
Continuous Time Markov Chains
Sai Bhargav Yalamanchi, Giorgio Alfredo Spedicato

2015-08-03

The markovchain package provides functionality for continuous time Markov chains (CTMCs). This vignette
aims to provide a brief mathematical introduction to the same as well as how to use the package functionality.

Mathematical introduction

CTMCs are a generalisation of discrete time Markov chains (DTMCs) in that we allow time to be continuous.
We assume a finite state space S (for an infinite state space wouldn’t fit in memory). We can think of CTMCs
as Markov chains in which state transitions can happen at any time.

More formally, we would like our CTMCs to satisfy the following two properties

• The Markov property - let FX(s) denote the information about X upto time s. Let j ∈ S and s ≤ t.
Then, P (X(t) = j|FX(s)) = P (X(t) = j|X(s))

• Time homogenity - P (X(t) = j|X(s) = k) = P (X(t− s) = j|X(0) = k)

If both the above properties are satisfied, it is referred to as a time-homogeneous CTMC. If a transition
occurs at time t, then X(t) denotes the new state and X(t) 6= X(t−).

Now, let X(0) = x and let Tx be the time a transition occurs from this state. We are interested in the
distribution of Tx. For s, t ≥ 0, it can be shown that

P (Tx > s+ t|Tx > s) = P (Tx > t)

This is the memory less property that only the exponential random variable exhibits. Therefore, this is the
sought distribution, and each state s ∈ S has an exponential holding parameter λ(s). Since ETx = 1

λ(x) ,
higher the rate λ(x), smaller the expected time of transitioning out of the state x.

However, specifying this parameter alone for each state would only paint an incomplete picture of our CTMC.
To see why, consider a state x that may transition to either state y or z. The holding parameter enables us
to predict when a transition may occur if we start off in state x, but tells us nothing about which state will
be next.

To this end, we also need transition probabilities associated with the process, defined as follows (for y 6= x) -

pxy = P (X(Ts) = y|X(0) = x)

Note that
∑
y 6=x pxy = 1. Let Q denote this transition matrix (Qij = pij). What is key here is that Tx and

the state y are independent random variables. Let’s define

λ(x, y) = λ(x)pxy

We now look at Kolmogorov’s backward equation. Let’s define

Pij(t) = P (X(t) = j|X(0) = i)

for i, j ∈ S. The backward equation is given by (it can be proved)

Pij(t) = δije
−λ(i)t +

∫ t

0
λ(i)e−λ(i)t

∑
k 6=i

QikPkj(t− s)ds

1

Basically, the first term is non-zero if and only if i = j and represents the probability that the first transition
from state i occurs after time t. This would mean that at t, the state is still i. The second term accounts for
any transitions that may occur before time t and denotes the probability that at time t, when the smoke
clears, we are in state j.

This equation can be represented compactly as follows

P ′(t) = AP (t)

where A is the generator matrix.

A(i, j) =
{
λ(i, j) if i 6= j

−λ(i) else.

Observe that the sum of each row is 0. A CTMC can be completely specified by the generator matrix.

Stationary Distributions

The following theorem guarantees the existence of a unique stationary distribution for CTMCs. Note that
X(t) being irreducible and recurrent is the same as Xn(t) being irreducible and recurrent.

Suppose that X(t) is irreducible and recurrent. Then X(t) has an invariant measure η, which is unique up to
multiplicative factors. Moreover, for each k ∈ S, we have

ηk = πk
λ(k)

where π is the unique invariant measure of the embedded discrete time Markov chain Xn. Finally, η satisfies

0 < ηj <∞,∀j ∈ S

and if
∑
i ηi <∞ then η can be normalised to get a stationary distribution.

Fitting

Let the data set be
D = {(s0, t0), (s1, t1), ..., (sN−1, tN−1)}

where N = |D|. Each si is a state from the state space S and during the time [ti, ti+1] the chain is in state
si. Let the parameters be represented by

θ = {λ, P}

where λ is the vector of holding parameters for each state and P the transition matrix of the embedded
discrete time Markov chain.

Then the probability is given by

Pr(D|θ) ∝ λ(s0)e−λ(s0)(t1−t0)Pr(s1|s0) . λ(s1)e−λ(s1)(t2−t1)Pr(s2|s1) ... λ(sN−2)e−λ(sN−2)(tN−1−tN−2)Pr(sN−1|sN−2)

Let n(j|i) denote the number of i->j transitions in D, and n(i) the number of times si occurs in D. Let t(si)
denote the total time the chain spends in state si.

Then the MLEs are given by
ˆλ(s) = n(s)

t(s) ,
ˆPr(j|i) = n(j|i)

n(i)

2

Usage

To create a CTMC object, you need to provide a valid generator matrix. The CTMC object has the following
slots - states, generator, byrow, name (look at the documentation object for further details). Consider the
following example in which we aim to model the transition of a molecule from the σ state to the σ∗ state.
When in the former state, if it absorbs sufficient energy, it can make the jump to the latter state and remains
there for some time before transitioning back to the original state. Let us model this by a CTMC -

library(markovchain)
energyStates <- c("sigma", "sigma_star")
byRow <- TRUE
gen <- matrix(data = c(-3, 3,

1, -1), nrow = 2,
byrow = byRow, dimnames = list(energyStates, energyStates))

molecularCTMC <- new("ctmc", states = energyStates,
byrow = byRow, generator = gen,
name = "Molecular Transition Model")

To generate random CTMC transitions, we provide an initial distribution of the states. This must be in the
same order as the dimnames of the generator. The output can be returned either as a list or a data frame.

statesDist <- c(0.8, 0.2)
rctmc(n = 3, ctmc = molecularCTMC, initDist = statesDist, out.type = "df", include.T0 = FALSE)

states time
1 sigma_star 0.832612183523886
2 sigma 1.89396224393581
3 sigma_star 2.07761474036683

n represents the number of samples to generate. There is an optional argument T for rctmc. It represents the
time of termination of the simulation. To use this feature, set n to a very high value, say Inf (since we do
not know the number of transitions before hand) and set T accordingly.

statesDist <- c(0.8, 0.2)
rctmc(n = Inf, ctmc = molecularCTMC, initDist = statesDist, T = 2)

[[1]]
[1] "sigma" "sigma_star"
##
[[2]]
[1] 0.0000000 0.4905904

To obtain the stationary distribution simply invoke the steadyStates function

steadyStates(molecularCTMC)

sigma sigma_star
[1,] 0.25 0.75

For fitting, use the ctmcFit function. It returns the MLE values for the parameters along with the confidence
intervals.

3

data <- list(c("a", "b", "c", "a", "b", "a", "c", "b", "c"), c(0, 0.8, 2.1, 2.4, 4, 5, 5.9, 8.2, 9))
ctmcFit(data)

$estimate
An object of class "ctmc"
Slot "states":
[1] "a" "b" "c"
##
Slot "byrow":
[1] TRUE
##
Slot "generator":
a b c
a -0.9090909 0.6060606 0.3030303
b 0.3225806 -0.9677419 0.6451613
c 0.3846154 0.3846154 -0.7692308
##
Slot "name":
[1] ""
##
##
$errors
$errors$dtmcConfidenceInterval
$errors$dtmcConfidenceInterval$confidenceLevel
[1] 0.95
##
$errors$dtmcConfidenceInterval$lowerEndpointMatrix
a b c
a 0 0 0
b 0 0 0
c 0 0 0
##
$errors$dtmcConfidenceInterval$upperEndpointMatrix
a b c
a 0.0000000 1 0.8816179
b 0.8816179 0 1.0000000
c 1.0000000 1 0.0000000
##
##
$errors$lambdaConfidenceInterval
$errors$lambdaConfidenceInterval$lowerEndpointVector
[1] 0.04576665 0.04871934 0.00000000
##
$errors$lambdaConfidenceInterval$upperEndpointVector
[1] 1 1 1

4

	Mathematical introduction
	Stationary Distributions
	Fitting

	Usage

