

> colorRampPalette(c("lightblue","cadetblue2","cadetblue1","white")) -> blues

a first plot for bathymetry

> plot(med, n=1, im=T, bpal=blues(100),

main="Corsica & Sardinia bathymetry\n GEODAS 08 & SID datasets")

a second layer with the SID data

> contour(as.numeric(rownames(sid)), as.numeric(colnames(sid)), sid,

drawlabels=F, lwd=.1, add=T)

The argument resolution specifies the resolution of the object of class
bathy. Because the resolution of GEBCO data is rather fine, we offer the pos-
sibility of downsizing the dataset with resolution. resolution is in units
of the selected database: in ”GEBCO 1min”, resolution is in minutes; in
”GEBCO 08”, resolution is in 30 arcseconds (that is, resolution = 3 cor-
responds to 3x30sec, or 1.5 arcminute).

3.3 Getting bathymetric data from an xyz file: read.bathy()

read.bathy() will read xyz data from any source. Here, we will get ETOPO1
data hosted on the NOAA GEODAS server (NOAA National Geophysical Data
Center 2013). To get the data, use the following link:

http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html

To prepare data from NOAA, give a name to your custom grid, choose the
database (ETOPO1 1-minute Global Relief), fill the custom grid form (upper
latitude: 0, lower latitude: 13S, left longitude: 140E, right longitude: 155E) for
a grid cell size of 10 minute, and choose ”XYZ (lon,lat,depth)” as the ”Output
Grid Format”, ”No Header” as the ”Output Grid Header”, and either of the
space, tab of comma as the column delimiter (either can be used, but ”comma”
is the default import format of read.bathy()). Choose ”omit empty grid cells”
to reduce memory usage. Submit your job, and retrieved your data. You will
get a zipped folder, in which you will find (in a subfolder) a .xyz file with your
data. Place it, for example, in your work folder.

The resolution of 10 minutes is a low resolution that will keep the size of the
example file small, about 200 kb. Increasing the resolution to 1 minute would
result in a file size of about 20 mb.

Launch R. Navigate to your work folder (for example, with setwd()). Then
launch the marmap package. and load your xyz data (we will call it “png.xyz”)
with read.bathy(). This converts your data into an R object of class “bathy.”
summary.bathy() helps you check the data ; because bathy is a class, and R
an object-oriented language, you just have to use summary(), because R will
recognize that you are feeding summary() an object of class bathy. This is also
true for plot.bathy and plot().

19

> library(marmap)

> read.bathy('png.xyz', header = FALSE, sep = "\t") -> papoue

> summary(papoue)

Bathymetric data of class 'bathy', with 91 rows and 79 columns

Latitudinal range: -13 to 0 (13 S to 0 N)

Longitudinal range: 140 to 155 (140 E to 155 E)

Cell size: 10 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8750 -3123 -1540 -1641 -4 3711

First 5 columns and rows of the bathymetric matrix:

-13 -12.833333 -12.666667 -12.5 -12.333333

140 -36 -35 -35 -35 -35

140.166667 -35 -34 -34 -34 -33

140.333333 -33 -32 -32 -32 -31

140.5 -30 -30 -30 -29 -29

140.666667 -28 -28 -27 -27 -27

The read.bathy function can import bathymetric data for non rectangular
areas as is often the case for custom datasets acquired by various types of sonar
systems (e.g. Multibeam Echo Sounders). Please note however that depending
on the size of the xyz file, the resolution of the data and the shape of the area
covered by the data, the import can take up to sevral minutes.

3.4 Getting bathymetric data from NOAA: local SQL data-
base

setSQL() and subsetSQL() create and query a local SQL database for bathy-
metric data. These tools are made for routine use with no internet connection.
The full ETOPO1 database, or a subset (for example), can be downloaded on
your computer, and used to set an SQL database, which size will be approxi-
mately the same as your original xyz data (unzipped ETOPO1 is about 5 Go).
The advantage of SQL, a language for querying large databases, are manyfold.
Its use will allow rapid upload of data into R, directly as bathy objects (and
therefore directly useable for plotting and analysis) with a smaller footprint
on your memory than if you tried to load a very large xyz file into R and then
subset-ed it. Here is a simple example on how to set up and use an SQL database
for marmap.

Use a local file with xyz data (we can re-use the png.xyz that we created
above for use with read.bathy()), and submit it to setSQL(). Make sure that
no file called bathy_db is present in your working directory. Also, make sure
that the package RSQLite (James and Falcon 2012) is installed and properly
working.

> require(RSQLite)

> setSQL(bathy = "png.xyz", sep = "\t")

[1] TRUE

20

This will created a file bathy_db in your directory, which size is about the
size of (or larger than) your original data. If you want to create a database for
frequent use, you just need to do this once. subsetSQL() will know where to get
the data in future R sessions. If setSQL() worked properly, it will return TRUE. If
there is a problem (e.g. database connection already open, database file already
created ...) it will return FALSE. Lets query a subset of the png dataset, and
check that it is indeed what we asked for with the summary.bathy() function:

> subsetSQL(min_lon = 145, max_lon = 150,

min_lat = -2, max_lat = 0) -> test

> summary(test)

Bathymetric data of class 'bathy', with 29 rows and 11 columns

Latitudinal range: -1.83 to -0.17 (1.83 S to 0.17 S)

Longitudinal range: 145.17 to 149.83 (145.17 E to 149.83 E)

Cell size: 10 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6650 -3282 -2076 -2594 -1543 72

First 5 columns and rows of the bathymetric matrix:

-1.833333 -1.666667 -1.5 -1.333333 -1.166667

145.166667 -1001 -1348 -249 -1774 -2079

145.333333 -1137 -1579 -1938 -1794 -1957

145.5 -1069 -1833 -2007 -2097 -2166

145.666667 -1295 -2020 -2123 -2301 -2289

145.833333 -1728 -1912 -1981 -2183 -2350

Finally, if you are done with the SQL dataset, you can remove it with

> system("rm bathy_db")

4 Miscellaneous

4.1 Interactions with other packages

marmap interacts with multiple existing R packages for visualization and anal-
ysis, such as lattice for building three-dimensional plots, and gdistance for
least-cost path calculations (see above). marmap also contains functions to ease
interactions with other packages dedicated to the analysis of spatial data. Data
from class bathy can be transformed into RasterLayer objets for use in the
raster package [7] or into SpatialGridDataFrame objects for use in the pack-
ages sp [2, 10]. The full range of spatial analyses implemented in packages
taking advantage of these classes are thus available for bathymetric data. The
simple example presented below illustrate how to apply an arbitrary projection
to bathy objects using the function projectRaster from the raster package
(n.b. a working installation of the rgdal package is needed to use this function).

Loads data of class bathy

> data(hawaii)

21

Creates an object of class raster

> r1 <- as.raster(hawaii)

Defines the target projection

> newproj <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"

Creates a new projected raster object

> r2 <- projectRaster(r1,crs=newproj)

Switches back to a bathy object

> hawaii.projected <- as.bathy(r2)

Plots both the original and projected bathy objects

> plot(hawaii, image = TRUE, lwd = 0.3)

> plot(hawaii.projected, image = TRUE, lwd = 0.3,

xlab = "", ylab = "", axes = FALSE)

22

References

[1] Amante C, Eakins BW (2009) Etopo1 1 arc-minute global relief model:
Procedures, data sources and analysis. NOAA Technical Memorandum
NESDIS NGDC-24 : 1-19.

[2] Bivand RS, Pebesma EJ, Gomez-Rubio V (2008) Applied spatial data anal-
ysis with R. Springer, NY.

[3] Chessel D, Dufour A, Thioulouse J (2004) The ade4 package -I- One-table
methods. R News 4: 5-10.

[4] Dray S, Dufour A, Chessel D (2007) The ade4 package-II: Two-table and
K-table methods. R News 7: 47-52.

[5] Dray S, Dufour A (2007) The ade4 package: implementing the duality
diagram for ecologists. Journal of Statistical Software 22: 1-20.

[6] Durand E, Jay F, Gaggiotti O, François O (2009) Spatial inference of ad-
mixture proportions and secondary contact zones. Molecular Biology and
Evolution 26: 1963-1973.

[7] van Etten RJHJ (2012) raster: Geographic data analysis and modeling.
URL http://CRAN.R-project.org/package=raster. R package version
2.0-41.

[8] van Etten J (2012) gdistance: Distances and routes on geographical grids.
URL http://CRAN.R-project.org/package=gdistance. R package ver-
sion 1.1-4.

23

http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=gdistance

[9] NOAA National Geophysical Data Center. GEODAS Grid Transla-
tor - Design a grid. URL http://www.ngdc.noaa.gov/mgg/gdas/gd_

designagrid.html.

[10] Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R.
R News. 5:9-13.

[11] James DA, Falcon S (2012) RSQLite: SQLite interface for R. URL http:

//CRAN.R-project.org/package=RSQLite. R package version 0.11.2.

[12] Rousset F, (2008) GENEPOP’007: a complete re-implementation of the
genepop software for Windows and Linux. Molecular Ecology Resources 8:
103-106.

[13] Venables, W. N. and B. D. Ripley. 2002. Modern Applied Statistics with S.
Fourth edition. Springer.

24

http://www.ngdc.noaa.gov/mgg/gdas/gd_ designagrid.html
http://www.ngdc.noaa.gov/mgg/gdas/gd_ designagrid.html
http://CRAN.R-project.org/package=RSQLite
http://CRAN.R-project.org/package=RSQLite

	Introduction
	A quick tutorial
	Getting data into R
	Plotting bathymetric data
	Using bathymetric data for further analysis
	Using bathymetric data for least-cost path analysis
	Landscape Genetics
	3D plotting
	Preparing maps in the Pacific antimeridian region

	Data import and export strategies in marmap
	Overview of the different import and export strategies available in marmap
	Importing bathymetric data from GEBCO: readGEBCO.bathy()
	Getting bathymetric data from an xyz file: read.bathy()
	Getting bathymetric data from NOAA: local SQL database

	Miscellaneous
	Interactions with other packages

