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1 Introduction

Least-squares means (LS means for short) for a linear model are simply predictions—or marginal
averages thereof—over a regular grid of predictor settings which I call the reference grid. They date
back at least to 1976 when LS means were incorporated in the contributed SAS procedure named
HARVEY (Harvey, 1976). Later, they were incorporated via LSMEANS statements in the regular SAS
releases.

In simple analysis-of-covariance models, LS means are the same as covariate-adjusted means.
In unbalanced factorial experiments, LS means for each factor mimic the marginal means but are
adjusted to bias due to imbalance. The latter interpretation is quite similar to the “unweighted
means” method for unbalanced data, as presented in old design books.

In any case, the most important things to remember are:

� LS means are computed relative to a reference grid.

� Once the reference grid is understood, LS means are simply predictions on this grid, or
marginal averages of these predictions.

If you understand these points, then you will know what you are getting, and can judge whether
or not LS means are appropriate for your analysis.

2 The reference grid

Since the reference grid is fundamental, it is our starting point. For each predictor in the model,
we define a set of one or more reference levels. The reference grid is then the set of all combinations
of reference levels. If not specified explicitly, the default reference levels are obtained as follows:

� For each predictor that is a factor, its reference levels are the unique levels of that factor.

� Each numeric predictor has just one reference level—its mean over the dataset.

So the reference grid depends on both the model and the dataset.

2.1 Example: Orange sales

To illustrate, consider the oranges data provided with lsmeans. This dataset has sales of two
varieties of oranges (response variables sales1 and sales2) at 6 stores (factor store), over a
period of 6 days (factor day). The prices of the oranges (covariates price1 and price2) fluctuate
in the different stores and the different days. There is just one observation on each store on each
day.
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For starters, let’s consider an additive covariance model for sales of the first variety, with the
two factors and both price1 and price2 as covariates (since the price of the other variety could
also affect sales).

R> library(lsmeans)

R> oranges.lm1 = lm(sales1 ~ price1 + price2 + day + store, data = oranges)

R> anova(oranges.lm1)

Analysis of Variance Table

Response: sales1

Df Sum Sq Mean Sq F value Pr(>F)

price1 1 516.59 516.59 29.0996 1.763e-05

price2 1 62.73 62.73 3.5334 0.072873

day 5 422.22 84.44 4.7567 0.003951

store 5 223.83 44.77 2.5217 0.058346

Residuals 23 408.31 17.75

The ref.grid function in lsmeans may be used to establish the reference grid. Here is the default
one:

R> ( oranges.rg1 = ref.grid(oranges.lm1) )

'ref.grid' object with variables:

price1 = 51.222

price2 = 48.556

day = 1, 2, 3, 4, 5, 6

store = 1, 2, 3, 4, 5, 6

As outlined above, the two covariates price1 and price2 have their means as their sole reference
level; and the two factors have their levels as reference levels. The reference grid thus consists of
the 1 × 1 × 6 × 6 = 36 combinations of these reference levels. LS means are based on predictions
on this reference grid, which we can obtain using predict or summary:

R> summary(oranges.rg1)

price1 price2 day store prediction SE df

51.22222 48.55556 1 1 2.918413 2.717559 23

51.22222 48.55556 2 1 3.848804 2.701335 23

51.22222 48.55556 3 1 11.018569 2.534556 23

51.22222 48.55556 4 1 6.096286 2.651370 23

51.22222 48.55556 5 1 12.795800 2.444597 23

51.22222 48.55556 6 1 8.748779 2.786176 23

51.22222 48.55556 1 2 4.961475 2.377742 23

51.22222 48.55556 2 2 5.891866 2.335579 23

51.22222 48.55556 3 2 13.061630 2.416451 23

51.22222 48.55556 4 2 8.139348 2.352186 23

51.22222 48.55556 5 2 14.838862 2.466155 23

51.22222 48.55556 6 2 10.791841 2.337599 23

51.22222 48.55556 1 3 3.200891 2.377742 23
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51.22222 48.55556 2 3 4.131282 2.335579 23

51.22222 48.55556 3 3 11.301047 2.416451 23

51.22222 48.55556 4 3 6.378765 2.352186 23

51.22222 48.55556 5 3 13.078278 2.466155 23

51.22222 48.55556 6 3 9.031258 2.337599 23

51.22222 48.55556 1 4 6.198757 2.363673 23

51.22222 48.55556 2 4 7.129148 2.352186 23

51.22222 48.55556 3 4 14.298913 2.431679 23

51.22222 48.55556 4 4 9.376630 2.388653 23

51.22222 48.55556 5 4 16.076144 2.519089 23

51.22222 48.55556 6 4 12.029123 2.364688 23

51.22222 48.55556 1 5 5.543218 2.363116 23

51.22222 48.55556 2 5 6.473609 2.330670 23

51.22222 48.55556 3 5 13.643374 2.363673 23

51.22222 48.55556 4 5 8.721091 2.337599 23

51.22222 48.55556 5 5 15.420605 2.395544 23

51.22222 48.55556 6 5 11.373584 2.352318 23

51.22222 48.55556 1 6 10.563739 2.366683 23

51.22222 48.55556 2 6 11.494130 2.339254 23

51.22222 48.55556 3 6 18.663895 2.347839 23

51.22222 48.55556 4 6 13.741613 2.341304 23

51.22222 48.55556 5 6 20.441126 2.370343 23

51.22222 48.55556 6 6 16.394106 2.370539 23

2.2 LS means as marginal averages

The ANOVA indicates there is a significant day effect after adjusting for the covariates, so we might
want to compare the days. The lsmeans function can do this:

R> lsmeans(oranges.rg1, "day") ## or lsmeans(oranges.lm1, "day")

day lsmean SE df lower.CL upper.CL

1 5.564415 1.768083 23 1.906856 9.221974

2 6.494807 1.728959 23 2.918183 10.071430

3 13.664571 1.751505 23 10.041308 17.287835

4 8.742289 1.733920 23 5.155403 12.329175

5 15.441803 1.785809 23 11.747576 19.136029

6 11.394782 1.766726 23 7.740031 15.049533

Results are averaged over the levels of: store

Confidence level used: 0.95

These results, as indicated in the annotation in the output, are in fact the averages of the predictions
shown earlier, for each day, over the 6 stores. The above LS means are not the same as the marginal
means of the data:

R> with(oranges, tapply(sales1, day, mean))

1 2 3 4 5 6

7.872750 7.100600 13.758600 8.042467 12.924600 11.603650
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These unadjusted means are biased by having different price1 and price2 values on each day,
whereas the LS means adjust for bias by using predictions at uniform price1 and price2 values.

Note that you may call lsmeans with either the reference grid or the model. If the model is
given, then the first thing it does is create the reference grid; so if you already have the reference
grid, as in this example, it’s more efficient to make use of it.

2.3 Altering the reference grid

The at argument may be used to override defaults in the reference grid. You may specify this
argument either in a ref.grid call or an lsmeans call; and you should specify list with named
sets of reference levels. Here is a silly example:

R> lsmeans(oranges.lm1, "day", at = list(price1 = 50,

price2 = c(40,60), day = c("2","3","4")) )

day lsmean SE df lower.CL upper.CL

2 7.724698 1.735165 23 4.135235 11.31416

3 14.894463 1.751037 23 11.272167 18.51676

4 9.972180 1.766131 23 6.318660 13.62570

Results are averaged over the levels of: price2, store

Confidence level used: 0.95

Here, we restricted the results to three of the days, and used different prices. One possible surprise
is to note that the predictions are averaged over the two price2 values. That is because price2 is
no longer a single reference level, and we average over the levels of all factors not used to split-out
the LS means. This is probably not what we want. To get separate sets of predictions for each
price2, you need to specify it as another factor or as a by factor in the lsmeans call (we will save
the result for later discussion):

R> org.lsm = lsmeans(oranges.lm1, "day", by ="price2",

at = list(price1 = 50, price2 = c(40,60), day = c("2","3","4")) )

R> org.lsm

price2 = 40:

day lsmean SE df lower.CL upper.CL

2 6.236227 1.887106 23 2.332452 10.14000

3 13.405992 2.119376 23 9.021730 17.79025

4 8.483710 1.866510 23 4.622540 12.34488

price2 = 60:

day lsmean SE df lower.CL upper.CL

2 9.213169 2.109448 23 4.849443 13.57689

3 16.382933 1.905216 23 12.441693 20.32417

4 11.460651 2.178054 23 6.955003 15.96630

Results are averaged over the levels of: store

Confidence level used: 0.95

Note: We could have obtained the same results using any of these:
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R> lsmeans(oranges.lm1, ~ day | price, at = ... ) # Ex 1

R> lsmeans(oranges.lm1, c("day","price2"), at = ... ) # Ex 2

R> lsmeans(oranges.lm1, ~ day * price, at = ... ) # Ex 3

Ex 1 illustrates the formula method for specifying factors, which is more compact. The | character
replaces the by specification. Ex 2 and Ex 3 produce the same results, but their results are displayed
as one table (with columns for day and price) rather than as two separate tables.

3 Working with the results

The ref.grid function produces an object of class "ref.grid", and the lsmeans function produces
an object of class "lsmobj", which is a subclass of "ref.grid". There is really no practical
difference between these two classes except for their show methods—what is displayed if you just
call the functions—and the fact that an "lsmobj" is not (necessarily) a true reference grid as defined
earlier in this tutorial. Let’s use the str function to examine the "lsmobj" object produced just
above:

R> str(org.lsm)

'lsmobj' object with variables:

day = 2, 3, 4

price2 = 40, 60

We no longer see the reference levels for all predictors in the model—only the levels of day and
price2. These act like reference levels, but they do not define the reference grid upon which the
predictions are based.

There are several methods for "ref.grid" (and hence also for "lsmobj") objects. One you
have seen already is summary. It has a number of arguments: see its help page. In the following
call, we summarize days.lsm differently than before. We will also save the object produced by
summary for further discussion.

R> ( org.sum = summary(org.lsm, infer=c(TRUE,TRUE),

level=.90, adjust="bon", by = "day") )

day = 2:

price2 lsmean SE df lower.CL upper.CL t.ratio p.value

40 6.236227 1.887106 23 2.332452 10.14000 3.305 0.0062

60 9.213169 2.109448 23 4.849443 13.57689 4.368 0.0005

day = 3:

price2 lsmean SE df lower.CL upper.CL t.ratio p.value

40 13.405992 2.119376 23 9.021730 17.79025 6.325 <.0001

60 16.382933 1.905216 23 12.441693 20.32417 8.599 <.0001

day = 4:

price2 lsmean SE df lower.CL upper.CL t.ratio p.value

40 8.483710 1.866510 23 4.622540 12.34488 4.545 0.0003

60 11.460651 2.178054 23 6.955003 15.96630 5.262 <.0001
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Results are averaged over the levels of: store

Confidence level used: 0.9

Confidence-level adjustment: bonferroni method for 2 tests

P value adjustment: bonferroni method for 2 tests

The infer argument caused both confidence intervals and tests to be produced. The default
confidence level of .95 was overridden; a Bonferroni adjustment was applied to both the intervals
and the P values; and the tables are organized the opposite way from what we saw before.

What kind of object was produced by summary? Let’s see:

R> class(org.sum)

[1] "summary.ref.grid" "data.frame"

The "summary.ref.grid" class is an extension of "data.frame". It includes some attributes that,
among other things, cause the messages seen in the example to appear when the object is displayed.
But it can also be used as a "data.frame" if you just want to use the results computationally. For
example, suppose we want to convert the LS means from dollars to Russian rubles:

R> cbind(org.sum[, 1:2], lsrubles = org.sum$lsmean * 35.7) # as of April 22, 2014

day price2 lsrubles

1 2 40 222.6333

2 3 40 478.5939

3 4 40 302.8684

4 2 60 328.9101

5 3 60 584.8707

6 4 60 409.1452

Observe that, as a data frame, the summary is just one table with six rows, rather than a collection
of three tables, and it contains a column for all reference variables, including any by variables.

Besides str and summary, there is also a confint method (same is summary with infer=c(TRUE,FALSE))
and a test method (same as summary with infer=c(FALSE,TRUE)). There is also an update method
which may be used for changing the default display settings. For example:

R> org.lsm2 = update(org.lsm, by.vars = NULL, level = .99)

R> org.lsm2

day price2 lsmean SE df lower.CL upper.CL

2 40 6.236227 1.887106 23 0.9384879 11.53397

3 40 13.405992 2.119376 23 7.4561934 19.35579

4 40 8.483710 1.866510 23 3.2437905 13.72363

2 60 9.213169 2.109448 23 3.2912404 15.13510

3 60 16.382933 1.905216 23 11.0343510 21.73152

4 60 11.460651 2.178054 23 5.3461217 17.57518

Results are averaged over the levels of: store

Confidence level used: 0.99
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4 Contrasts and comparisons

4.1 Contrasts in general

Often, people want to do pairwise comparisons of LS means, or compute other contrasts among
them. This is the purpose of the contrast function, which uses an "lsmobj" object as input.
There are several standard contrast families such as "pairwise", "trt.vs.ctrl", and "poly". In
the following command, we request "eff" contrasts, which are differences between each mean and
the overall mean:

R> contrast(org.lsm, "eff")

price2 = 40:

contrast estimate SE df t.ratio p.value

2 effect -3.139082 1.415290 23 -2.218 0.0551

3 effect 4.030682 1.442746 23 2.794 0.0310

4 effect -0.891600 1.421346 23 -0.627 0.5366

price2 = 60:

contrast estimate SE df t.ratio p.value

2 effect -3.139082 1.415290 23 -2.218 0.0551

3 effect 4.030682 1.442746 23 2.794 0.0310

4 effect -0.891600 1.421346 23 -0.627 0.5366

Results are averaged over the levels of: store

P value adjustment: fdr method for 3 tests

Note that this remembers the by specification from before, and obtains the effects for each group.
In this example, since it is an additive model, we obtain the same results in each group. This isn’t
wrong, it’s just redundant.

Another popular method is Dunnett-style contrasts, where a particular LS mean is compared
with each of the others. This is done using "trt.vs.ctrl". In the following, we obtain (again) the
LS means for days, and compare each with the average of the LS means on day 5 and 6.

R> days.lsm = lsmeans(oranges.rg1, "day")

R> contrast(days.lsm, "trt.vs.ctrl", ref = c(5,6))

contrast estimate SE df t.ratio p.value

1 - avg(5,6) -7.8538769 2.194243 23 -3.579 0.0063

2 - avg(5,6) -6.9234858 2.127341 23 -3.255 0.0139

3 - avg(5,6) 0.2462789 2.155529 23 0.114 0.9999

4 - avg(5,6) -4.6760034 2.110761 23 -2.215 0.1397

Results are averaged over the levels of: store

P value adjustment: sidak method for 4 tests

For convenience, "trt.vs.ctrl1" or "trt.vs.ctrlk" methods are provided for use in lieu of ref
for comparing with the first and the last LS means.

You may have noticed that by default, lsmeans results are displayed with confidence intervals
while contrast results are displayed with t tests. You can easily override this; for example,
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R> confint(contrast(days.lsm, "trt.vs.ctrlk"))

(Results not shown.)
In the above examples, a default multiplicity adjustment is determined from the contrast

method. This may be overridden by adding an adjust argument.

4.2 Pairwise comparisons

Often, users want pairwise comparisons among the LS means. These may be obtained by specifying
"pairwise" or "revpairwise" in the call to contrast. For group labels A, B, C, "pairwise"

generates the comparisons A− B, A−C, B−C while "revpairwise" generates B− A, C− A, C− B.
As a convenience, the pairs method works just like contrasts with "pairwise":

R> pairs(org.lsm)

price2 = 40:

contrast estimate SE df t.ratio p.value

2 - 3 -7.169765 2.479697 23 -2.891 0.0216

2 - 4 -2.247482 2.442340 23 -0.920 0.6333

3 - 4 4.922282 2.490068 23 1.977 0.1406

price2 = 60:

contrast estimate SE df t.ratio p.value

2 - 3 -7.169765 2.479697 23 -2.891 0.0216

2 - 4 -2.247482 2.442340 23 -0.920 0.6333

3 - 4 4.922282 2.490068 23 1.977 0.1406

Results are averaged over the levels of: store

P value adjustment: tukey method for a family of 3 means

There is also a cld (compact letter display) method that lists the LS means along with grouping
symbols for pairwise contrasts. It requires the multcompView package (Graves et al., 2012) to be
installed.

R> cld(days.lsm, alpha = .10)

day lsmean SE df lower.CL upper.CL .group

1 5.564415 1.768083 23 1.906856 9.221974 1

2 6.494807 1.728959 23 2.918183 10.071430 1

4 8.742289 1.733920 23 5.155403 12.329175 12

6 11.394782 1.766726 23 7.740031 15.049533 12

3 13.664571 1.751505 23 10.041308 17.287835 2

5 15.441803 1.785809 23 11.747576 19.136029 2

Results are averaged over the levels of: store

Confidence level used: 0.95

P value adjustment: tukey method for a family of 6 means

significance level used: alpha = 0.1
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Two LS means that share one or more of the same grouping symbols are not significantly different
at the stated value of alpha, after applying the multiplicity adjustment (in this case Tukey’s HSD).
By default, the LS means are ordered in this display, but this may be overridden with the argument
sort=FALSE. cld returns a "summary.ref.grid" object, not an lsmobj.

5 Multivariate models

The oranges data has two response variables. Let’s try a multivariate model for predicting the
sales of the two varieties of oranges, and see what we get if we call ref.grid:

R> oranges.mlm = lm(cbind(sales1,sales2) ~ price1 + price2 + day + store,

data = oranges)

R> ref.grid(oranges.mlm)

'ref.grid' object with variables:

price1 = 51.222

price2 = 48.556

day = 1, 2, 3, 4, 5, 6

store = 1, 2, 3, 4, 5, 6

rep.meas = multivariate response levels: sales1, sales2

What happens is that the multivariate response is treated like an additional factor, by default named
rep.meas. In turn, it can be used, to specify levels for LS means. Here we rename the multivariate
response to "variety" and obtain day means (and a compact letter display for comparisons thereof)
for each variety:

R> org.mlsm = lsmeans(oranges.mlm, ~ day | variety, mult.name="variety")

R> cld(org.mlsm, sort = FALSE)

variety = sales1:

day lsmean SE df lower.CL upper.CL .group

1 5.564415 1.768083 23 1.9068563 9.221974 1

2 6.494807 1.728959 23 2.9181833 10.071430 12

3 13.664571 1.751505 23 10.0413078 17.287835 23

4 8.742289 1.733920 23 5.1554026 12.329175 123

5 15.441803 1.785809 23 11.7475762 19.136029 3

6 11.394782 1.766726 23 7.7400309 15.049533 123

variety = sales2:

day lsmean SE df lower.CL upper.CL .group

1 7.715664 2.326485 23 2.9029623 12.528365 12

2 3.976446 2.275004 23 -0.7297584 8.682650 1

3 16.597814 2.304671 23 11.8302400 21.365389 2

4 11.044540 2.281532 23 6.3248316 15.764248 12

5 14.990786 2.349808 23 10.1298371 19.851735 2

6 12.048784 2.324699 23 7.2397770 16.857790 12

Results are averaged over the levels of: store

Confidence level used: 0.95
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P value adjustment: tukey method for a family of 6 means

significance level used: alpha = 0.05

6 Contrasts of contrasts

With the preceding model, we might want to compare the two varieties on each day:

R> org.vardiff = update(pairs(org.mlsm, by = "day"), by = NULL)

The results (not yet shown) will comprise the six sales1-sales2 differences, one for each day. The
two by specifications seems odd, but the one in pairs specifies doing a separate comparison for
each day, and the one in update asks that we convert it to one table with six rows, rather than 6
tables with one row each. Now, let’s compare these differences to see if they vary from day to day.

R> cld(org.vardiff)

contrast day estimate SE df t.ratio p.value .group

sales1 - sales2 3 -2.9332431 2.694111 23 -1.089 0.2875 1

sales1 - sales2 4 -2.3022511 2.667062 23 -0.863 0.3969 1

sales1 - sales2 1 -2.1512483 2.719612 23 -0.791 0.4370 1

sales1 - sales2 6 -0.6540015 2.717524 23 -0.241 0.8120 1

sales1 - sales2 5 0.4510165 2.746876 23 0.164 0.8710 1

sales1 - sales2 2 2.5183608 2.659431 23 0.947 0.3535 1

Results are averaged over the levels of: store

P value adjustment: tukey method for a family of 6 means

significance level used: alpha = 0.05

7 Interfacing with multcomp

The multcomp package (Hothorn et al., 2014) supports more exacting corrections for simultaneous
inference than are available in lsmeans. Its glht (general linear hypothesis testing) function and
associated "glht" class are similar in some ways to lsmeans and "lsmobj" objects, respectively.
So we provide methods such as as.glht for working with glht so as to obtain “exact” inferences.
To illustrate, I’ll compare some simultaneous confidence intervals using the two packages. First,
using a Bonferroni correction on the LS means for day in the oranges model:

R> confint(days.lsm, adjust = "bon")

day lsmean SE df lower.CL upper.CL

1 5.564415 1.768083 23 0.4612605 10.66757

2 6.494807 1.728959 23 1.5045761 11.48504

3 13.664571 1.751505 23 8.6092668 18.71988

4 8.742289 1.733920 23 3.7377391 13.74684

5 15.441803 1.785809 23 10.2874881 20.59612

6 11.394782 1.766726 23 6.2955448 16.49402

Results are averaged over the levels of: store

Confidence level used: 0.95

Confidence-level adjustment: bonferroni method for 6 tests
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And now using multcomp:

R> library(multcomp)

R> confint(as.glht(days.lsm))

Simultaneous Confidence Intervals

Fit: NULL

Quantile = 2.8605

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

1 == 0 5.5644 0.5068 10.6221

2 == 0 6.4948 1.5491 11.4405

3 == 0 13.6646 8.6543 18.6748

4 == 0 8.7423 3.7824 13.7022

5 == 0 15.4418 10.3335 20.5502

6 == 0 11.3948 6.3410 16.4485

The latter intervals are somewhat narrower, which is expected since the Bonferroni method is
conservative.

The lsmeans package also provides an lsm function that can be called as the second argument
of glht:

R> summary(glht(oranges.lm1, lsm("day", contr="eff")), test = adjusted("free"))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = sales1 ~ price1 + price2 + day + store, data = oranges)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

1 effect == 0 -4.653 1.623 -2.867 0.0400

2 effect == 0 -3.722 1.580 -2.356 0.0989

3 effect == 0 3.447 1.605 2.149 0.1164

4 effect == 0 -1.475 1.585 -0.930 0.5848

5 effect == 0 5.225 1.642 3.182 0.0232

6 effect == 0 1.178 1.621 0.726 0.5848

(Adjusted p values reported -- free method)

An additional detail: If there is a by variable in effect, glht or as.glht returns a list of glht
objects—one for each by level. There is a courtesy summary method for this "glht.list" class to
make things a bit more user-friendly. Recall the earlier example result org.lsm, which contains
informations for LS means for three days at each of two values of price2. Suppose we are interested
in pairwise comparisons of these LS means, by price2. If we call

R> summary(as.glht(pairs(org.lsm)))
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(results not displayed) we will obtain two glht objects with three contrasts each, so that the results
shown will incorporate multiplicity adjustments for each family of three contrasts. If, on the other
hand, we want to consider those six contrasts as one family, use

R> summary(as.glht(pairs(org.lsm), by = NULL))

. . . and note (look carefully at the parentheses) that this is not the same as

R> summary(as.glht(pairs(org.lsm, by = NULL)))

which removes the by grouping before the pairwise comparisons are generated, thus yielding (6
2) = 15

contrasts instead of just six.

8 A new example: Oat yields

You’ve probably seen enough about sales of oranges by now. To illustrate some new features, let’s
turn to a new example. The Oats dataset in the nlme (Pinheiro et al., 2014) has the results of a
split-plot experiment discussed in Yates (1935). The experiment was conducted on six blocks (factor
Block). Each block was divided into three plots, which were randomized to three varieties (factor
Variety) of oats. Each plot was divided into subplots and randomized to four levels of nitrogen
(variable nitro). The response, yield, was measured once on each subplot after a suitable growing
period.

We will fit a model using the lmer function in the lme4 package (Bates et al., 2014). This will be
a mixed model with random intercepts for Block and Block:Variety (which identifies the plots). I
have elected to apply a logarithmic transformation to the response variable (mostly for illustration
purposes, though it does produce a good fit to the data). Note that nitro is stored as a numeric
variable, but we want to consider it as a factor in this initial model.

R> data("Oats", package = "nlme")

R> library("lme4")

R> Oats.lmer = lmer(log(yield) ~ Variety*factor(nitro) + (1|Block/Variety),

data = Oats)

R> anova(Oats.lmer)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

Variety 2 0.07501 0.03751 2.0084

factor(nitro) 3 2.13505 0.71168 38.1098

Variety:factor(nitro) 6 0.04508 0.00751 0.4024

Apparently, the interaction is not needed. But perhaps we can simplify it further by using only a
linear or quadratic trend in nitro. We can find out by looking at polynomial contrasts:

R> contrast(lsmeans(Oats.lmer, "nitro"), "poly")

NOTE: Results may be misleading due to involvement in interactions

contrast estimate SE df t.ratio p.value

linear 1.505651287 0.14404685 45 10.453 <.0001

quadratic -0.145109968 0.06441971 45 -2.253 0.0292

cubic 0.002731979 0.14404685 45 0.019 0.9850

Results are averaged over the levels of: Variety
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(A message is issued when we average over predictors that interact with those that delineate the
LS means. In this case, it is not a serious problem because the interaction is weak.) Both the linear
and quadratic contrasts are pretty significant. All this suggests fitting an additive model where
nitro is included as a numeric predictor with a quadratic trend.

R> Oats.lmer2 = lmer(log(yield) ~ Variety + poly(nitro,2) + (1|Block/Variety),

data = Oats)

The predictions from this model. Remember that nitro is now quantitative, and I want to see
predictions at the four unique nitro values rather than at the average of nitro. This may be done
using at as illustrated earlier, or a shortcut is to specify cov.reduce as FALSE to tell ref.grid to
use all the unique values of numeric predictors.

R> Oats.lsm2 = lsmeans(Oats.lmer2, ~ nitro | Variety, cov.reduce = FALSE)

R> Oats.lsm2

Variety = Golden Rain:

nitro lsmean SE df lower.CL upper.CL

0.0 4.354578 0.07703285 11.77 4.186367 4.522789

0.2 4.577698 0.07453633 10.34 4.412352 4.743044

0.4 4.728263 0.07453633 10.34 4.562917 4.893609

0.6 4.806273 0.07703285 11.77 4.638062 4.974484

Variety = Marvellous:

nitro lsmean SE df lower.CL upper.CL

0.0 4.412227 0.07703285 11.77 4.244016 4.580438

0.2 4.635347 0.07453633 10.34 4.470001 4.800693

0.4 4.785912 0.07453633 10.34 4.620566 4.951258

0.6 4.863922 0.07703285 11.77 4.695711 5.032133

Variety = Victory:

nitro lsmean SE df lower.CL upper.CL

0.0 4.275147 0.07703285 11.77 4.106936 4.443358

0.2 4.498267 0.07453633 10.34 4.332921 4.663613

0.4 4.648832 0.07453633 10.34 4.483486 4.814178

0.6 4.726842 0.07703285 11.77 4.558631 4.895053

Confidence level used: 0.95

These LS means follow the same quadratic trend for each variety, but with different intercepts.
You may notice the fractional degrees of freedom in these results. These are obtained from the

pbkrtest package (Halekoh and Højsgaard, 2013), if installed, and they use the Kenward-Rogers
method. The degrees of freedom for the polynomial contrasts were also obtained in that way, but
the results turn out to be integers.

9 Displaying LS means

The lsmeans package includes a function lsmip that displays predictions in an interaction-plot-like
manner. It uses a formula of the form
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Figure 1: Interaction plots for the cell means and the fitted model, Oats example.

curve.factor(s) ~ x.factor(s) | by.factors

The function requires the lattice package (Sarkar, 2014) to be installed. Curve factors are those
used to delineate one displayed curve from another (i.e., groups in lattice’s parlance). x factors are
those whose levels are plotted on the horizontal axis. And by factors, if present, break the plots
into panels.

To illustrate, let’s do a graphical comparison of the two models we have fitted to the Oats data.

R> lsmip(Oats.lmer, Variety ~ nitro, ylab = "Observed log(yield)")

R> lsmip(Oats.lsm2, Variety ~ nitro, ylab = "Predicted log(yield)")

The plots are shown in Figure 1. Note that the first model fits the cell means perfectly, so its plot
is truly an interaction plot of the data. The other displays the parabolic trends we fitted in the
revised model.

10 Transformations

Here is an interesting thing: Look at

R> str(Oats.lsm2)

'lsmobj' object with variables:

nitro = 0.0, 0.2, 0.4, 0.6

Variety = Golden Rain, Marvellous, Victory

Transformation: "log"

Part of the information stored with an lsmobj ref.grid is the transformation that was applied
to the response variable. This allows us to conveniently unravel the transformation, via the type

argument. Here are the predicted yields (as opposed to predicted log yields):

R> summary(Oats.lsm2, type = "response")
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Variety = Golden Rain:

nitro lsresponse SE df lower.CL upper.CL

0.0 77.83396 5.995772 11.77 65.78336 92.09206

0.2 97.29017 7.251652 10.34 82.46319 114.78306

0.4 113.09895 8.429980 10.34 95.86272 133.43428

0.6 122.27508 9.419197 11.77 103.34390 144.67418

Variety = Marvellous:

nitro lsresponse SE df lower.CL upper.CL

0.0 82.45287 6.351579 11.77 69.68715 97.55709

0.2 103.06367 7.681987 10.34 87.35681 121.59464

0.4 119.81059 8.930241 10.34 101.55150 141.35268

0.6 129.53126 9.978162 11.77 109.47665 153.25959

Variety = Victory:

nitro lsresponse SE df lower.CL upper.CL

0.0 71.89068 5.537944 11.77 60.76024 85.06005

0.2 89.86124 6.697927 10.34 76.16642 106.01840

0.4 104.46288 7.786280 10.34 88.54278 123.24544

0.6 112.93834 8.699962 11.77 95.45272 133.62708

Confidence level used: 0.95

It is important to realize that the statistical inferences are all done before reversing the trans-
formation. Thus, t ratios are based on the linear predictors and will differ from those computed
using the printed estimates and standard errors. Likewise, confidence intervals are computed on
the linear-predictor scale, then the endpoints are back-transformed.

By the way, you may use a type argument in lsmip as well.
This kind of automatic support for transformations is available only for certain standard trans-

formations, namely those supported by the make.link function in the stats package. Others require
more work—see the documentation for update for details.

11 Trends

The lsmeans package provides a function lstrends for estimating and comparing the slopes of fitted
lines (or curves). To illustrate, consider the built-in R dataset ChickWeight which has data on the
growths of newly hatched chicks under four different diets. The following code produces the display
in Figure 2.

R> xyplot(weight~Time | Diet, groups = ~ Chick, data=ChickWeight, type="o",

layout=c(4,1))

Let us fit a model to these data using random slopes for each chick and allowing for a different
average slope for each diet:

R> Chick.lmer <- lmer(weight ~ Diet * Time + (0 + Time | Chick),

data = ChickWeight)

We can then call lstrends to estimate and compare the average slopes for each diet. Let’s show
comparisons of slopes using a compact letter display.
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Figure 2: Growth curves of chicks, dataset ChickWeight.

R> ( Chick.lst = lstrends (Chick.lmer, ~ Diet, var = "Time") )

Diet Time.trend SE df lower.CL upper.CL

1 6.338556 0.6104878 49.86 5.112266 7.564845

2 8.609136 0.8380027 48.28 6.924473 10.293800

3 11.422871 0.8380027 48.28 9.738208 13.107534

4 9.555825 0.8392450 48.56 7.868917 11.242734

Confidence level used: 0.95

R> cld (Chick.lst)

Diet Time.trend SE df lower.CL upper.CL .group

1 6.338556 0.6104878 49.86 5.112266 7.564845 1

2 8.609136 0.8380027 48.28 6.924473 10.293800 12

4 9.555825 0.8392450 48.56 7.868917 11.242734 2

3 11.422871 0.8380027 48.28 9.738208 13.107534 2

Confidence level used: 0.95

P value adjustment: tukey method for a family of 4 means

significance level used: alpha = 0.05

According to the Tukey HSD comparisons (with default significance level of .05), there are two
groupings of slopes: Diet 1’s mean slope is significantly less than 3 or 4’s, Diet 2’s slope is not
distinguished from any other.

Note: lstrends computes a difference quotient from two slightly different reference grids. Thus,
you must call it with a model object, not a ref.grid object.

12 User preferences

lsmeans sets certain defaults, such as using .95 for the confidence coefficient, displaying intervals
for lsmeans output and test statistics for contrast results, etc. As discussed before, you may
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use arguments in summary to change what’s displayed, or update to change the defaults for a
given object. But suppose you want different defaults to begin with? These can be set using the
lsm.options statement. For example:

R> lsm.options(ref.grid = list(level = .90),

lsmeans = list(),

contrast = list(infer = c(TRUE,TRUE)))

This requests that any object created by ref.grid be set to have confidence intervals default to
90%, and that contrast results are displayed with both intervals and tests. No new options are set
for lsmeans results, and the lsmeans part have been omitted. But even though no new defaults
are set for lsmeans, future calls to lsmeans on a model object will be affected by this since it
calls ref.grid; and also any contrasts from such results will “inherit” the 90% confidence level.
However, calling lsmeans on an existing "ref.grid" object will inherit whatever level setting is
stored there.

13 Two-sided formulas

In its original design, the only way to obtain contrasts and comparisons from lsmeans was to specify
a two-sided formula, e.g., pairwise ~ treatment. The result is then a list of lsmobj objects. In
its newer versions, lsmeans offers a richer family of objects that can be re-used, and dealing with a
list of objects can be awkward or confusing, so I don’t encourage its continued use. Nonetheless, it
is still available for backward compatibility.

I’ll present an example where, with one command, we obtain both the LS means and pairwise
comparisons for Variety in the model Oats.lmer2:

R> lsmeans(Oats.lmer2, pairwise ~ Variety)

$lsmeans

Variety lsmean SE df lower.CL upper.CL

Golden Rain 4.662050 0.07510922 10.65 4.526761 4.797338

Marvellous 4.719699 0.07510922 10.65 4.584410 4.854987

Victory 4.582619 0.07510922 10.65 4.447330 4.717907

Confidence level used: 0.9

$contrasts

contrast estimate SE df lower.CL upper.CL t.ratio p.value

Golden Rain - Marvellous -0.05764898 0.06868444 10 -0.21647880 0.1011808 -0.839 0.6883

Golden Rain - Victory 0.07943125 0.06868444 10 -0.07939857 0.2382611 1.156 0.5036

Marvellous - Victory 0.13708023 0.06868444 10 -0.02174959 0.2959100 1.996 0.1636

Confidence level used: 0.9

Confidence-level adjustment: tukey method for a family of 3 means

P value adjustment: tukey method for a family of 3 means

This also illustrates the effect of the preceding lsm.options settings. I’ll return to the defaults
now.

R> lsm.options(NULL)
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14 Messy data

To illustrate some more lsmeans capabilities, consider the dataset named nutrition that is pro-
vided with the lsmeans package. These data come from Milliken and Johnson (1984), and contain
the results of an observational study on nutrition education. Low-income mothers are classified
by race, age category, and whether or not they received food stamps (the group factor); and
the response variable is a gain score (post minus pre scores) after completing a nutrition training
program.

Consider the model that includes all main effects and two-way interactions; and let us look at
the group by race LS means:

R> nutr.lm <- lm(gain ~ (age + group + race)^2, data = nutrition)

R> lsmip(nutr.lm, race ~ age | group)

R> lsmeans(nutr.lm, ~ group*race)

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 4.708257 2.368117 92 0.7734276 8.643085

NoAid Black -2.190399 2.490576 92 -6.3287039 1.947905

FoodStamps Hispanic NA NA NA NA NA

NoAid Hispanic NA NA NA NA NA

FoodStamps White 3.607680 1.155619 92 1.6875207 5.527838

NoAid White 2.256336 2.389273 92 -1.7136454 6.226316

Results are averaged over the levels of: age

Confidence level used: 0.9

Figure 3 shows the predictions from this model. One thing the output illustrates is that lsmeans

incorporates an estimability check, and returns a missing value when a prediction cannot be made
uniquely. In this example, we have very few Hispanic mothers in the dataset, resulting in empty
cells. This creates a rank deficiency in the fitted model, and some predictors are thrown out.

Subsequent analyses might examine LS means and contrasts thereof on restricted portions of
the reference grid (using at in the call).

15 Other types of models

15.1 Models supported by lsmeans

The lsmeans package comes with built-in support for several types of models, including these model
classes for the packages:

stats : "lm", "mlm", "aov" (if no Error term), "glm"

nlme : "lme", "gls"

lme4 : "lmerMod", "glmerMod"

survival : "survreg", "coxph"

coxme : "coxme"

MASS : "polr"
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Figure 3: Predictions for the nutrition data

lsmeans support for all these models works similarly to the examples we have presented. Note that
generalized linear or mixed models, and several others such as survival models, typically employ
link functions such as log or logit. In all such cases, the LS means displayed are on the scale
of the linear predictor, and any marginal averaging over the reference grid is performed on the
linear-predictor scale.

15.2 Proportional-odds example

There is an interesting twist in "polr" objects (polytomous regression for Likert-scale data), in
that an extra factor (named "cut" by default) is created to identify which boundary between scale
positions we wish to use in predictions. An example is based on the housing data in the MASS
package, where the response variable is satisfaction (Sat) on a three-point scale of low, medium,
high; and predictors include Type (type of rental unit, four levels), Infl (influence on management
of the unit, three levels), and Cont (contact with other residents, two levels). Here, we fit a (not
necessarily good) model and obtain LS means for Infl

R> library(MASS)

R> housing.plr = polr(Sat ~ Infl + Type + Cont,

data = housing, weights = Freq)

R> ref.grid(housing.plr)

'ref.grid' object with variables:

Infl = Low, Medium, High

Type = Tower, Apartment, Atrium, Terrace

Cont = Low, High

cut = multivariate response levels: Low|Medium, Medium|High

Transformation: "logit"

R> housing.lsm = lsmeans(housing.plr, "Infl", at = list(cut = "Low|Medium"))

The default link function is logit. Look at what happens when we transform the predictions and
contrasts thereof to the response scale:
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R> summary(housing.lsm, type="response")

Infl cumprob SE df asymp.LCL asymp.UCL

Low 0.4578777 0.01997052 NA 0.4252555 0.4908651

Medium 0.3240364 0.01776323 NA 0.2955273 0.3539141

High 0.1888180 0.01682487 NA 0.1626818 0.2180598

Results are averaged over the levels of: Type, Cont

Confidence level used: 0.9

R> summary(pairs(housing.lsm), type="response")

contrast odds.ratio SE df asymp.LCL asymp.UCL z.ratio p.value

Low - Medium 1.761902 0.1843879 NA 1.421327 2.184084 5.412123 <.0001

Low - High 3.628499 0.4613860 NA 2.794987 4.710578 10.135720 <.0001

Medium - High 2.059422 0.2559254 NA 1.595770 2.657788 5.813330 <.0001

Results are averaged over the levels of: Type, Cont

Confidence level used: 0.9

Confidence-level adjustment: tukey method for a family of 3 means

P value adjustment: tukey method for a family of 3 means

P values are asymptotic

Tests are performed on the linear-predictor scale

The logits are transformed to cumulative probabilities (note that a low probability means the
satisfaction tends to be high, i.e., those having more influence tend to me more satisfied); and the
pairwise comparisons transform to odds ratios.

Another point worth noting is that when only asymptotic tests and confidence intervals are
available, degrees of freedom are set to NA, and test statistics and intervals are labeled differently.

15.3 Extending to more models

Developers of packages that fit models are invited and encouraged to include support for lsmeans.
The help page "extending-lsmeans" and the vignette by the same name are provided to help
make this possible.
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