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1 What are least-squares means?

1.1 Introduction

Least-squares means (or LS means), are generalizations of covariate-adjusted means, and date back at least
to 1976 when they were incorporated in the contributed SAS procedure named HARVEY (Harvey 1976). Later,
they were incorporated via LSMEANS statements in the regular SAS releases. SAS’s documentation describes
them as “predicted population margins—that is, they estimate the marginal means over a balanced popu-
lation” (SAS Institute 2012).

People disagree on the appropriateness of LS means. As in many statistical calculations, there are times
when they are, and times when they are not. However, if one understands what is being calculated, one
can judge its appropriateness. So the first task is to try to explain LS means as clearly as possible. To that
end, I offer this:

LS means are predictions from a model over a grid of predictor values; or marginal averages thereof.

More explicitly, define a set of reference levels1 for each predictor, and create a grid consisting of all com-
binations of these. Make predictions on this grid, and (as needed), compute marginal means of those
predictions, usually using equal weights.

The default in the lsmeans function is to set the reference levels as follows:

Factors For predictors of class factor or ordered, the default reference levels are the levels of the factor.

Covariates For numeric predictors, the default is to use a single reference level at the mean value of the
predictor.

1.2 Illustration

To illustrate, consider the randomized block experiment given as an example in Box et al. (2005), Table 4.4,
page 146. In this experiment on penicillin manufacturing, five blocks (blends of material) were each tested
with four treatments (variants of the process), and the process yield is measured.

To save space, I’ll use just the data from the first three blends; and to make the example more interesting,
suppose that a couple of the observations got lost. Let’s enter the data and fit a model:

R> penicillin = expand.grid(treat = LETTERS[1:4], blend = factor(1:3))

R> penicillin$yield = c (

R> 89, 88, 97, 94,

R> 84, 77, NA, 79,

R> NA, 87, 87, 85

R> )

R> penicillin.lm = lm(yield ~ treat + blend, data = penicillin)

1I made up this term for convenience in explaining this stuff.
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The reference levels are simply the factor levels. Here are the LS means for the factor combinations (as
specified by ~ treat * blend in the call):

R> library(lsmeans)

R> lsmeans(penicillin.lm, ~ treat * blend)

$‘treat:blend lsmeans‘

treat blend lsmean SE df lower.CL upper.CL

A 1 92.029 2.8970 4 83.985 100.072

B 1 89.571 2.5865 4 82.390 96.753

C 1 94.829 2.8970 4 86.785 102.872

D 1 91.571 2.5865 4 84.390 98.753

A 2 80.971 2.8970 4 72.928 89.015

B 2 78.514 2.7239 4 70.952 86.077

C 2 83.771 3.6744 4 73.570 93.973

D 2 80.514 2.7239 4 72.952 88.077

A 3 86.371 3.6744 4 76.170 96.573

B 3 83.914 2.7239 4 76.352 91.477

C 3 89.171 2.8970 4 81.128 97.215

D 3 85.914 2.7239 4 78.352 93.477

One can verify that these are simply the predicted values from the model for all 12 factor combinations
(including those where there are missing values):

R> predict(penicillin.lm, newdata = penicillin)

1 2 3 4 5 6 7 8 9 10 11 12

92.029 89.571 94.829 91.571 80.971 78.514 83.771 80.514 86.371 83.914 89.171 85.914

The LS means for treat are simply the marginal averages of these values over the five blends:

R> lsmeans(penicillin.lm, ~ treat)

$‘treat lsmeans‘

treat lsmean SE df lower.CL upper.CL

A 86.457 2.6789 4 79.019 93.895

B 84.000 2.0633 4 78.271 89.729

C 89.257 2.6789 4 81.819 96.695

D 86.000 2.0633 4 80.271 91.729

For treatments B and D, these LS means are the same as the marginal means of the data; but for treatments
A and C, where missing values occur, they are not the data means, but instead they are model-based pre-
dictions of those marginal means. This is an example where I believe most would think these LS means are
a reasonable way to summarize the model results.

2 Analysis-of-covariance example

Oehlert (2000), p.456 gives a dataset concerning repetitive-motion pain due to typing on three types of er-
gonomic keyboards. Twelve subjects having repetitive-motion disorders were randomized to the keyboard
types, and reported the severity of their pain on a subjective scale of 0–100 after two weeks of using the
keyboard. We also recorded the time spent typing, in hours. Here we enter the data, and obtain the plot
shown in Figure 1.

R> typing = data.frame(

R> type = rep(c("A","B","C"), each=4),

R> hours = c(60,72,61,50, 54,68,66,59, 56,56,55,51),

R> pain = c(85,95,69,58, 41,74,71,52, 41,34,50,40))

R> library(lattice)

R> xyplot(pain ~ hours | type, data = typing, layout = c(3,1))

It appears that hours and pain are linearly related (though it’s hard to know for type C keyboards), and
that the trend line for type A is higher than for the other two. To test this, consider a simple covariate model
that fits parallel lines to the three panels:
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Figure 1: Display of the keyboard-pain data.

R> typing.lm = lm(pain ~ hours + type, data = typing)

As mentioned above, the reference levels for type are the three keyboard types, whereas the reference levels
for hours is the mean value of hours over the whole dataset:

R> lsmeans(typing.lm, list(~ type, ~ type * hours))

$‘type lsmeans‘

type lsmean SE df lower.CL upper.CL

A 73.565 3.6406 8 65.170 81.960

B 54.495 3.7223 8 45.912 63.079

C 49.440 3.9434 8 40.346 58.533

$‘type:hours lsmeans‘

type hours lsmean SE df lower.CL upper.CL

A 59 73.565 3.6406 8 65.170 81.960

B 59 54.495 3.7223 8 45.912 63.079

C 59 49.440 3.9434 8 40.346 58.533

The second table shows explicitly that only one reference value is used for the covariate, hours, hence each
table has the same LS means. These results are the same as what are often called “adjusted means” in the
analysis of covariance—predicted values for each keyboard type, when the covariate is set to its overall
average value.

We can use the at argument to override the default reference grid. For example, suppose we want to
consider hours values of (55, 59, 64):

R> lsmeans(typing.lm, list(~ type * hours, ~ type, ~ hours),

R> at = list(hours = c(55,59,64)))

$‘type:hours lsmeans‘

type hours lsmean SE df lower.CL upper.CL

A 55 66.286 4.1548 8 56.705 75.867

B 55 47.216 4.3512 8 37.182 57.250

C 55 42.160 3.5886 8 33.885 50.435

A 59 73.565 3.6406 8 65.170 81.960

B 59 54.495 3.7223 8 45.912 63.079

C 59 49.440 3.9434 8 40.346 58.533

A 64 82.665 3.7757 8 73.958 91.371

B 64 63.595 3.6771 8 55.115 72.074

C 64 58.539 4.9904 8 47.031 70.047
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$‘type lsmeans‘

type lsmean SE df lower.CL upper.CL

A 74.172 3.6212 8 65.821 82.522

B 55.102 3.6912 8 46.590 63.614

C 50.046 3.9958 8 40.832 59.260

$‘hours lsmeans‘

hours lsmean SE df lower.CL upper.CL

55 51.887 2.5337 8 46.044 57.730

59 59.167 2.0692 8 54.395 63.938

64 68.266 2.7608 8 61.900 74.633

The first set of LS means are the same as before when hours equals 59. But the marginal LS means for type
are different from those before because we have averaged over the predictions for three different hours
values. This is an example where the marginal LS means for type probably don’t make a lot of sense,
unless there is a really good reason for picking those three particular hours values. On the other hand, the
LS means for hours do make sense, as they represent the average of the predictions for all three keyboard
types.

3 Contrasts and comparisons

Often, we want to perform multiple comparisons or contrasts among a set of LS means. lsmeans provides
for this by specifying something on the left-hand side of the formula. For example, in the keyboard-pain
example, we can obtain pairwise comparisons among the adjusted means as follows:

R> lsmeans(typing.lm, pairwise ~ type)

$‘type lsmeans‘

type lsmean SE df lower.CL upper.CL

A 73.565 3.6406 8 65.170 81.960

B 54.495 3.7223 8 45.912 63.079

C 49.440 3.9434 8 40.346 58.533

$‘type pairwise differences‘

estimate SE df t.ratio p.value

A - B 19.0699 5.0816 8 3.75272 0.01378

A - C 24.1257 5.5596 8 4.33947 0.00621

B - C 5.0558 5.7195 8 0.88395 0.66470

p values are adjusted using the tukey method for 3 means

Note that lsmeans produces two tables for ach two-sided formula—the first is the LS means, and the second
is the contrast output.

There are other choices besides pairwise. The other built-in options are revpairwise (same as pairwise
but the subtraction is done the other way; trt.vs.ctrl for comparing one factor level (say, a control) with
each of the others, and the related trt.vs.ctrl1, and trt.vs.ctrlk for convenience in specifying which
group is the control group; poly for estimating orthogonal-polynomial contrasts, assuming equal spacing;
and effects and del.effects, which compare each LS mean with the average of all (or all others). It is
possible to provide custom contrasts as well—see the documentation.

As seen in the previous output, lsmeans provides for adjusting the p values of contrasts to preserve a
familywise error rate. The default for pairwise comparisons is the Tukey (HSD) method. One must use
these adjustments with caution. For example, when the standard errors are unequal, the Tukey method
is only approximate, even under normality and independence assumptions. To get a more exact adjust-
ment, we can pass the comparisons to the glht function in the multcomp package (and also pass additional
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arguments—in the coming example, none). Then the returned value for the contrasts is a glht object instead
of a data.frame:

R> library(multcomp)

R> typing.lsm = lsmeans(typing.lm, pairwise ~ type, glhargs=list())

R> typing.lsm[[2]]

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = pain ~ hours + type, data = typing)

Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)

A - B == 0 19.07 5.08 3.75 0.0138 *

A - C == 0 24.13 5.56 4.34 0.0061 **

B - C == 0 5.06 5.72 0.88 0.6642

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Adjusted p values reported -- single-step method)

These p values are exact (if the assumptions hold) and, as expected, slightly different from those in the
previous lsmeans output. We may of course use other methods available for glht objects. The plot below
displays the comparisons in the preceding tabls:

R> plot(typing.lsm[[2]])
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Besides being able to call glht from lsmeans, we have also provided an lsm function and an associated
glht method so that we can call lsmeans from within glht. We use lsm in much the same way as mcp in the
multcomp package. Here we display simultaneous confidence intervals for the LS means:

R> typing.glht = glht(typing.lm, linfct = lsm(~ type))

R> plot(typing.glht)
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Unlike lsmeans which returns a list, the design of lsm is to create just one set of linear functions to hand
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to glht. It returns contrast output if available, otherwise LS means output; so In the illustration above, the
linear functions of the lsmeans themselves are used. If we had instead specified lsm(pairwise ~ type),
then the results would have been the same as shown earlier for the pairwise differences.

4 Two-factor example

Now consider the R-provided dataset warpbreaks, relating to a weaving-process experiment. This dataset
(from Tukey 1977, p.82) has two factors: wool (two types of wool), and tension (low, medium, and high);
and the response variable is breaks, the nuumber of breaks in a fixed length of yarn.

R> with(warpbreaks, table(wool, tension))

tension

wool L M H

A 9 9 9

B 9 9 9

Let us fit a model that includes interaction

R> warp.lm = lm(breaks ~ wool * tension, data = warpbreaks)

R> anova(warp.lm)

Analysis of Variance Table

Response: breaks

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 451 451 3.77 0.05821 .

tension 2 2034 1017 8.50 0.00069 ***

wool:tension 2 1003 501 4.19 0.02104 *

Residuals 48 5745 120

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The lsmeans package provides a function lsmip that provides an interaction plot based on the LS means:

R> lsmip(warp.lm, wool ~ tension)
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Now we can obtain the least-squares means for the wool×tension combinations. We could request pair-
wise comparisons as well by specifying pairwise ~ wool:tension, but this will yield quite a few com-
parisons (15 to be exact). Often, people are satisfied with a smaller number of comparisons (or contrasts)
obtained by restricting them to be at the same level of one of the factors. This can be done using the |

symbol for conditioning. In the code below, we request comparisons of the wools at each tension, and
polynomial contrasts for each wool.
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R> print(lsmeans(warp.lm, list(pairwise ~ wool | tension, poly ~ tension | wool)), omit=3)

$‘wool:tension lsmeans‘

wool tension lsmean SE df lower.CL upper.CL

A L 44.556 3.6468 48 37.223 51.888

B L 28.222 3.6468 48 20.890 35.555

A M 24.000 3.6468 48 16.668 31.332

B M 28.778 3.6468 48 21.445 36.110

A H 24.556 3.6468 48 17.223 31.888

B H 18.778 3.6468 48 11.445 26.110

$‘wool:tension pairwise differences‘

estimate SE df t.ratio p.value

A - B | L 16.3333 5.1573 48 3.16703 0.00268

A - B | M -4.7778 5.1573 48 -0.92641 0.35887

A - B | H 5.7778 5.1573 48 1.12031 0.26816

p values are adjusted using the tukey method for 2 means

$‘tension:wool polynomial contrasts‘

estimate SE df t.ratio p.value

linear | A -20.0000 5.1573 48 -3.8780 0.00032

quadratic | A 21.1111 8.9327 48 2.3634 0.02221

linear | B -9.4444 5.1573 48 -1.8313 0.07327

quadratic | B -10.5556 8.9327 48 -1.1817 0.24315

p values are not adjusted

(We suppressed the third element of the results because it is the same as the first, with rows rearranged.)
With these data, the least-squares means are exactly equal to the cell means of the data. The main result
(visually clear in the interaction plot) is that the wools differ the most when the tension is low. The signs of
the polynomial contrasts indicate decrasing trends for both wools, but opposite concavities.

It is also possible to abuse lsmeans with a call like this:

R> lsmeans(warp.lm, ~ wool) ### NOT a good idea!

$‘wool lsmeans‘

wool lsmean SE df lower.CL upper.CL

A 31.037 2.1055 48 26.804 35.270

B 25.259 2.1055 48 21.026 29.493

Warning message:

In lsmeans(warp.lm, ~wool) :

lsmeans of wool may be misleading due to interaction with other predictor(s)

Each lsmean is the average of the three tension lsmeans at the given wool. As the warning indicates, the
presence of the strong interaction indicates that these results are pretty meaningless. In another dataset
where an additive model would explain the data, these marginal averages, and comparisons or contrasts
thereof, can nicely summarize the main effects in an interpretable way.

5 Split-plot example

The nlme package includes a famous dataset Oats that was used in Yates (1935) as an example of a split-plot
experiment. Here is a summary of the dataset.

R> data(Oats, package="nlme")

R> summary(Oats)
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Block Variety nitro yield

VI :12 Golden Rain:24 Min. :0.00 Min. : 53

V :12 Marvellous :24 1st Qu.:0.15 1st Qu.: 86

III:12 Victory :24 Median :0.30 Median :102

IV :12 Mean :0.30 Mean :104

II :12 3rd Qu.:0.45 3rd Qu.:121

I :12 Max. :0.60 Max. :174

The experiment was conducted in six blocks, and each block was divided into three plots, which were
randomly assigned to varieties of oats. With just Variety as a factor, it is a randomized complete-block ex-
periment. However, each plot was subdivided into 4 subplots and the subplots were treated with different
amounts of nitrogen. Thus, Block is a blocking factor, Variety is the whole-plot factor, and nitro is the
split-plot factor. The response variable is yield, the yield of each subplot in bushels per acre. Below is an
interaction plot of these data.

R> with(Oats, interaction.plot(nitro, Variety, yield, type="b"))
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There is not much evidence of an interaction. In this dataset, we have random factors Block and Block:Variety

(which identifies the plots). So we will fit a linear mixed-effects model that accounts for these. Another tech-
nicality is that nitro is a numeric variable, and initially we will model it as a factor. We will use lmer in the
lme4 package to fit a model, and display the marginal LS means with appropriate contrasts.

R> library(lme4)

R> Oats.lmer = lmer(yield ~ Variety + factor(nitro) + (1 | Block/Variety), data=Oats)

R> lsmeans(Oats.lmer, list(revpairwise ~ Variety, poly ~ nitro))

Loading required package: pbkrtest

Loading required package: MASS

Loading required package: parallel

$‘Variety lsmeans‘

Variety lsmean SE df lower.CL upper.CL

Golden Rain 104.500 7.7975 8.869 86.821 122.18

Marvellous 109.792 7.7975 8.869 92.113 127.47

Victory 97.625 7.7975 8.869 79.946 115.30

$‘Variety pairwise differences‘

estimate SE df t.ratio p.value

Marvellous - Golden Rain 5.2917 7.0789 10 0.74753 0.74187

Victory - Golden Rain -6.8750 7.0789 10 -0.97120 0.61035

Victory - Marvellous -12.1667 7.0789 10 -1.71873 0.24583
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p values are adjusted using the tukey method for 3 means

$‘nitro lsmeans‘

nitro lsmean SE df lower.CL upper.CL

0.0 79.389 7.1324 6.6386 62.336 96.442

0.2 98.889 7.1324 6.6386 81.836 115.942

0.4 114.222 7.1324 6.6386 97.169 131.276

0.6 123.389 7.1324 6.6386 106.336 140.442

$‘nitro polynomial contrasts‘

estimate SE df t.ratio p.value

linear 147.333 13.4395 51 10.96268 0.00000

quadratic -10.333 6.0103 51 -1.71926 0.09163

cubic -2.000 13.4395 51 -0.14881 0.88229

p values are not adjusted

The polynomial contrasts for nitro suggest that we could substitute a quadratic trend for nitro; and if we
do that, then there is another (probably better) way to make the above predictions:

R> OatsPoly.lmer = lmer(yield ~ Variety + poly(nitro, 2) + (1 | Block/Variety), data=Oats)

The graphs below show the LS means from these two models.

R> lsmip(Oats.lmer, Variety ~ nitro)
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R> lsmip(OatsPoly.lmer, Variety ~ nitro,

R> cov.reduce = FALSE)
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These plots are nearly identical. The lsmip function works by calling lsmeans with a specification for the
required factor combinations. In the second plot, we passed the extra argument cov.reduce = FALSE to
lsmeans, which causes it to use the unique values of nitro rather than predicting at the average of nitro.

6 Messy data

To illustrate some more issues, and related lsmeans capabilities, consider the dataset named nutrition that
is provided with the lsmeans package. These data come from Milliken and Johnson (1984), and contain the
results of an observational study on nutrition education. Low-income mothers are classified by race, age
category, and whether or not they received food stamps (the group factor); and the response variable is a
gain score (post minus pre scores) after completing a nutrition training program. The graph below displays
the data.

R> xyplot(gain ~ age | race*group, data=nutrition)
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Consider the model that includes all main effects and two-way interactions; and let us look at the group
by race lsmeans:

R> nutr.lm = lm(gain ~ (age + group + race)^2, data = nutrition)

R> lsmeans(nutr.lm, ~ group*race)

$‘group:race lsmeans‘

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 4.7083 2.3681 92 0.0049714 9.4115

NoAid Black -2.1904 2.4906 92 -7.1368981 2.7561

FoodStamps Hispanic NA NA NA NA NA

NoAid Hispanic NA NA NA NA NA

FoodStamps White 3.6077 1.1556 92 1.3125215 5.9028

NoAid White 2.2563 2.3893 92 -2.4889667 7.0016

One thing that this illustrates is that lsmeans incorporates an estimability check, and returns a missing
value when a prediction cannot be made uniquely. In this example, we have very few Hispanic mothers in
the dataset, resulting in empty cells. This creates a rank deficiency in the fitted model and some predictors
are thrown out.

The lsmip function can display a three-way interaction plot

R> lsmip(nutr.lm, race ~ age | group)
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We can avoid non-estimable cases by using at to restrict the reference levels to a smaller set:

R> lsmeans(nutr.lm, ~ group*race, at = list(age = "3"))

$‘group:race lsmeans‘

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 7.5000e+00 2.67205 92 2.1931 12.80693

NoAid Black -3.6667e+00 2.18172 92 -7.9998 0.66642

FoodStamps Hispanic 2.1316e-14 5.34411 92 -10.6139 10.61386

NoAid Hispanic 2.5000e+00 3.77885 92 -5.0051 10.00513

FoodStamps White 5.4194e+00 0.95983 92 3.5130 7.32566

NoAid White -2.0000e-01 1.19498 92 -2.5733 2.17333

Nonetheless, the standard errors for the Hispanic mothers are enormous due to very small counts. One
useful summary of the results is to narrow the scoe of the reference levels to two races and the two middle
age groups, where most of the data lie. Here are the lsmeans and comparisons within rows and columns

R> nutr.lsm = lsmeans(nutr.lm, list(pairwise~group|race, pairwise~race|group),

R> at = list(age=c("2","3"), race=c("Black","White")))

R> nutr.lsm[-3]

$‘group:race lsmeans‘

group race lsmean SE df lower.CL upper.CL

FoodStamps Black 8.9165 3.4238 92 2.1166 15.71639

NoAid Black -2.1905 1.4866 92 -5.1430 0.76203

FoodStamps White 5.1472 1.0596 92 3.0427 7.25168

NoAid White -0.4125 1.1178 92 -2.6325 1.80755

$‘group:race pairwise differences‘

estimate SE df t.ratio p.value

FoodStamps - NoAid | Black 11.1070 3.7778 92 2.9400 0.00415

FoodStamps - NoAid | White 5.5597 1.5402 92 3.6097 0.00050

p values are adjusted using the tukey method for 2 means

$‘race:group pairwise differences‘

estimate SE df t.ratio p.value

Black - White | FoodStamps 3.7693 3.3942 92 1.11052 0.26967

Black - White | NoAid -1.7780 1.8600 92 -0.95592 0.34162

p values are adjusted using the tukey method for 2 means

The general conclusion from these analyses is that (except for age 4, where the data are very sparse), the
expected gains from the training are higher among families receiving food stamps. Note that this analy-
sis is somewhat different than the results we would obtain by subsetting the data, as we are borrowing
information from the other observations in estimating and testing these LS means.

7 GLMM example

The dataset cbpp in the lme4 package, originally from Lesnoff et al. (1964), provides data on the incidence
of contagious bovine pleuropneumonia in 15 herds of zebu cattle in Ethiopia, collected over four time
periods. These data are used as the primary example for the glmer function, and it is found that a model
that accounts for overdisperion is advantageous; hence the addition of the (1|obs) in the model fitted
below.

lsmeans may be used as in linear models to obtain marginal linear predictions for a generalized linear
model or, in this case, a generalized linear mixed model. Here, we use the trt.vs.ctrl1 contrast family
to compare each period with the first, as the primary goal was to track the spread or decline of CBPP over
time.
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R> cbpp$obs = 1:nrow(cbpp)

R> cbpp.glmer = glmer(cbind(incidence, size - incidence)

R> ~ period + (1 | herd) + (1 | obs), family = binomial, data = cbpp)

R> anova(cbpp.glmer)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

period 3 15.1 5.05 5.05

We will save the results from lsmean, then add the inverse logits of the predictions and the estimated odds
ratios for the comparisons as an aid in interpretation.

R> cbpp.lsm = lsmeans(cbpp.glmer, trt.vs.ctrl1 ~ period)

R> cbpp.lsm[[1]]$pred.incidence = 1 - 1 / (1 + exp(cbpp.lsm[[1]]$lsmean))

R> cbpp.lsm[[2]]$odds.ratio = exp(cbpp.lsm[[2]]$estimate)

R> cbpp.lsm

$‘period lsmeans‘

period lsmean SE df asymp.LCL asymp.UCL pred.incidence

1 -1.5003 0.28876 NA -2.0662 -0.93433 0.182382

2 -2.7268 0.38097 NA -3.4735 -1.98010 0.061411

3 -2.8291 0.39940 NA -3.6119 -2.04631 0.055771

4 -3.3665 0.51939 NA -4.3845 -2.34856 0.033358

$‘period differences from control‘

estimate SE df z.ratio p.value odds.ratio

2 - 1 -1.2265 0.47345 NA -2.5905 0.02851 0.29332

3 - 1 -1.3288 0.48839 NA -2.7208 0.01944 0.26479

4 - 1 -1.8662 0.59056 NA -3.1601 0.00474 0.15470

p values are adjusted using the sidak method for 3 tests

When degrees of freedom are not available, as in this case, lsmeans emphasizes that fact by displaying NA

for degrees of freedom and in the column headings.

8 Trends

The lsmeans function also provides for estimating and comparing the slopes of fitted lines (or curves). To
illustrate, consider the built-in R dataset ChickWeight which has data on the growths of newly hatched
chicks under four different diets. Here is a display of the dataset.

R> xyplot(weight~Time | Diet, groups = ~ Chick, data=ChickWeight, type="o", layout=c(4,1))
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Let us fit a model to these data using random slopes for each chick and allowing for a different average
slope for each diet:

R> Chick.lmer = lmer(weight ~ Diet * Time + (0 + Time | Chick), data = ChickWeight)

R> print(Chick.lmer, corr = FALSE)

Linear mixed model fit by REML [’lmerMod’]

Formula: weight ~ Diet * Time + (0 + Time | Chick)

Data: ChickWeight

REML criterion at convergence: 4869.6

Random effects:

Groups Name Variance Std.Dev.

Chick Time 6.67 2.58

Residual 196.77 14.03

Number of obs: 578, groups: Chick, 50

Fixed effects:

Estimate Std. Error t value

(Intercept) 33.22 1.77 18.77

Diet2 -4.58 3.00 -1.53

Diet3 -14.97 3.00 -4.98

Diet4 -1.45 3.02 -0.48

Time 6.34 0.61 10.39

Diet2:Time 2.27 1.04 2.19

Diet3:Time 5.08 1.04 4.90

Diet4:Time 3.22 1.04 3.10

Then call lsmeans with the trend argument to estimate and compare the average slopes for each diet:

R> lsmeans(Chick.lmer, revpairwise ~ Diet, trend = "Time")

$‘Time.trend by Diet‘

Diet Time.trend SE df lower.CL upper.CL

1 6.3386 0.61050 49.805 5.1122 7.5649

2 8.6091 0.83802 48.282 6.9244 10.2938

3 11.4229 0.83802 48.282 9.7382 13.1076

4 9.5558 0.83926 48.564 7.8689 11.2428

$‘Diet pairwise differences‘

estimate SE df t.ratio p.value

2 - 1 2.27058 1.0368 48.802 2.18995 0.14041

3 - 1 5.08432 1.0368 48.802 4.90376 0.00006

3 - 2 2.81373 1.1851 48.282 2.37417 0.09583

4 - 1 3.21727 1.0378 48.989 3.10002 0.01637

4 - 2 0.94669 1.1860 48.423 0.79821 0.85489

4 - 3 -1.86705 1.1860 48.423 -1.57421 0.40263

p values are adjusted using the tukey method for 4 means

The tests of comparisons with Diet 1 match those from the regression coefficients, as they should.

9 Contrasts

You may occasionally want to know exactly what contrast coefficients are being used, especially in the
polynomial case. Contrasts are implemented in functions having names of the form name.lsmc (“lsmc” for
“least-squares means contrasts”), and you can simply call that function to see the contrasts; for example,
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R> poly.lsmc(1:4)

linear quadratic cubic

1 -3 1 -1

2 -1 -1 3

3 1 -1 -3

4 3 1 1

poly.lsmc uses the base function poly plus an ad hoc algorithm that tries (and usually succeeds) to make
integer coefficients, copmparable to what you find in published tables of orthogonal polynomial contrasts.

You may supply your own custom contrasts in two ways. One is to supply a contr argument in the
lsmeans call, like this:

R> print(lsmeans(typing.lm, custom.comp ~ type,

R> contr = list(custom.comp = list(fancy.contrast=c(1, -.75, -.25)))),

R> omit=1)

$‘type custom.comp‘

estimate SE df t.ratio p.value

fancy.contrast 20.334 4.5783 8 4.4414 0.00216

p values are not adjusted

Each contrast family is potentially a list of several contrasts, and there are potentially more than one contrast
family; so we must provide a list of lists.

The other way is to create your own .lsmc function, and use its base name in a formula:

R> inward.lsmc = function(levs, ...) {

R> n = length(levs)

R> result = data.frame(‘grand mean‘ = rep(1/n, n))

R> for (i in 1 : floor(n/2)) {

R> x = rep(0, n)

R> x[1:i] = 1/i

R> x[(n-i+1):n] = -1/i

R> result[[paste("first", i, "vs last", i)]] = x

R> }

R> attr(result, "desc") = "grand mean and inward contrasts"

R> attr(result, "adjust") = "none"

R> result

R> }

Testing it, we have

R> inward.lsmc(1:5)

grand.mean first 1 vs last 1 first 2 vs last 2

1 0.2 1 0.5

2 0.2 0 0.5

3 0.2 0 0.0

4 0.2 0 -0.5

5 0.2 -1 -0.5

. . . and an application:

R> print(lsmeans(Oats.lmer, inward ~ nitro), omit=1)

$‘nitro grand mean and inward contrasts‘

estimate SE df t.ratio p.value

grand.mean 103.972 6.6406 5 15.6570 2e-05

first 1 vs last 1 -44.000 4.2500 51 -10.3530 0e+00

first 2 vs last 2 -29.667 3.0052 51 -9.8719 0e+00

p values are not adjusted
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10 Differences from SAS

lsmeans started out with a goal of providing similar capabilities to the LSMEANS statements in various SAS
procedures. The points below do not list all differences from SAS, but may help you understand how they
differ and navigate how to translate a SAS specification to an lsmeans one.

• SAS will not print LS means for factor combinations unless the model contains a corresponding inter-
action term.

• SAS allows only factors (i.e., CLASS variables) in the specification of levels for LS means. The lsmeans
function allows covariates as well.

• SAS does not seem to allow multiple at values for a covariate.

• As I understand it, SAS’s OBSMARGINS (OM) option allows one to specify a dataset that defines a grid of
reference levels. In the R lsmeans function, this is done more simply using at (or in one special case,
cov.reduce=FALSE).

• For unequal weights for the marginal LS means, in SAS one must construct the OM dataset to reflect
the desired proportions, or has a weight variable; whereas in lsmeans we customize the fac.reduce

function.

• Some of the capabilities of SAS’s split and bylevel options are provided by using a conditioning
symbol “|” in the lsmeans specification to delineate the desired slices. lsmeans does not output
F tests for the slices.
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