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Abstract

Leadership is a process that leaders influence followers to achieve collective goals.
One of special cases of leadership is the coordinated pattern initiation. In this context,
leaders are initiators who initiate coordinated patterns that everyone follows. Given a
set of individual-multivariate time series of real numbers, the mFLICA package provides
a framework for R users to infer coordination events within time series, initiators and
followers of these coordination events, as well as dynamics of group merging and splitting.
The mFLICA package also has a visualization function to make results of leadership
inference more understandable. The package is available on Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=mFLICA.
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1. Introduction

Leadership is defined as a process that leaders influence a group to achieve collective goals Hogg
(2001); Glowacki and von Rueden (2015). In time series context, one of leadership definitions
is pattern initiation. Leaders are initiators who initiate collective patterns (e.g. movement
initiation, trends of stock closing prices) that everyone follows Amornbunchornvej, Brugere,
Strandburg-Peshkin, Farine, Crofoot, and Berger-Wolf (2018). Collective patterns or coordi-
nation events are emerging events of collective actions that aim to reach collective goals Mal-
one and Crowston (1994). In time series context, coordination events occur when there exists
some intervals such that some similar pattern occurs in all time series with possible different
time delay for each time series Amornbunchornvej et al. (2018). A leader of coordination
event is a time series that initiates the pattern before others having this similar pattern with
arbitrary time delays.

Leadership literature in time series started in movement context. Leaders are defined as
individuals who move in a front of a group in the flock model Andersson, Gudmundsson,
Laube, and Wolle (2008). Afterwards, the work by Kjargaard, Blunck, Wustenberg, Gron-
bask, Wirz, Roggen, and Troster (2013) defined leaders as an individual who has the highest
number of followers. The work defined that time series A follows B if a distance between
a pattern of A in current time and a pattern of B in the past is small w.r.t. some time
series distance measures, such as Dynamic Time Warping (DTW) Sakoe and Chiba (1978),
cross-correlation Bracewell (1965), etc. However, the work was able to infer leaders only on a
single coordination event and was unable to automatically detect coordination events. Then,
the leadership inference framework, FLICA, was proposed by Amornbunchornvej et al. (2018)

https://CRAN.R-project.org/package=mFLICA


2 mFLICA: an R package for leadership inference

to infer leaders and their followers within time series that have multiple coordination events.
The mFLICA framework Amornbunchornvej and Berger-Wolf (2018) was proposed to elimi-
nate the limitation of FLICA. mFLICA can infer leaders and their followers within multiple
coordination events that occur simultaneously, while FLICA cannot. This paper provides the
details of mFLICA as an R package.

To infer a following relation between time series, DTW can be deployed for inferring a similar
pattern between two time series. The dtw package Giorgino (2009) is deployed in mFLCA

for DTW computation.

The related concepts of leadership inference on time series are Granger causality Granger
(1969) and Transfer Entropy Schreiber (2000); Behrendt, Dimpfl, Peter, and Zimmermann
(2019). Both techniques can be used to infer whether time series A is a predictor of time series
B, which is similar to the following relation concept in leadership inference. Nevertheless,
leadership inference aims to identity patterns that distributes among time series and their
initiators (leaders) rather than finding predictors. In Comprehensive R Archive Network
(CRAN), Granger causality framework can be found in Imtest package Zeileis and Hothorn
(2002), and transfer entropy is in RTransferEntropy package Behrendt et al. (2019).

In this paper, the details of mFLICA package in R statistical software R Core Team (2020)
are provided. The current version of mFLICA is 0.1.1 on CRAN Amornbunchornvej (2020).
mFLICA is a framework that is capable of:

• Inferring coordination events: the framework can infer and visualize coordination in-
tervals that have high degrees of coordination; and

• Inferring dynamics of leaders and followers: the framework can infer leaders of coor-
dination and their initiators that can be changed over time.

This paper is organized as follows. In Section 2, details of important definitions in leadership of
coordination are provided. Section 3 provides the overview of mFLICA package architecture.
Section 4 gives algorithms that are implemented in mFLICA as well as examples of how to
use mFLICA for inferring leadership of coordination (e.g. factions, leadership dynamics) from
a set of time series. Lastly, Section 5 provides the conclusion.

2. Definitions

In this paper, a time series is referred as Ti = (Ti(1), . . . , Ti(n)) where Ti(t) ∈ R
d is an element

of time series Ti at time t, which is a d-dimensional vector of real numbers. A ∆-time-shift
T ∆

i is a time series Ti s.t. T ∆
i (t + ∆) = Ti(t). The time series T ∆

i can be considered as time
series Ti that values are shifted forward into future.

Given two time series, the first building block of leadership in time series is the following
relation that defines time series to be either a leader or follower.

Definition 1 (Following relation) Given two d-dimensional time series T1 and T2, a sim-
ilarity measure of time series sim(·, ·), and a threshold σ. A time series T1 follows T2 if there
exist ∆ > 0 s.t. sim(T ∆

1 , T2) ≥ σ.

In other words, a following relation represents a relation between time series s.t. one time
series initiates some pattern, then another time series follows the similar pattern with the
time delay ∆.
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Definition 2 (Following network) Given a set of time series S = {T1, . . . , Tm}. A follow-
ing network G = (V, E) is a directed acyclic graph (DAG) s.t. V = {v1, . . . , vm} represents
a set of nodes where vi is a node of time series Ti, and E = {ei,j} is a set of edges. If Ti

follows Tj, then there is a directed edge ei,j ∈ E.

A following network represents following relations in a form of graph. If there is a high-level
of coordination that many time series follow the same pattern, then a number of edges in a
following network must be high. Hence, a network density below is used as a proxy of level
of coordination.

d(G) =
|E|

(|V |
2

)

. (1)

Where d(G) ∈ [0, 1], |E|, |V | are numbers of edges and nodes in G respectively.

In real-word situation, there are more than one pattern that several time series might follow
simultaneously. We call each group of time series that follow different pattern as a faction.
In a following network, a faction is a network component s.t. all nodes within a faction have
directed path(s) to a faction-leader node. We provide a definition of leaders and factions
below.

Definition 3 (Faction leader) Given a following network G, a faction leader is a node s.t.
the out-degree is zero but the in-degree is greater than zero.

Definition 4 (Faction members) Given a following network G and a faction-leader node
L, members of L’s faction are nodes that have directed path(s) to L in G.

Lastly, factions and levels of coordination can be changed overtime. To capture leadership
dynamics, the dynamic following network is defined below.

Definition 5 (Dynamic following network) Given a set of time series S = {T1, . . . , Tm},
and a time window ω. Let S[t1,t2] be a revised set of S where it contains only the time interval
[t1, t2] for each time series in S.

A dynamic following network G = (G1, . . . ) is a sequence of following networks. At time t, a
following network Gt in G is a following network that is derived from S[t,t+ω].

By measuring network densities of following networks in G, we have a time series of network
density Td = (d1, . . . ) where dt is a network density of Gt in G. The time series of network
densities Td represents a dynamic of levels of coordination.

To measure dynamics of factions or sub groups, the faction size ratio is used to measure a
faction size, which is defined below:

f(G, vL) =
|EL|
(|V |

2

)

. (2)

Where f(G, vL) ∈ [0, 1], G is a following network, vL is a node of faction leader L, and EL is
a number of edges connected between faction members. For a dynamic following network G,
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the time series of faction size ratios of leader L’s faction represents dynamics of faction sizes;
it captures patterns of L’s faction growing larger or becoming smaller over time. In the case
of one leader, the faction size ratio in Eq. 2 is the same as the network density in Eq. 1.

3. Package architecture

Given a set of time series and related parameters as inputs, mFLICA infers a dynamic fol-
lowing network, faction leader and members, as well as degrees of coordination over time.

Figure 1: A high-level overview of mFLICA package architecture.

Figure 1 provides an overview of the package architecture. The main function is mFLICA() that
calls two functions: getDynamicFollNet() and getFactions(). The getDynamicFollNet()

is used to infer a dynamic following network from a set of time series, while getFactions()

is used to infer faction leaders and faction members for each time step in a dynamic following
network. In getDynamicFollNet(), it calls followingNetwork() for inferring a following net-
work for each time intervals to create a dynamic following network. The followingNetwork()

function uses followingRelation() as a main engine to infer a following relation between a
pair of time series to build a following network. Lastly, getFactions() calls getReachableNodes()

to find faction members, which are nodes that have directed path(s) to the faction leader.

In this paper, we use a simulated dataset of 30 time series of movement from Amornbun-
chornvej and Berger-Wolf (2018) to demonstrate in examples of using mFLICA in leadership
inference tasks. The dataset consists of two-dimensional time series of 30 individuals moving
along the x-axis. The time series length is 800 time steps. There are three coordination events
during the time interval [1,200] leading by individual ID1, the time interval [201,400] leading
by ID2, and the time interval [400,600] leading by ID3.

In the next section, algorithms and examples regarding how to use mFLICA are provided for
inferring leadership of coordination.

4. Inferring leadership of coordination
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4.1. Inferring following relations

Figure 2: (a) Leader and follower time series in x-axis. These time series of positions are
generated based on the movement of individuals in a two-dimensional plane where a leader
moved along x-axis. A follower moved toward its leader in this plane. Both leader and
follower have almost the same values in y-axis. (b) DTW cost matrix where darker-color
shades represent higher distance. The black line is the optimal warping path between leader
and follower, while the blue line is the diagonal line.

To infer a following relation between two time series, we deploy DTW to analyze an optimal
warping path between two time series. Figure 2 shows simulated time series of movement
from Amornbunchornvej and Berger-Wolf (2018). In this event, a leader was moving toward
x-axis while the follower followed its leader after some time delay.

Figure 2 (a) illustrates the matching between two time series in x-axis. The cost matrix of
DTW is shown in Figure 2 (b). Since the follower moved toward leader’s previous positions,
DTW optimal warping path matched leader’s value at time t to follower’s value at some time
t + c where c > 0. Suppose P = ((r1, c1), . . . , (r|P |, c|P |)) is the optimal warping path (the
black line in Figure 2 (b)) where (ri, ci) represents that ith position P is at the rith row and
cith column in the DTW cost matrix. The ci − ri is a time delay that the follower moved
toward the same position as leader moved at time rith. By checking DTW cost matrix, a
degree of following relation can be defined below.

s(PL,F ) =

∑

i∈PL,F
(sign(ci − ri))

|PL,F |
(3)

Where PL,F is the optimal warping path of leader L, and follower F inferred by DTW. A
value of s(PL,F ) ∈ [−1, 1]. Given a threshold σ ∈ [0, 1]. If s(PL,F ) ∈ [−1, −σ], then L

follows F . If s(PL,F ) ∈ [σ, 1], then F follows L. Otherwise, there is no following relation for
s(PL,F ) ∈ (−σ, σ). The Example 4.1 shows how we can use mFLICA to infer s(PL,F ).

Example 4.1 Infer a following relation from two-dimensional time series of movement. We
deploy simulated time series TS from Amornbunchornvej and Berger-Wolf (2018) that in-
cluded in this package. In this dataset, TS[1, 1 : 100, ] is a two-dimensional time series of
leader while TS[2, 1 : 100, ] is a time series of follower. We use only the first 100 steps of
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time interval in this example. We run the code below for computing the optimal warping path
between leader and follower.

1 R> library ( mFLICA )

2 R> leader <-mFLICA ::TS [1 ,1:100 ,] # Optimal warping path: obj$ index2

3 R> follower <-mFLICA ::TS [2 ,1:100 ,] # Optimal warping path: obj$ index1

4 R>obj <-dtw(x=follower ,y=leader ,k=TRUE) # run dtw from 'dtw ' package

We called dtw function and recorded the result in obj where obj$index1 contains optimal
warping path of a follower, and obj$index2 contains optimal warping path of a leader. This
means the time series of follower at time obj$index1[i] is matched (most similar w.r.t. DTW
matching) with the leader time series at time obj$index2[i]. Then, we compute the average
number of time steps until the follower reached the leader’s previous positions.

1 R> mean( obj$ index1 - obj$ index2 )

2 [1] 8.238462

On average, the follower required eight time steps to reach the its leader. Next, we calculate
s(PL,F ) in Eq. 3.

1 R>mean(sign( obj$ index1 - obj$ index2 ) )

2 [1] 0.9846154

This implies that there is a high degree of following relation between leader and follower
(s(PL,F ) ≈ 0.98). In mFLICA, we implemented followingRelation() function for computing
s(PL,F ). We deploy Sakoe-Chiba Banding Sakoe and Chiba (1978) for speeding up DTW
computation. We can set the limitation of band via lagWindow parameter. In this example,
we set the band parameter at 10% of the time series length (lagWindow = 0.1).

1 R> mFLICA :: followingRelation (Y=follower ,X=leader , lagWindow =0.1)$ follVal

2 [1] 0.99

We have s(PL,F ) = 0.99 in this example.

4.2. Inferring following networks

After we know how to infer a following relation between two time series, the next step is to infer
a following network from a set of multiple time series using followingNetwork() function in
mFLICA. The pseudo code for the followingNetwork() is in Algorithm 1. Given a set of time
series and a threshold σ, the followingNetwork() function returns two adjacency matrices
of the following network: adjWeightedMat and adjBinMat. The matrix adjWeightedMat is
the adjacency matrix with weighted-directed edges, while adjBinMat is a binary version of
adjWeightedMat where an edge weight can be either zero (if the weight is below σ) or one (if
the weight is greater than or equal σ).

The Algorithm 1 computes s(Pi,j) in Eq. 3 for all pairs of time series but it computes either
s(Pi,j) or s(Pj,i) only once since the results of these two cases are the same with the opposite
sign.

Next, we show how to use followingNetwork() in mFLICA to infer an adjacency matrix of
a following network.

Example 4.2 Infer adjacency matrices of following networks by using a set of simulated time
series TS, which contains 30 trajectories of movement in two-dimensional plane along x-axis.
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Figure 3: Weighted adjacency matrices of the following networks from difference time inter-
vals. Elements in matrices represent degrees of following derived from s(PL,F ) in Eq. 3 where
leaders are rows and followers are columns (e.g. (i, j) = 0.5 implies j follows i with degree
0.5). A higher value (light blue) implies a higher degree of following relation. (a) The matrix
from the interval [1,60], which has low degrees of coordination. (b) The matrix from the
interval [61,120], which has high degrees of coordination leading by ID1.

The low-coordination interval [1, 60] and high-coordination interval [61, 120] are chosen in the
example. We set σ = 0, 5 for this example.

1 R> library ( mFLICA )

2 R>mat1 <- followingNetwork (TS=TS [ ,1:60 ,] , sigma =0.5)$ adjWeightedMat

3 R>mat2 <- followingNetwork (TS=TS [ ,61:120 ,] , sigma =0.5)$ adjWeightedMat

Figure 3 illustrates the adjacency matrices from both intervals. The weighted adjacency matrix
mat1 at Figure 3 (a) is computed from the time interval [1, 60] when the group initiated
movement. In Figure 3 (b), the weighted adjacency matrix mat2 is computed from the time
interval [61, 120] when everyone followed its leader ID1, which implies it is a high-coordination
event. mFLICA provides getADJNetDen() for computing a network density from an adjacency
matrix. Based on the result, mat1 has a lower network density than mat2’s network density.
The network densities can be computed below.

1 R> getADJNetDen (mat1)

2 [1] 0.5559004

3 R> getADJNetDen (mat2)

4 [1] 0.7961686

In Figure 3 (b), in the row of ID1, all individuals have high degrees of following ID1, which
implies that ID1 is a leader in this interval. In contrast, there are no individuals followed by
the majority in Figure 3 (a), which implies that this interval has low degrees of coordination.

In the next step, we use followingNetwork() to infer a dynamic following network. Given
a set of time series TS that has its time length at n, and the time window ω, by Definition 5,
we can use the sliding window technique to compute a dynamic following network from
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Algorithm 1: followingNetwork()

input : a set of time series TS and a threshold σ

output: adjBinMat,adjWeightedMat
1 Let m be a number of time series in TS and adjBinMat,adjWeightedMat are m × m matrices

of zeroes;
2 for i in [1, m − 1] do
3 for j in [i + 1, m] do
4 Compute s(Pi,j) for time series TS[i] as a leader and TS[j] as a follower.;

if |s(Pi,j)| ≥ σ then
flag=1

else
flag=0

end
if s(Pi,j) > 0 then

5 set adjWeightedMat[j,i] = s(Pi,j) and adjBinMat[j,i] = flag

else
6 set adjWeightedMat[i,j] = |s(Pi,j)| and adjBinMat[j,i] = flag;

end

end

end
Return adjBinMat,adjWeightedMat;

followingNetwork() by dividing a set of time series TS into sub-intervals s.t. each sub
interval has the time length ω. We can start computing a following network at time interval
[t, t + ω], then [t + 1, t + 1 + ω], and so on. However, sliding from one interval to another only
one time step might require expensive computational cost.

Hence, mFLICA provides the time shift parameter δ ∈ [1, ω] to allow users to adjust the num-
ber of time steps between a previous interval and the next one. The getDynamicFollNet()

in Algorithm 2 is a function for inferring a dynamic following network from a set of time
series in mFLICA. The algorithm separates a set of time series TS into k sub-intervals where
each interval has a length ω. For each interval, the algorithm computes a following net-
work using Algorithm 1, then it records the results of the following network into time series
of adjacency matrices dyNetWeightedMat and its binary version dyNetBinMat as well as
computing their network densities using Eq. 1. After finish computing following networks for
all sub-intervals, the algorithm returns the results.

The next example provides the details how to use mFLICA to compute a dynamic following
network.

Example 4.3 In this example, we use the set of simulated time series TS, which has the
time length at 800 time steps. In this dataset, there are three coordination events: [1,200],
[201,400], and [401,600]. We set the time window ω = 60, the time shift δ = 6, and the
threshold σ = 0.5. The next commands are used to infer our dynamic following network of
TS.

1 R> library ( mFLICA )

2 R>obj1 <- getDynamicFollNet (TS= mFLICA ::TS [ ,1:800 ,] , timeWindow =60, timeShift = 6,

sigma =0.5)
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Algorithm 2: getDynamicFollNet()

input : a set of time series TS, a time window ω, a time shift δ, and a threshold σ

output: dyNetWeightedMat,dyNetWeightedDensityVec,
dyNetBinMat,dyNetBinDensityVec

1 Let n be a length of time series;
2 Let s1, . . . , sk be starting times of k intervals where si+1 = si + δ and

sk = maxc∈N(c × δ + ω ≤ n);
for i in {1, . . . , k} do

3 Let TS’ be a revised set of TS where it contains only the time interval [si, si + ω] for each
time series in TS. ;

4 Compute followingNetwork(TS’,σ) to get adjacency matrices
adjBinMat,adjWeightedMat;

5 Compute network densities for both adjBinMat,adjWeightedMat by Eq. 1;
6 Record adjBinMat,adjWeightedMat to dyNetBinMat,dyNetWeightedMat as adjacency

matrices of the dynamic network for the time interval [si, si + δ];
7 Record the network densities of adjBinMat,adjWeightedMat to

dyNetBinDensityVec,dyNetWeightedDensityVec for the time interval [si, si + δ];

end
8 Return dyNetWeightedMat,dyNetWeightedDensityVec, dyNetBinMat,dyNetBinDensityVec;

Suppose we want to know the following degree for ID19 follows ID1 at time step 150, we can
use the command below.

1 R>obj1$ dyNetWeightedMat [19 ,1 ,150]

2 [1] 0.9833333 # the following degree for ID19 follows ID1 at time step 150

We can query the network density at time step 150 with the command below.

1 R>obj1$ dyNetWeightedDensityVec [150]

2 [1] 0.7755939

We can plot the time series of network density using the plotMultipleTimeSeries function
implemented in mFLICA below.

1 R> plotMultipleTimeSeries (TS=obj1$ dyNetWeightedDensityVec , strTitle =" Network

Dnesity ")

Figure 4 shows the result of the plot. The plot shows that there are three coordination
events that have high network densities (high degrees of coordination): [1,200], [201,400],
and [401,600], which are consistent with our ground truth.

4.3. Inferring leadership dynamics

After having a dynamic following network, the next step is to infer leaders of factions and
members of factions.

The Algorithm 3 provides the details of getFactions() implemented in mFLICA for inferring
faction leaders, faction members, and faction size ratios. For each time step, a network
structure of a following network at time t is analyzed. According to Definition 3, nodes of
leaders are inferred as nodes in a following network that have zero out-degree. Then, for
each leader node L, nodes that are members of L’s faction are identified by transitive closure
property. If there exists a path from any node v to L, then v is a member of L’s faction.
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Figure 4: Time series of network densities of a dynamic following network from simulated time
series TS in mFLICA package. The plot shows that there are three coordination events that
have high network densities (high degrees of coordination): [1,200], [201,400], and [401,600],
which are consistent with our ground truth.

Hence, a faction is a tree with reversed directed paths in a following network s.t. all node
members have a path to its root (leader). The step of inferring faction members can be done
by applying Breadth-First Search (BFS) algorithm on an adjacency matrix of a following
network. The BFS algorithm is implemented in getReachableNodes() in the package. After
we have all factions within a following network, the last step is to measure the size of each
faction using a faction size ratio in Eq. 2. In the next example, we provide the way to use
mFLICA to infer faction leaders and their members using getFactions().

Example 4.4 In this example, we use the interval [25,45] to demonstrate the time when
there are more than one factions occur simultaneously. After having a following network,
getFactions() takes a binary version of adjacency matrix as its input.

1 R> library ( mFLICA )

Algorithm 3: getFactions()

input : A binary adjacency matrix adjBinMat

output: leaders,factionMembers,factionSizeRatio
1 Infer zero-out-degree nodes in adjBinMat and keep them in leaders;

for leader in leaders do
2 Finding all nodes that are reachable to leader in adjBinMat using Breadth First Search

(BFS) algorithm;
3 Keep these nodes as faction members of leader in factionMembers[leader];
4 Computing faction-size ration in Eq. 2 and keep it in factionSizeRatio[leader];

end
Return leaders,factionMembers,factionSizeRatio;
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2 R>mat1 <- followingNetwork (TS=TS [ ,25:45 ,] , sigma =0.95) $ adjBinMat

3 R>out <-getFactions ( adjMat =mat1)

4 R>out$ leaders # show leader IDs

5 [1] 1 11

The code above shows that there are two faction leaders in the interval [25,45]: ID1 and ID11.
This implies that there are two factions. The next step is to query faction members of ID1’s
faction as well as its faction size ratio.

1 R>L1 <-out$ leaders [1] # leader ID1

2 R>out$ factionMembers [[1]] # show faction members

3 [1] 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30

4 R>out$ factionSizeRatio [L1] # show faction size ratio

5 [1] 0.5034483

Note that a leader is also a faction member itself. Since there are 30 individuals, almost
everyone is a member of ID1’s faction. However, the faction size ratio at 0.5 indicates that
faction members are not coordinated following the same pattern yet. The next one is the code
for querying details about a faction leading by ID11.

1 R>L1 <-out$ leaders [2] # leader ID11

2 R>out$ factionMembers [[2]] # show faction members

3 [1] 11 7 10 13 14 15 16 18 19 20 21 22 23 24 26 28 30

4 R>out$ factionSizeRatio [L2] # show faction size ratio

5 [1] 0.1632184

We can see that there are a few number of members in this faction. Note that one individual
can belong to more than one faction since the individual might follow some pattern that seems
partially similar to several leaders’ patterns.

Lastly, we can use mFLICA() to infer a dynamic following network and dynamics of factions
from a set of time series. Algorithm 4 provides the details of mFLICA() implementation. First,
mFLICA() computes a dynamic following network and its time series of network densities from
a set of time series w.r.t. given parameters. Then, for each time step, mFLICA() infers faction
leaders, faction members, and faction size ratios from the dynamic following network.

Algorithm 4: mFLICA()

input : a set of time series TS, a time window ω, a time shift δ, and a threshold σ

output: dyNetWeightedMat,dyNetWeightedDensityVec,
dyNetBinMat,dyNetBinDensityVec,
TSleaders,TSfactionMembers,TSfactionSizeRatio

1 Computing a dynamic following network using getDynamicFollNet();
for t in [1,m]] do

2 Let dyNetBinMat[t] be an adjacency matrix at time t;
3 Computing faction members, leaders, and faction size ratios using

getFactions(dyNetBinMat[t]);
4 Keep faction members in TSfactionMembers[t], leaders in TSleaders[t], and faction

size ratio in TSfactionSizeRatio[t];

end
Return dyNetWeightedMat,dyNetWeightedDensityVec, dyNetBinMat,dyNetBinDensityVec,
TSleaders,TSfactionMembers,TSfactionSizeRatio ;

The next example shows the details of using mFLICA() to infer dynamics of factions.
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Example 4.5 In this example, we show how to use mFLICA to infer dynamics of factions.
In other words, we would like to find changes of faction members and faction leaders over
time. Given a set of time series TS as an input along with related parameters: time window
ω = 60, time shift δ = 6, and the threshold σ = 0.5, we run mFLICA() below.

1 R> library ( mFLICA )

2 R>obj1 <-mFLICA (TS= mFLICA ::TS [ ,1:800 ,] , timeWindow =60, timeShift = 6,sigma =0.5)

All results of faction inference are in obj1. Here, we focus on a set of time series of faction
size ratios obj1$factionSizeRatioTimeSeries where obj1$factionSizeRatioTimeSeries[i,t]

is a faction size ratio of a faction leading by IDi at time t. We can plot the time series of
faction size ratios using plotMultipleTimeSeries below.

1 R> plotMultipleTimeSeries (TS=obj1$ factionSizeRatioTimeSeries , strTitle =" Faction

Size Ratios ")

The result of the plot is in Figure 5. According to the ground truth for this simulated dataset
mentioned in Section 3, there are three coordination events. First, during the time interval
[1,200], ID1 is a sole leader who leads its faction of 30 individuals. Then, ID2 leads the
faction for the time interval [201,400]. Afterward, ID3 leads the faction during the interval
[401,600]. Finally, the group slows down and stop moving. The result in Figure 5 reflexes
this ground truth. ID1 has its high faction size ratios during [1,200], ID2’s faction continues
to have high faction size ratios during [201,400]. Lastly, ID3’s faction has high faction size
ratios during [401,600]. No factions have high faction size ratios during [601,800].

Figure 5: Time series of faction size ratios. Each time series of faction sizes ratios is repre-
sented by ID (TS#ID) of its faction leader.

5. Conclusion

In this paper, the details of mFLICA package for inferring leadership of coordination from
time series are provides. Leaders are defined as individuals who initiate some patterns and
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others follow the same patterns with some time delays. A following relation between time
series can be detected by analyzing an optimal warping path of Dynamic Time Warping
(DTW), which is the main component that mFLICA deploys.

Given a set of time series and related parameters, the mFLICA package can infer a following
relation between two time series, following networks, faction leaders, faction members, degrees
of coordination, and faction size ratios for each time step.

The network densities inferred by mFLICA tell us regarding the magnitude of coordina-
tion: how many time-series individuals follow the same pattern in a given time interval.
The faction size ratios provide information regarding faction dynamics; the changes of fac-
tion leaders, and/or faction members over time. We provided the examples of how to use
mFLICA for solving many tasks in leadership inference. Our framework can be applied to
any multivariate time series. All figures and results can be reproduced using the R notebook
at https://github.com/DarkEyes/mFLICA/blob/master/exp/JSSnotebook.Rmd
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