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Abstract

Gaussian process (GP) regression models make for powerful predictors in out of sample
exercises, but cubic runtimes for dense matrix decompositions severely limits the size
of data—training and testing—on which they can be deployed. That means that in
computer experiment, spatial/geo-physical, and machine learning contexts, GPs no longer
enjoy privledged status as modern data sets continue balloon in size. We discuss an
implementation of local approximate Gaussian process models, in the laGP package for
R, which offers a particular sparse-matrix remedy uniquely positioned to leverage modern
parallel computing architectures. The laGP approach can be seen as an update on the
spatial statistical method of local kriging neighborhoods. We briefly review the method,
and provide extensive illustrations of the features in the package through worked-code
examples. The appendix covers custom building options, for symmetric multi-processor
and graphical processing unit support which are not enabled by default, and the built-in
wrapper routines that automate distribution over a simple network of workstations.

Keywords:˜sequential design, active learning, surrogate/emulator, calibration, local kriging,
symmetric multi-processor, graphical processing unit, cluster computing, big data.

1. Gaussian process regression and sparse approximation

Gaussian process (GP) regression models, sometimes called a Gaussian spatial process (GaSP),
have been popular for decades in spatial data contexts like geostatistics (e.g., Cressie 1993)
where they are known as kriging (Matheron 1963), and in computer experiments where they
are deployed as surrogate models or emulators (Sacks, Welch, Mitchell, and Wynn 1989; Sant-
ner, Williams, and Notz 2003). More recently, they have become a popular prediction engine
in the machine learning literature (Rasmussen and Williams 2006). The reasons are many, but
the most important are probably that the Gaussian structure affords a large degree of analytic
capability not enjoyed by other general-purpose approaches to nonpatrametric nonlinear mod-
eling, and because they perform well in out-of-sample tests. They are not, however, without
their drawbacks, and two important ones are computational tractability and nonstationary
flexibility, which we shall return to shortly.

A GP is technically a prior over functions (Stein 1999), with finite dimensional distributions
defined by a mean µ(x) and positive definite covariance Σ(x, x′), for p-dimensional input(s)
x and x′. For N input x-values this defines a µN N -vector and ΣN positive definite N ×N
matrix whereby the output is a random N -vector YN ∼ NN (µN ,ΣN ). However, for regression
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applications a likelihood perspective provides a more direct view of the relevant quantities for
inference and prediction. In that setup, N data (training) pairs DN = (XN , YN ), comprised
of N × p-dimensional design XN define a multivariate normal (MVN) likelihood for an N -
vector of scalar responses YN through a small number of parameters θ that describe how XN

is related to µN and ΣN . Linear regression is a special case where θ = (β, τ2) and µN = XNβ
and ΣN = τ2IN .

Whereas the linear case puts most of the “modeling” structure in the mean, GP regression
focuses more squarely on the covariance structure. In many computer experiments contexts
the mean is taken to be zero (e.g., Santner et˜al. 2003), which is the simplifying assumption we
shall make throughout, although it is easy to generalize to a mean described by a polynomial
basis. Let Kθ(x, x

′) be a correlation function so that YN ∼ NN (0, τ2KN ) where KN is a N×N
positive definite matrix comprised of entries Kθ(xi, xj) from the rows of XN . Here we are
changing the notation slightly so that θ is reserved explicity for Kθ, isolating τ2 as a separate
scale parameter. Choices of Kθ(·, ·) determine stationarity, smoothness, differentiability, etc.,
but most importantly they determine the decay of spatial correlation.

A common first choice is the so-called isotropic Gaussian: Kθ(x, x
′) = exp{−

∑p
k=1(xk −

x′k)
2/θ}, where correlation decays exponentially fast at rate θ. Since Kθ(x, x) = 1 the resulting

regression function is an interpolator, which is appropriate for many deterministic computer
experiments. For smoothing noisy data, or for a more robust to modeling computer experi-
ments (Gramacy and Lee 2011), a nugget can be added to Kθ,η(x, x

′) = Kθ(x, x
′) + ηI{x=x′}.

Much of the technical work described below, and particularly in Section 2, is generic to the
particular choice of K(·, ·), excepting that it be differentiable in all parameters. Although the
laGP package favors the isotropic Gaussian case, we argue that many of the drawbacks of
that overly simplistic choice, leading theorists and practitioners alike to prefer other choices
like the Matérn (Stein 1999), are less of a concern in our particular approach to sparse ap-
proximation. The package also provides a limited set of routines which can accommodate
a separable Gaussian correlation function; more details are provided in Section 3.2. Our
empirical work will contain examples where correlation parameters (θ, η) are both estimated
from data, however, we emphasize cases where η is fixed at a small value which is typical for
numerically robust near-interpolation of computer experiments.

1.1. Inference and prediction

GP regression is popular because inference (for all parameters but particularly for θ) is easy,
and (out-of-sample) prediction is highly accurate and conditionally (on θ and η) analytic.
It the spatial and computer experiments literatures it has become convention to deploy a
reference π(τ2) ∝ 1/τ2 prior (Berger, De˜Oliveira, and Sanso 2001) and obtain a marginal
likelihood for the remaining unknowns.

p(YN |Kθ(·, ·)) =
Γ[N/2]

(2π)N/2|KN |1/2
×
(
ψN
2

)−N
2

where ψN = Y >N K
−1
N YN (1)

Derivatives are available analytically, leading to fast Newton-like schemes for maximizing.
Some complications can arise when the likelihood is multi-modal for θ, however, where fully
Bayesian inference may be preferred (e.g., Rasmussen and Williams 2006, Chapter 5).1

1Eq.˜(1) emphasizes Kθ(·, ·), dropping η to streamline the notation in the following discussion. Everything
applies to Kθ,η(·, ·) as well.
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The predictive distribution p(y(x)|DN ,Kθ(·, ·)), is Student-t with degrees of freedom N ,

mean µ(x|DN ,Kθ(·, ·)) = k>N (x)K−1N YN , (2)

and scale σ2(x|DN ,K(·, ·)) =
ψN [Kθ(x, x)− k>N (x)K−1N kN (x)]

N
, (3)

where k>N (x) is the N -vector whose ith component is Kθ(x, xi). Using properties of the
Student-t, the variance of Y (x) is VN (x) ≡ Var[Y (x)|DN ,Kθ(·, ·)] = σ2(x|DN ,Kθ(·, ·)) ×
N/(N − 2).

As an example illustrating both inference and prediction, consider a simple sinusoidal “data
set” treated as a deterministic computer simulation, i.e., modeled without noise.

R> X <- matrix(seq(0,2*pi,length=6), ncol=1)

R> Z <- sin(X)

The code below uses some low-level routines in the package to initialze a GP representation
with θ = 2 and η = 10−6. Then, a derivative-based MLE sub-routine is used to find θ̂N=7,
maximizing (1).

R> gp <- newGP(X, Z, 2, 1e-6, dK=TRUE)

R> mleGP(gp, tmax=20)

$d

[1] 4.386202

$its

[1] 6

The output printed to the screen shows the inferred θ̂N value, called d in the package, and
the number of Newton iterations required. The mleGP command alters the stored GP object
(gp) to contain the new representation of the GP using θ̂N=7. Now, the code below obtains
the parameters of the predictive equations on a grid of new x-values XX, following Eqs.˜(2–3).

R> XX <- matrix(seq(-1,2*pi+1, length=499), ncol=ncol(X))

R> p <- predGP(gp, XX)

R> deleteGP(gp)

The last line, above, frees the internal representation of the GP object, as we no longer need
it to complete this example. The moments stored in p can be used to plot mean predictions
and generate sample predictive paths, as follows.

R> library(mvtnorm)

R> N <- 100

R> ZZ <- rmvt(N, p$Sigma, p$df)

R> ZZ <- ZZ + t(matrix(rep(p$mean, N), ncol=N))

Finally, Figure 1 provides a visualization of those sample paths on a scatter plot of the data.
Each gray line, plotted by matplot, is a single random realization of Y (x)|DN , θ̂N . Obseve
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R> matplot(XX, t(ZZ), col="gray", lwd=0.5, lty=1, type="l",

+ bty="n", main="simple sinusoidal example", xlab="x",

+ ylab="Y(x) | theta-hat")

R> points(X, Z, pch=19)
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Figure 1: Predictions from fitted GP regression model on simple sinusoidal data.

how the predictive variance narrows for x nearby elements of XN and expands out in a
“football shape” away from them. This feature has attractive uses in design: high variance
inputs represent sensible choices for new simulations (Gramacy and Lee 2009).

1.2. Supercomputing and sparse approximation for big data

Despite its many attractive features, GP regression implementations are buckling under the
weight of the growing size of data sets in many modern applications. For example, super-
computers make submitting one job as easy as thousands, leading to ever larger computer
simulation data. The problem is O(N3) matrix decompositions required to calculate K−1N and
|KN | in Eqs.˜(1–3). In practice that limits N to the low thousands for point inference, and
high hundreds for sampling-based inference like the bootstrap or Bayesian MCMC. This has
pushed some practitioners towards wholly new modeling apparatuses, say via trees (Pratola,
Chipman, Gattiker, Higdon, McCulloch, and Rust 2013; Gramacy, Taddy, and Wild 2013;
Chipman, Ranjan, and Wang 2012). Although trees offer an appealing divide-and-conquer
approach, their obvious drawback is that they struggle to capture the smoothness known, in
many cases, to exist in the physical and mathematical quantities being modeled.
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One approach to salvaging GP inference for use in larger contexts has been to allocate su-
percomputer resources. Franey, Ranjan, and Chipman (2012) were the first to use graphical
processing unit (GPU) linear algebra subroutines, extending the N which could be accommo-
dated by an order of magnitude. Paciorek, Lipshitz, Zhuo, Prabhat, Kaufman, and Thomas
(2013) developed a package for R called bigGP that combined symmetric-multiprocessor, clus-
ter, and GPU facilities to gain yet another order of magnitude. Paciorek et˜al. were able to
handle N = 67275. To go too far down that road, however, may miss the point in certain
contexts. Computer model emulation is meant to avoid expensive computer simulation, not
be a primary consumer of it.

An orthogonal approach is to perform approximate GP regression, and a common theme in
that literature is sparsity, leading to fast matrix decompositions (e.g., Kaufman, Bingham,
Habib, Heitmann, and Frieman 2012; Sang and Huang 2012). Again, the expansion of ca-
pability is one- to two-orders of magnitude, albeit without tapping supercomputer resources
which is more practical for most applications. For example, Kaufman et˜al. reported on an
experiment with N = 20000. Some approaches in a similar vein include fixed rank kriging
(Cressie and Johannesson 2008) and using ‘’‘pseudo-inputs” (Snelson and Ghahramani 2006).

Hybrid approximate GP regression and big-computer resources have been combined to push
the boundary even farther. Eidsvik, Shaby, Reich, Wheeler, and Niemi (2014) suggest com-
posite likelihood approach, rather than directly leveraging spare matrix library, and when
combined with a GPU implementation their method is able to cope with N = 173405. This
represents a substantial inroad into retaining many of the attractive features of GP regres-
sion in larger data applications. However, a larger (and thriftier) capability would certainly
be welcome. Pratola et˜al. (2013) found it necessary to modify a tree-based approach for
distribution over the nodes of a supercomputer to handle an N = 7M sized design.

The remainder of the paper is outlined as follows. In Section 2 we discuss the local approx-
imate Gaussian process method for large scale inference and prediction. Several variations
are discussed, including parallelized and GPU versions for combining with supercomputing
resources in order to order to handle large-N problems in reasonable computation times (e.g.,
under an hour). Live-code examples, demonstrating the features of the laGP package for R,
are peppered throughout paper, however Sections 3 and 4 devoted to larger scale and more
exhaustive demonstration of the features in action, first demonstrating local emulation and
regression/smoothing and then adapting them to the important problem of large scale com-
puter model calibration. Section 5 discusses extra features of the package which are useful in
other contexts, like the optimization of blackbox functions, and the potential for customiza-
tion and extension of existing subroutines in the package. The appendix describes how the
package can be compiled to enable SMP and GPU support, and discusses a variation a the key
wrapper function aGP, which enables distribution of predictions across the nodes of a cluster.

2. Local approximate Gaussian process models

The methods in the laGP package take a two-pronged approach to large data GP regression.
They utilize a sparse representation, but in fact only work with small dense matrices. And
the many-independent nature of the calculations required are amenable to massive paralleliza-
tion. The result is an approximate GP regression capability that can accommodate orders of
magnitude larger training and testing sets than ever before. The method can be seen as a
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modernization of local kriging from the spatial statistics literature (Cressie 1993, pp,131–134).
It involves focusing on approximate predictive equations at a particular generic location, x,
via a subset of the data Dn(x) ⊆ DN , where the sub-design Xn(x) is (primarily) comprised of
XN close to x. The thinking is that, with the typical choices of Kθ(x, x

′), where correlation
between elements x′ ∈ XN decays quickly for x′ far from x, remote x′s have vanishingly small
influence on prediction anyways. Ignoring them in order to work with much smaller, n-sized,
matrices will bring a big computational savings with little impact on accuracy.

This is a sensible idea: It can be shown to induce a valid stochastic process; when n� 1000
the method is fast and accurate, and as n grows the predictions increasingly resemble their
full N -data counterparts; and for smaller n Vn(x) is organically inflated relative to VN (x),
acknowledging greater uncertainty in approximation. The simplest version of such a scheme
would be via nearest neighbors (NN): Xn(x) comprised of closest elements of XN to x. Emory
(2009) showed that this works well for many common choices of Kθ. However, NN designs
are known to be sub-optimal (Vecchia 1988; Stein, Chi, and Welty 2004) as it pays to have
some spread in Xn(x) in order to obtain good estimates of correlation hyperparameters like
θ. Still, searching for the optimal sub-design, which involves choosing n from N things, is a
combinatorially huge undertaking.

Gramacy and Apley (2014) showed how a greedy search could provide designs Xn(x) where
predictors based on Dn(x) out-performed the NN alternative out-of-sample, yet required no
more computational effort than NN, i.e., they worked in O(n3) time. The idea is to search
iteratively, starting with a small NN set Dn0(x), and choosing xj+1 to augment Xj(x) to form
Dj+1(x) according to one of several simple objective criteria. Importantly, they showed that
the criteria they chose, on which we elaborate below, along with the the other relevant GP
quantities for inference and prediction (1–3) can be updated as j → j + 1 in O(j2) time as
long as the parameters, θ, remain constant across iterations. Therefore over the entirety of
those iterations, j = n0, . . . , n, the scheme is in O(n3). The idea of sequential updating for
GP inference, whether for design or for speed, is not new (Gramacy and Polson 2011; Haaland
and Qian 2011), however the focus of previous approaches has been global. Working local to
particular x brings both computational and modeling/accuracy advantages.

2.1. Criterion for local design

Gramacy and Apley considered two criteria in addition to NN, one being a special case of the
other. The first is to minimize the empirical Bayes mean-square prediction error (MSPE)

J(xj+1, x) = E{[Y (x)− µj+1(x|Dj+1, θ̂j+1)]
2|Dj(x)}

where θ̂j+1 is the estimate for θ based on Dj+1. The predictive mean µj+1(x|Dj+1, θ̂j+1)
follows equation (2), except that the j+ 1 subscript has been added in order to indicate
dependence on xj+1 and the future, unknown yj+1. They then derive the approximation

J(xj+1, x) ≈ Vj(x|xj+1; θ̂j) +

(
∂µj(x; θ)

∂θ

∣∣∣
θ=θ̂j

)2
/
Gj+1(θ̂j). (4)
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The first term in (4) estimates predictive variance at x after xj+1 is added into the design,

Vj(x|xj+1; θ) =
(j + 1)ψj
j(j − 1)

vj+1(x; θ),

where vj+1(x; θ) =
[
Kj+1(x, x)− k>j+1(x)K−1j+1kj+1(x)

]
. (5)

Minimizing predictive variance at x is a sensible goal. The second term in (4) estimates the
rate of change of the predictive mean at x, weighted by the expected future inverse information,
Gj+1(θ̂j), after xj+1 and the corresponding yj+1 are added into the design. The weight, which
is constant in x comments on the value of xj+1 for estimating the parameter of the correlation
function, θ, by controlling the influence of the rate of change (derivative) of the predictive
mean at x on the overall criteria.

The influence of that extra term beyond the reduced variance is small. The full MSPE
criteria tends to yield qualitatively similar local designs Xn(x) as ones obtained using just
Vj(x|xj+1; θ̂j), but at a fraction of the computational cost (since no derivative calculations
are necessary). This simplified criteria is equivalent to choosing xj+1 to maximize reduction
in variance:

vj(x; θ)− vj+1(x; θ) (6)

= k>j (x)Gj(xj+1)m
−1
j (xj+1)kj(x) + 2k>j (x)gj(xj+1)K(xj+1, x) +K(xj+1, x)2mj(xj+1),

where Gj(x
′) ≡ gj(x′)g>j (x′),

gj(x
′) = −mj(x

′)K−1j kj(x
′) and m−1j (x′) = Kj(x

′, x′)− k>j (x′)K−1j kj(x
′). (7)

Observe that only O(j2) caluclations are required above. Although known for some time
in other contexts, Gramacy and Apley chose the acronym ALC to denote the use of that
decomposition in local design in order to recognize a similar approach to global design via a
method called active learning Cohn (1996).

To illustrate local designs derived under greedy application of both criteria, consider the
following gridded design in [−2, 2]2.

R> x <- seq(-2, 2, by=0.02)

R> X <- as.matrix(expand.grid(x, x))

R> N <- nrow(X)

Here we have N = 40401, a very large design by traditional GP standards. You cannot invert
an N×N matrix for N that big on even the best modern workstation. As a point of reference,
it takes about seven seconds to perform a single decomposition of an 4000×4000 matrix using
hyperthreaded libraries on a 2010 iMac.

The laGP function requires a vector of responses to perform local design, even though the
design itself doesn’t directly depend on the responses—a point which we will discuss at greater
length shortly. The synthetic response Gramacy and Apley used for illustrations is coded
below, and we shall elucidate that nature of input/output relationships in due course.

R> f2d <- function(x)

+ {
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+ g <- function(z)

+ return(exp(-(z-1)^2) + exp(-0.8*(z+1)^2) - 0.05*sin(8*(z+0.1)))

+ -g(x[,1])*g(x[,2])

+ }

R> Y <- f2d(X)

Now, consider a prediction location x, denoted by Xref in the code below, and local designs
for prediction at that x based on MSPE and ALC criteria.

R> Xref <- matrix(c(-1.725, 1.725), nrow=TRUE)

R> p.mspe <- laGP(Xref, 6, 50, X, Y, d=0.1, method="mspe")

R> p.alc <- laGP(Xref, 6, 50, X, Y, d=0.1, method="alc")

Both designs use n0 = 6 nearest neigbors to start, make greedy selections until n = 50
locations are chosen, and use θ = 0.1. The output object from laGP contains indices into

R> plot(X[p.mspe$Xi,], xlab="x1", ylab="x2", type="n",

+ main="comparing local designs")

R> text(X[p.mspe$Xi,], labels=1:length(p.mspe$Xi), cex=0.7)

R> text(X[p.alc$Xi,], labels=1:length(p.alc$Xi), cex=0.7, col=2)

R> points(Xref[1], Xref[2], pch=19, col=3)

R> legend("topright", c("mspe", "alc"), text.col=c(1,2), bty="n")
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Figure 2: Local designs at x (green dot), derived under MSPE and ALC criteria.

the original design. Those locations, and the order in which they were chosen, are plotted
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in Figure 2. They are not identical under the two criteria, but any qualitative differences
are subtle. Both contain a clump of nearby points with satellite points emanating along rays
from x, the green dot. The satellite points are still relatively close to x considering the full
scope of locations in XN—all locations chosen are in the upper-left quadrant of the space.

It is perhaps intriguing that the greedy local designs differ from NN ones. An exponentially
decaying Kθ(·, ·), like our isotropic Gaussian choice, should substantially devalue locations far
from x. Gramacy and Haaland (2014) offer an explanation, which surprisingly has little to
do with the particular choice of Kθ. Consider two potential locations, an xj+1 close to x and
x′j+1 farther away. One naturally wonders: how could the latter choice, x′j+1 with y′j+1-value
exponentially less correlated with y(x) than yj+1 via xj+1, be preferred over the closer xj+1

choice? The answer lies the form of (7). Although quadratic in Kθ(xj+1, x), the “distance”
between the x and the potential new local design location xj+1, it is also quadratic in gj(xj+1),
a vector measuring “inverse distance”, via K−1j , between xj+1 and the current local design
Xj(x). So the criteria makes a tradeoff: minimize “distance” to x while maximizing “distance”
(or minimizing “inverse distance”) to the existing design. Or in other words, the potential
value of new design element (xj+1, yj+1) depends not just on its proximity to x, but also on
how potentially different that information is to where we already have (lots of) it, at Xj(x).

Returning to the code example, we see below that the predictive equations are also very
similar under both local designs.

R> p <- rbind(c(p.mspe$mean, p.mspe$s2, p.mspe$df),

+ c(p.alc$mean, p.alc$s2, p.alc$df))

R> colnames(p) <- c("mean", "s2", "df")

R> rownames(p) <- c("mspe", "alc")

R> p

mean s2 df

mspe -0.3723017 1.674662e-05 50

alc -0.3722813 1.503320e-05 50

Although the designs are built using a fixed θ = 0.1, the predictive equations output at the
end are derived based on a local MLE calculation given the data Dn(x).

R> p.mspe$mle

d dits

1 0.2509476 6

R> p.alc$mle

d dits

1 0.2530758 6

MLE calculations can be turned off by adjusting the laGP call to include d=list(start=0.1,
mle=FALSE) as an argument. More about local inference for θ is deferred until Section 2.2. For
now we note that the implementation is same as the one behind the mleGP routine described
earlier in Section 1.1.

Finally, both local design methods are fast,
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R> c(p.mspe$time, p.alc$time)

elapsed elapsed

0.230 0.112

though ALC is about 2.1 times faster since it doesn’t require evaluation of derivatives, etc.
Although a more thorough out of sample comparison on both time and accuracy fronts is left
to Section 3, the factor of (at least) two speedup in execution time, together with the simpler
implementation, led Gramacy and Apley to prefer ALC in most cases.

2.2. Global inference, prediction and parallelization

The simplest way to extend the analysis to cover a dense design of predictive locations x ∈ X
is to serialize: loop over each x collecting approximate predictive equations, each in O(n3)
time. For T = |X | the total computational time is in O(Tn3). Obtaining each of the full GP
sets of predictive equations, by contrast, would require computational time in O(TN2 +N3),
where the latter N3 is attributable to obtaining K−1.2 One of the nice features of standard
GP emulation is that once K−1 has been obtained the computations are fast O(N2) operations
for each location x. However, as long as n� N our approximate method is even faster despite
having to rebuild and re-decompose Kj(x)’s for each x.

The approximation at x is built up sequentially, but completely independently of other pre-
dictive locations. Since a high degree of local spatial correlation is a key modeling assumption
this may seem like an inefficient use of computational resources, and indeed it would be in
serial computation for each x. However, independence allows trivial parallelization requiring
token programmer effort. When compiled correctly [see Appendix A.1] the laGP package can
exploit symmetric multiprocessor (SMP) via OpenMP pragmas in its underlying C implemen-
tation. The simplest way this is accomplished is via a “parallel-for” pragma.

#ifdef _OPENMP

#pragma omp parallel for private(i)

#endif

for(i=0; i<npred; i++) { ...

That is actual code from an early implementation, where npred = |X |, leading to a nearly
linear speedup: runtimes for P processors scale roughly as 1/P . Later versions of the package
use the “parallel” pragma which has slightly less overhead.

To illustrate, consider the following predictive grid in [−2, 2]2 spaced to avoid the original
N = 40K design.

R> xx <- seq(-1.97, 1.95, by=0.04)

R> XX <- as.matrix(expand.grid(xx, xx))

R> YY <- f2d(XX)

The aGP function iterates over the elements of X̃ ≡ XX. The package used in this illustration is
compiled for OpenMP support, and the omp.threads argument controls the number of threads

2If only the predictive mean is needed, and not the variance, then the time reduces to O(TN +N3).
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used by aGP, divvying up XX. You can specify any positive integer for omp.threads, however
a good rule-of-thumb is to match the number of cores. Here we set the default to two, since
nearly all machines these days have at least one hyperthreaded core (meaning it behaves like
two cores). However, this can be overwritten by the OMP_NUM_THREADS environment variable.

R> nth <- as.numeric(Sys.getenv("OMP_NUM_THREADS"))

R> if(is.na(nth)) nth <- 2

R> print(nth)

[1] 8

If your machine has fewer cores, is not compiled with OpenMP or caps the number of OpenMP
threads to a lower value (see Appendix A.1), then it will take longer to run the examples here.

R> P.alc <- aGP(X, Y, XX, omp.threads=nth, verb=0)

Note that the default method is ALC. The results obtained with method = "mspe" are similar,
but require more computation time. Further comparison is delayed until Section 3. The
verb=0 argument suppresses a progress meter which is printed to the screen. Figure 3 shows

R> persp(xx, xx, -matrix(P.alc$mean, ncol=length(xx)), phi=45, theta=45,

+ main="", xlab="x1", ylab="x2", zlab="y-hat(x)")

x1 x2

y−hat(x)

Figure 3: Emulated surface based on N = 40K and |X | = 10K gridded predictive locations.

the resulting (predictive mean) emulation surface.3 Although the input dimension is low, the
input-output relationship is nuanced and merits a dense design in the input space to fully
map.

For a closer look, Figure 4 shows a slice through that predictive surface at xw = 0.51 along
with the true responses (completely covered by the prediction) and error-bars. Observe that

3The negative is shown for better visibility.
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R> med <- 0.51

R> zs <- XX[,2] == med

R> sv <- sqrt(P.alc$var[zs])

R> r <- range(c(-P.alc$mean[zs] + 2*sv, -P.alc$mean[zs] -2*sv))

R> plot(XX[zs,1], -P.alc$mean[zs], type="l", lwd=2, , ylim=r, xlab="x1",

+ ylab="predicted & true response", bty="n",

+ main="slice through surface")

R> lines(XX[zs,1], -P.alc$mean[zs] + 2*sv, col=2, lty=2, lwd=2)

R> lines(XX[zs,1], -P.alc$mean[zs] -2*sv, col=2, lty=2, lwd=2)

R> lines(XX[zs,1], YY[zs], col=3, lwd=2, lty=3)
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Figure 4: Slice of the predictive surface shown in Figure 3 including the true surface [covered
by the mean] and predictive interval.

the error bars are very tight on the scale of the response, and that although no continuity is
enforced—calculations at nearby locations are independent and occur potentially in parallel—
the resulting surface looks smooth to the eye. This is not always the case, as we illustrate in
Section 3.3.

Accuracy, however, is not uniform. Figure 5 shows that predictive bias oscillates across
the same slice of the input space shown in Figure 4. Crucially, however, notice that the
magnitude of the bias is small: one-hundredth of a tick on the scale of the response. Still,
given the density of the input design one could easily guess that the model may not be flexible
enough to characterize the fast-moving changes in the input-output relationships.



Robert B. Gramacy 13

R> diff <- P.alc$mean - YY

R> plot(XX[zs,1], diff[zs], type="l", lwd=2,

+ main="systematic bias in prediction",

+ xlab="x1", ylab="y(x) - y-hat(x)", bty="n")
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Figure 5: Bias in the predictive mean surface shown in Figure 4.

Although an approximation, the local nature of modeling means that, from a global per-
spective, the predictor is more flexible that the full-N stationary Gaussian process predictor.
Here, stationarity loosely means that the covariance structure is modeled uniformly across the
input space. Most choices of Kθ(·, ·), like the isotropic Gaussian we use, induce stationarity
in the spatial field. Inferring separate independent predictors across the elements of a vast
predictive grid lends aGP a degree of non-stationarity. In fact, by default, aGP goes beyond
that by learning separate θ̂n(x) local to each x ∈ X by maximizing the local likelihood (or
posterior probabilities). Figure 6 shows indeed that the estimated lengthscales vary spatially.
However, apparently even this extra degree of flexibility is not enough to mitigate the small
amount of bias shown in Figure 5.

Gramacy and Apley recommend a two-stage scheme wherein the above process is repeated
wherein new Xn(x) are chosen conditional upon θ̂n(x) values from the first stage. i.e., so
that the second iteration’s local designs use locally estimated parameters. This leads to a
globally non-stationary model and generally more accurate predictions than the single-stage
scheme. The full scheme is outlined algorithmically in Figure 7. Step 2(b) of the algorithm
implements the ALC reduction in variance scheme, via Eq.˜(6), although MSPE (4) or any
other criteria could be deployed there, at each greedy stage of local design. Of course, more
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R> plot(XX[zs,1], P.alc$mle$d[zs], type="l", lwd=2,

+ main="spatially varying lengthscale",

+ xlab="x1", ylab="theta-hat(x)", bty="n")
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Figure 6: Spatially varying lengthscale estimated along the slice shown in Figure 4.

than two repetitions of the global search scheme can be performed, but in many examples two
has been sufficient to achieve rough convergence of the overall iterative scheme. Optionally,
the θ̂n(x)-values can be smoothed (e.g., by loess) before they are fed back into the local
design schemes. Considering other popular approaches to adapting a stationary model to
achieve nonstationary surfaces, which usually involve orders of magnitude more computation
(e.g. Schmidt and O’Hagan 2003, and references therein), this small adaptation is a thrifty
alternative that does not change the overall computational order of the scheme.

Consider the following illustration continuing on from our example above.

R> df <- data.frame(y=log(P.alc$mle$d), XX)

R> lo <- loess(y~., data=df, span=0.01)

R> P.alc2 <- aGP(X, Y, XX, d=exp(lo$fitted), omp.threads=nth, verb=0)

This causes the design, for each element of XX, to initialize search based on the smoothed
d-values output from the previous aGP run, stored in the P.alc object. Compariing the
predictions from the first iteration to those from the second, we can see that the latter has
lower RMSE.

R> rmse <- data.frame(alc=sqrt(mean((P.alc$mean - YY)^2)),



Robert B. Gramacy 15

1. Choose a sensible starting global θx = θ0 for all x.

2. Calculate local designs Xn(x, θx) based on ALC, independently for each
x:

(a) Choose a NN design Xn0(x) of size n0.

(b) For j = n0, . . . , n− 1, set

xj+1 = arg max
xj+1∈XN\Xj(x)

vj(x; θx)− vj+1(x; θx),

and then update Dj+1(x, θx) = Dj(x, θx) ∪ (xj+1, y(xj+1)).

3. Also independently, calculate the MLE θ̂n(x)|Dn(x, θx) thereby explicitly
obtaining a globally nonstationary predictive surface. Set θx = θ̂n(x).

4. Repeat steps 2–3 as desired.

5. Output predictions Y (x)|Dn(x, θx) for each x.

Figure 7: Multi-stage approximate local GP modeling algorithm.

+ alc2=sqrt(mean((P.alc2$mean - YY)^2)))

R> rmse

alc alc2

1 0.00102464 0.0008455226

This result is not impressive, but it is statistically significant across a wide range of examples.
For example Gramacy and Apley (2014) provided an experiment based on the borehole data
[more in Section 3] showing that the second iteration consistently improves upon predictions
from the first. Although explicitly facilitating a limited degree of non-stationarity, second
stage local designs do not solve the bias problem completely. The method is still locally
stationary, and indeed locally isotropic in its laGP implementation. Finally, the subsequent
stages of design tend to be slightly faster than earlier stages since the number of Newton
iterations required to converge on θ̂n(x) is reduced given refined starting values for search.

2.3. Computational techniques for speeding up local search

The most expensive step in Algorithm 7 is the inner-loop of Step 2(b), iterating over all
N − j remaining candidates in XN \Xj(x) in search of Xj+1. Assuming the criteria involves
predictive variance (3) in some way, every candidate entertained involves an O(j2) calculation.
Viewed pessimistically, one could argue the scheme actually requires computation in O(Nn3)
not O(n3). However, there are several reasons to remain cheery about computational aspects.
One is that O(Nn3) is not O(N3). The others require more explanation, and potentially
slight adjustments in implementation.

Not all N−j need be entertained for the method to work well. For the same reason prediction
is localized to x in the first place, that correlation decays quickly away from x, we can probably
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afford to limit search to N ′ � N − j candidates near to x. By default, laGP and aGP limit
search to the nearest N ′ = 1000 locations, though this can be adjusted with the close

argument. One can check [not shown here] that increasing close by an order of magnitude,
to 2000 or 10,000 uses more compute cycles but yields identical results in the applications
described in this document.

But it is risky to reduce close too much, as doing so will negate the benefits of search,
eventually yielding the NN GP predictor. Another option, allowing N ′ to be greatly increased
if desired, is to deploy further parallelization. Gramacy, Niemi, and Weiss (2014b) showed that
ALC-based greedy search is perfect for graphical processing unit (GPU) parallelization. Each
potential candidate, up to 65K candidates, can be entertained on a seprate GPU block, and
threads within that block can be used to perform many of the required dense linear algebra
operations in Eq.˜(6) in parallel. In practice they illustrate that this can result in speedups
of between twenty and seventy times, with greater efficiencies for large n and N ′. Enabling
GPU subroutines requires custom compilation of CUDA source code via the NVIDIA compiler
nvcc and re-compilation of the C code in the laGP package. For more details see Appendix
A.2. For best results, enabling OpenMP support [Appendix A.1] is also recommended.

Finally, Gramacy and Haaland (2014) suggested that the discrete and exhaustive nature of
search could be bypassed all together. They studied the topology of the reduction in variance
landscape—the spatial surface searched in Step 2(b) via Eq.˜(6))—and observed many that
regularities persist over choices of Kθ(·, ·) and its parameterization. As long as the XN is
reasonably space-filling, local designs predictably exhibit the features observed in Figure 2: a
substantial proportion of NNs accompanied by farther out satellite points positioned roughly
along rays emanating from the reference predictive location, x. To mimic that behavior
without exhaustive search they proposed a continuous one-dimensional line search along rays
emanating from x. Optimizing along the ray is fast and can be implemented with library
routines, like Brent_fmin (Brent 1973), the workhorse behind R’s optimize function.

The code below calculates an such an ALC-ray based design, augmenting our example from
Section 2.

R> p.alcray <- laGP(Xref, 6, 50, X, Y, d=0.1, method="alcray")

Although a similar idea could be deployed for finding MSPE-based designs based on rays, this
is not implemented in the laGP package at the present time. Figure 8 compares local designs
based on ray and exhaustive search. The exhaustive search design is identical to the ALC
one shown in Figure 2, and just like in that example the ray-based version is not idential to
the others but clearly exhibits similar qualitative features. The time required to derive the
ALC-ray local design is:

R> p.alcray$time

elapsed

0.031

and this is 3.6 times better than the exhaustive alternative. The predictive equations are
nearly identical.
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R> plot(X[p.alc$Xi,], xlab="x1", ylab="x2", type="n",

+ main="comparing local designs")

R> text(X[p.alc$Xi,], labels=1:length(p.alc$Xi), cex=0.7, col=2)

R> text(X[p.alcray$Xi,], labels=1:length(p.mspe$Xi), cex=0.7, col=3)

R> points(Xref[1], Xref[2], pch=19, col=3)

R> legend("topright", c("alc", "alcray"), text.col=c(2,3), bty="n")
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Figure 8: Local designs at x (green dot), derived under ALC and ALC-ray search criteria.

R> p <- rbind(p, c(p.alcray$mean, p.alcray$s2, p.alcray$df))

R> rownames(p)[3] <- c("alcray")

R> p

mean s2 df

mspe -0.3723017 1.674662e-05 50

alc -0.3722813 1.503320e-05 50

alcray -0.3722140 1.542859e-05 50

Gramacy and Haaland recommend using p rays per greedy search iteration, where p is the
dimension of the input space. However this can be adjusted with the numrays argument,
fine-tuning the exhaustiveness of search relative to the computational expense.

To complete the picture, the code below performs two stage global/local design based on
ALC-ray searches.
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R> P.alcray <- aGP(X, Y, XX, method="alcray", omp.threads=nth, verb=0)

R> dfray <- data.frame(y=log(P.alcray$mle$d), XX)

R> loray <- loess(y~., data=dfray, span=0.01)

R> P.alcray2 <- aGP(X, Y, XX, method="alcray", d=exp(loray$fitted),

+ omp.threads=nth, verb=0)

The result is a global predictor which is 9.2 times faster, echoing the single-x results form
laGP above

R> c(P.alcray$time, P.alcray2$time)

elapsed elapsed

28.184 26.578

and provides nearly identical out-of-sample accuracy via RMSE:

R> rmse <- cbind(rmse,

+ data.frame(alcray=sqrt(mean((P.alcray$mean - YY)^2)),

+ alcray2=sqrt(mean((P.alcray2$mean - YY)^2))))

R> rmse

alc alc2 alcray alcray2

1 0.00102464 0.0008455226 0.0009678679 0.0009248219

Time in 55 seconds on a 2010 desktop to accurately emulate at 10K locations from an input
design of N = 40K is an unmatched capability in the recent computer experiment literature.

3. Examples

The 2-d example above, while illustrative, was somewhat simplistic. Below we present three
further examples which offer a more convincing demonstration of the merits of local GP
prediction and expand its feature set to accommodate a wider range of application. After
exploring its performance on the “borehole” data, a classic computer experiment benchmark,
we illustrate how noisy data can be accommodated by estimating local nuggets. The following
section provides a further example of how it can be deployed for computer model calibration.

3.1. Borehole data

The borehole experiment (Worley 1987; Morris, Mitchell, and Ylvisaker 1993) involves an
8-dimensional input space, and our use of it here follows the setup of Kaufman et˜al. (2012);
more details can be found therein. The response y is given by

y =
2πTu[Hu −Hl]

log
(
r
rw

) [
1 + 2LTu

log(r/rw)r2wKw
+ Tu

Tl

] . (8)

The eight inputs are constrained to lie in a rectangular domain:

rw ∈ [0.05, 0.15] r ∈ [100, 5000] Tu ∈ [63070, 115600] Tl ∈ [63.1, 116]

Hu ∈ [990, 1110] Hl ∈ [700, 820] L ∈ [1120, 1680] Kw ∈ [9855, 12045].

We use the following implementation in R which accepts inputs in the unit 8-cube.
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R> borehole <- function(x){

+ rw <- x[1] * (0.15 - 0.05) + 0.05

+ r <- x[2] * (50000 - 100) + 100

+ Tu <- x[3] * (115600 - 63070) + 63070

+ Hu <- x[4] * (1110 - 990) + 990

+ Tl <- x[5] * (116 - 63.1) + 63.1

+ Hl <- x[6] * (820 - 700) + 700

+ L <- x[7] * (1680 - 1120) + 1120

+ Kw <- x[8] * (12045 - 9855) + 9855

+ m1 <- 2 * pi * Tu * (Hu - Hl)

+ m2 <- log(r / rw)

+ m3 <- 1 + 2*L*Tu/(m2*rw^2*Kw) + Tu/Tl

+ return(m1/m2/m3)

+ }

We consider a modestly big training set (N = 100000), to illustrate how large emulations
can proceed with relatively little computational effort. However, we keep the testing set
somewhat smaller so that we can so that we can duplicate part of a Monte Carlo experiment
(i.e., multiple repeats of random training and testing sets) from Gramacy and Apley (2014)
without requiring too many compute cycles.

R> N <- 100000

R> Npred <- 1000

R> dim <- 8

R> library(lhs)

The experiment involves ten repetitions of inputs from a random Latin hypercube sample
(LHS; McKay, Conover, and Beckman 1979) which generate the training data and testing
sets, with responses from borehole, and automates calculations of a sequence of (local GP)
estimators fit to the training sets followed by out-of-sample RMSE calculations on the testing
sets. Storage for those RMSEs, along with timing info, is allocated as follows

R> T <- 10

R> nas <- rep(NA, T)

R> times <- rmse <- data.frame(mspe=nas, mspe2=nas,

+ alc.nomle=nas, alc=nas, alc2=nas,

+ nn.nomle=nas, nn=nas, big.nn.nomle=nas, big.nn=nas,

+ big.alcray=nas, big.alcray2=nas)

The names of the columns of the data frame are indicative of the corresponding estimator.
For example, big.nn.nomle indicates a nearest neighbor (NN) estimator fit to with a larger
local neighborhood (n = 200) using a sensible, but not likelihood maximizing, global value of
θ. The other estimators describe variations either via a smaller local neighborhood (n = 50),
greedy search, and local calculation of θ̂n(x).

The for loop below iterates over each Monte Carlo repetition.

R> for(t in 1:T) {

+
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+ ## generate random training and testing data

+ x <- randomLHS(N+Npred, dim)

+ y <- apply(x, 1, borehole)

+ ypred.0 <- y[-(1:N)]; y <- y[1:N]

+ xpred <- x[-(1:N),]; x <- x[1:N,]

+

+ ## arguments common to all comparators

+ formals(aGP)[c("omp.threads", "verb")] <- c(8, 0)

+ formals(aGP)[c("X", "Z", "XX")] <- list(x, y, xpred)

+

+ out1<- aGP(d=list(mle=FALSE, start=0.7))

+ rmse$alc.nomle[t] <- sqrt(mean((out1$mean - ypred.0)^2))

+ times$alc.nomle[t] <- out1$time

+

+ out2 <- aGP(d=list(max=20))

+ rmse$alc[t] <- sqrt(mean((out2$mean - ypred.0)^2))

+ times$alc[t] <- out2$time

+

+ out3 <- aGP(d=list(start=out2$mle$d, max=20))

+ rmse$alc2[t] <- sqrt(mean((out3$mean - ypred.0)^2))

+ times$alc2[t] <- out3$time

+

+ out4 <- aGP(d=list(max=20), method="alcray")

+ rmse$alcray[t] <- sqrt(mean((out4$mean - ypred.0)^2))

+ times$alcray[t] <- out4$time

+

+ out5 <- aGP(d=list(start=out4$mle$d, max=20), method="alcray")

+ rmse$alcray2[t] <- sqrt(mean((out5$mean - ypred.0)^2))

+ times$alcray2[t] <- out5$time

+

+ out6<- aGP(d=list(max=20), method="mspe")

+ rmse$mspe[t] <- sqrt(mean((out6$mean - ypred.0)^2))

+ times$mspe[t] <- out6$time

+

+ out7 <- aGP(d=list(start=out6$mle$d, max=20), method="mspe")

+ rmse$mspe2[t] <- sqrt(mean((out7$mean - ypred.0)^2))

+ times$mspe2[t] <- out7$time

+

+ out8 <- aGP(d=list(mle=FALSE, start=0.7), method="nn")

+ rmse$nn.nomle[t] <- sqrt(mean((out8$mean - ypred.0)^2))

+ times$nn.nomle[t] <- out8$time

+

+ out9 <- aGP(end=200, d=list(mle=FALSE), method="nn")

+ rmse$big.nn.nomle[t] <- sqrt(mean((out9$mean - ypred.0)^2))

+ times$big.nn.nomle[t] <- out9$time

+

+ out10 <- aGP(d=list(max=20), method="nn")
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+ rmse$nn[t] <- sqrt(mean((out10$mean - ypred.0)^2))

+ times$nn[t] <- out10$time

+

+ out11 <- aGP(end=200, d=list(max=20), method="nn")

+ rmse$big.nn[t] <- sqrt(mean((out11$mean - ypred.0)^2))

+ times$big.nn[t] <- out11$time

+

+ out12 <- aGP(end=200, d=list(max=20), method="alcray")

+ rmse$big.alcray[t] <- sqrt(mean((out12$mean - ypred.0)^2))

+ times$big.alcray[t] <- out12$time

+

+ out13 <- aGP(end=200, d=list(start=out12$mle$d, max=20), method="alcray")

+ rmse$big.alcray2[t] <- sqrt(mean((out13$mean - ypred.0)^2))

+ times$big.alcray2[t] <- out13 $time

+ }

The code below collects summary information into a table, whose rows are ordered by average
RMSE value. The final column of the table shows the p-value of a one-sided t-test for differ-
ences between adjacent rows in the table—indicating if the RMSE in the row is statistically
distinguishable from the one below it.

R> timev <- apply(times, 2, mean, na.rm=TRUE)

R> rmsev <- apply(rmse, 2, mean)

R> tab <- cbind(timev, rmsev)

R> o <- order(rmsev, decreasing=FALSE)

R> tt <- rep(NA, length(rmsev))

R> for(i in 1:(length(o)-1)) {

+ tto <- t.test(rmse[,o[i]], rmse[,o[i+1]], alternative="less",

+ paired=TRUE)

+ tt[o[i]] <- tto$p.value

+ }

R> tab <- cbind(tab, data.frame(tt))

R> tab[o,]

timev rmsev tt

big.alcray2 334.6791 0.3890996 8.912393e-03

big.alcray 327.8781 0.4039805 1.001619e-13

big.nn 43.5437 0.7280420 8.718216e-02

mspe2 63.3292 0.7366060 9.904689e-04

alc2 30.3777 0.7443531 7.150094e-04

alcray2 11.1302 0.7656684 1.768074e-06

alcray 10.7334 0.8219211 4.636272e-05

big.nn.nomle 4.0813 0.9115157 4.022528e-01

mspe 64.0382 0.9142446 6.327467e-02

alc 30.8694 0.9225462 1.342060e-06

alc.nomle 29.9871 1.0347613 1.140479e-13

nn 1.6623 2.1713632 3.170771e-14

nn.nomle 0.8079 3.6184245 NA
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The two biggest takeaways from the table are that (1) everything is fast on a data set of
this size by comparison to the state of the art in GP emulation, approximately or otherwise;
(2) local inference of the lengthscale parameter, θ̂n(x) leads to substantial improvements in
accuracy. Gramacy and Apley’s similar experiments included variations on the method of
compactly supported covariances (CSC) (Kaufman et˜al. 2012) which provided estimators
with similar accuracies, but required at least an order magnitude more compute time. In
fact, they commented that N = 10000 was the limit that CSC could accommodate on their
machine due to memory swapping issues.

The best methods, based on a larger local neighborhood and ray-based search, point to an
impressive emulation capability. In a time that is comparable to a plain NN-based emulation
strategy (with local inference for θ̂n(x); i.e., nn in the table), a greedy design is three times
more accurate out-of-sample. Gramacy and Haaland (2014) show that the trend continues
as N is increased, indicating the potential for extremely accurate emulation on testing and
training sets of size N > 1M in a few hours. Pairing with cluster-style distribution, across
96 16-CPU nodes, that can be reduced to 188 seconds, or extended to N > 8M in just over
an hour. They show that smaller (yet still large) designs N < 100000, searching exhaustively
rather than by rays leads to more accurate predictors. In those cases, massive parallelization
over a cluster and/or with GPUs (Gramacy et˜al. 2014b) can provide accurate predictions on
a commensurately sized testing set (N) in about a minute.

3.2. Challenging global/local isotropy

Our choice of isotropic correlation function was primarily one of convenience. It is a com-
mon first choice for computer experiments, and since it has just one parameter, θ, inferential
schemes like maximum likelihood via Newton-like methods are vastly simplified. When de-
ployed for local inference over thousands of elements of a vast predictive grid, that simplic-
ity is a near necessity from an engineering perspective. However, the local GP method-
ology is not limited to this choice. Indeed Gramacy and Apley (2014) developed all of
the relevant equations for a generic choice of separable correlation function. Here, sepa-
rable means the joint correlation over all input directions factors as a product of a simpler
one in each direction, independently. The simplest example is a separable Gaussian form,
Kθ(x, x

′) = exp{−
∑p

k=1(xk − x
′
k)

2/θk}. It is easy to imagine, as in our eight-dimensional
borehole example above, that the spatial model could benefit for allowing differential rate of
decay θk in each input direction.

The laGP package contains limited support for a separable correlation function in the context
of global, that is canonical, GP inference. On a data set of size N = 100K like the one we
entertain above, this is not a reasonable undertaking. But we have found it useful on subsets
of the data for the purpose of obtaining a rough re-scaling of the inputs so that a (local)
isotropic analysis is less objectionable. For example, the code below considers ten random
subsets of size n = 1K from the full N = 100K design, and collects θ̂ vectors under the
separable Gaussian formulation.

R> ## allocate space

R> thats <- matrix(NA, nrow=T, ncol=dim)

R> its <- rep(NA, T)

R> n <- 1000

R> ## get reasonable starting values and ranges
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R> g2 <- garg(list(mle=TRUE), y)

R> d2 <- darg(list(mle=TRUE, max=100), x)

R> ## do reps

R> for(t in 1:T) {

+

+ ## get random subset

+ subs <- sample(1:N, n, replace=FALSE)

+

+ ## estimate with fixed small nugget

+ gpsepi <- newGPsep(x[subs,], y[subs], rep(d2$start, dim), g=1/1000)

+ that <- mleGPsep(gpsepi, param="d", tmin=d2$min, tmax=d2$max,

+ ab=d2$ab, maxit=200)

+ thats[t,] <- that$d

+ its[t] <- that$its

+

+ ## free space

+ deleteGPsep(gpsepi)

+ }

The mleGPsep function uses optim with method="L-BFGS-B" together with analytic deriva-
tives of the log likelhood; the function mleGP offers a similar feature for the isotropic Gaussian
correlation, except that it uses a Newton-like method with analytic first and second deriva-
tives. The package also offers jmleGPsep, an analog of jmleGP, which automates a profile-like
approach to iterating over θ|η and η|θ where the latter is performed with a Newton-like scheme
leveraging first and second derivatives. We do not demonstrate jmleGPsep on this example
since the large data subset (n = 1000) combined with very smooth deterministic outputs from
moderately size (8-dim) inputs, from the borehole experiment, leads to estimating near-zero
nuggets and ill-conditioning in the matrix decompositions, arising from our choice of Gaussian
correlation function.

For estimating nuggets in this setup, where the response is both deterministic and extremely
smooth (and stationary), we recommend the GPfit (MacDoanld, Chipman, and Ranjan 2014)
based on the methods of Ranjan, Haynes, and Karsten (2011). However, we caution that our
experience is GPfit can be slow on data sets as large as N = 1000.

Figure 9 shows the distribution of estimated lengthscales obtained by randomizing over subsets
of size n = 1000. We see that some lengthscales are orders of magnitude smaller than others,
suggesting that some inputs may be more important than others. Input one (rw) has a
distribution that is highly concentrated near small values suggesting that it may be the most
important. Perhaps treating all inputs equally when performing a global/local approximation,
as in Section 3.1, is leaving some predictability on the table. The laGP package does not
support using a separable correlation function for local analysis, however we can pre-scale the
data globally to explore whether there is any benefit from treating some inputs differently
than others.

R> scales <- sqrt(apply(thats, 2, median))

R> xs <- x; xpreds <- xpred

R> for(j in 1:ncol(xs)) {

+ xs[,j] <- xs[,j]/scales[j]
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R> boxplot(thats, main="distribution of thetas", xlab="input", ylab="theta")
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Figure 9: Distribution of maximum a’ posteriori lengthscales over random subsets of the
borehole data.

+ xpreds[,j] <- xpreds[,j]/scales[j]

+ }

Using the new inputs, consider the following global approximation for the final iteration in
the Monte Carlo experiment from Section 3.1.

R> out14 <- aGP(xs, y, xpreds, d=list(max=20), method="alcray")

The RMSE obtained,

R> sqrt(mean((out14$mean - ypred.0)^2))

[1] 0.3885364

is competitive with the best methods in the study above—which are based on n = 200 whereas
only the default n = 50 was used here. Also observe that the RMSE we just obtained is better
than half of the one we reported “alcray” in the Monte Carlo experiment.

Determining if this reduction is statistically significant would require incorporating it into
the Monte Carlo. We encourage the reader to test that off-line, if so inclined, and permit us
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and simply conclude here that it can be beneficial to perform a cursory global analysis with a
separable correlation function to determine if the inputs should be scaled before performing
a local (isotropic) analysis on the full data set.

3.3. Motorcycle data

For a simple illustration of heteroskedastic local GP modeling, consider the motorcycle ac-
cident data (Silverman 1985), simulating the acceleration of the head of a motorcycle rider
as a function of time in the first moments after an impact. It can be found in the MASS
package for R. For comparison, we first fit a simple GP model to the full data set (N = 133),
estimating both lengthscale θ and nugget η.

R> library(MASS)

R> d <- darg(NULL, mcycle[,1,drop=FALSE])

R> g <- garg(list(mle=TRUE), mcycle[,2])

R> motogp <- newGP(mcycle[,1,drop=FALSE], mcycle[,2], d=d$start,

+ g=g$start, dK=TRUE)

R> jmleGP(motogp, drange=c(d$min, d$max), grange=c(d$min, d$max),

+ dab=d$ab, gab=g$ab)

d g tot.its dits gits

1 54.28291 0.2771448 82 26 56

Now consider the predictive equations derived from that full-data, alongisde a local approxi-
mate alternative (via ALC) with a local neighborhood size of n = 30.

R> XX <- matrix(seq(min(mcycle[,1]), max(mcycle[,1]), length=100), ncol=1)

R> motogp.p <- predGP(motogp, XX=XX, lite=TRUE)

R> motoagp <- aGP(mcycle[,1,drop=FALSE], mcycle[,2], XX, end=30,

+ d=d, g=g, verb=0)

Figure 10 shows the predictive surfaces obtained for the two predictors in terms of means
and 90% credible intervals. The (full) GP mean surface, shown as solid-black, is smooth and
tracks the center of the data nicely from left to right over the range of x-values. However, it is
poor at capturing the heteroskedastic nature of the noise (dashed-black). The local GP mean
is similar, except near x = 35 where it is not smooth. This is due to the small design. With
only N = 132 there isn’t much opportunity for smooth transition as the local predictor tracks
across the input space, leaving little wiggle room to make a trade-off between smoothness
(n = 132, reproducing the full GP results exactly) and adaptivitity (n� 132). Although the
mean of the local GP may disappoint, the variance offers an improvement over the full GP. It
is conservative where the response is wiggly, being similar to the full GP but slightly wider,
and narrower where the response is flat.

It is interesting to explore how the local GP approximation would fare on a larger version of
the same problem, where otherwise a local approach is not only essential for computational
reasons, but also potentially more appropriate from a nonstationary modeling perspective on
this data. For a crude simulation of a larger data setup we replicated the data ten times with
a little bit of noise on the inputs.
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R> plot(mcycle, cex=0.5, main="motorcycle data")

R> lines(XX, motogp.p$mean, lwd=2)

R> q1 <- qnorm(0.05, mean=motogp.p$mean, sd=sqrt(motogp.p$s2))

R> q2 <- qnorm(0.95, mean=motogp.p$mean, sd=sqrt(motogp.p$s2))

R> lines(XX, q1, lty=2, lwd=2)

R> lines(XX, q2, lty=2, lwd=2)

R> lines(XX, motoagp$mean, col=2, lwd=2)

R> q1 <- qnorm(0.05, mean=motoagp$mean, sd=sqrt(motoagp$var))

R> q2 <- qnorm(0.95, mean=motoagp$mean, sd=sqrt(motoagp$var))

R> lines(XX, q1, lty=2, col=2, lwd=2)

R> lines(XX, q2, lty=2, col=2, lwd=2)
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Figure 10: Comparison of a global GP predictive surface (black) with a local one (red).
Predictive means (solid) and 90% interval (dashed) shown.

R> X <- matrix(rep(mcycle[,1], 10), ncol=1)

R> X <- X + rnorm(nrow(X), sd=1)

R> Z <- rep(mcycle[,2], 10)

R> motoagp2 <- aGP(X, Z, XX, end=30, d=d, g=g, verb=0)

Figure 11 shows the resulting predictive surface. Notice how it does a much better job of
tracing predictive uncertainty across the input space. The predictive mean is still overly
wiggly, but it does appear to be reasonably smooth also reveals structure in the data that
may not have been evident from the scatter-plot alone, and likewise is disguised (or overly
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R> plot(X, Z, main="simulating a larger data setup", xlab="times", ylab="accel")

R> lines(XX, motoagp2$mean, col=2, lwd=2)

R> q1 <- qnorm(0.05, mean=motoagp2$mean, sd=sqrt(motoagp2$var))

R> q2 <- qnorm(0.95, mean=motoagp2$mean, sd=sqrt(motoagp2$var))

R> lines(XX, q1, col=2, lty=2, lwd=2)

R> lines(XX, q2, col=2, lty=2, lwd=2)
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Figure 11: Predictive surface obtained after combining ten replications of the data with
jittered x-values.

smoothed) by the full GP fit. The local GP is picking up oscillations for larger input values
which make sense considering the output is measuring a whiplash effect. However, that may
simply be wishful thinking; the replicated response values paired with the jittered predictors
may not be representative of what would have been observed in a larger simulation.

4. Calibration

Computer model calibration is the enterprise of matching a simulation engine with real, or
field, data to ultimately build an accurate predictor for the real process at novel inputs. In
the case of large computer simulations, calibration represents a capstone application uniquely
blending (and allowing review of) features, for both large and small-scale spatial modeling
via GPs, provided by the laGP package.

Kennedy and O’Hagan (2001) were the first to propose a statistical framework for combining
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simulation output and noisy field observations for model calibration. Their hierarchical model
links field measurements to potentially biased computer simulations. It is paired with a
Bayesian inferential framework for jointly estimating, using data from both processes, the bias,
noise level, and any parameters required to run the computer simulation—so-called calibration
parameter(s)—but which cannot be controlled or observed in the field. The setup, which we
review below, has many attractive features, however it scales poorly when simulations get
large. We explain how Gramacy, Bingham, Holloway, Grosskopf, Kuranz, Rutter, Trantham,
and Drake (2014a) modified that setup using laGP and provide a live demonstration via an
example extracted from that paper.

4.1. A hierarchical model for Bayesian inference

Consider data comprised of runs of a computer model M at a large space-filling design, and
a much smaller number observations from a physical or field experiment F which follows a
design that respects limitations of the experimental apparatus. It is typical to assume that
the runs of M are deterministic, and that its input space fully contains that of F . Use x to
denote design variables, that can be adjusted, or at leased measured, in the physical system;
and let u to denote calibration or tuning parameters, whose values are required to simulate
the system, but are unknown in the field. The primary goal is to predict the result of new
field data experiments, via M , which in turn means finding a good u.

Toward that goal, Kennedy and O’Hagan (2001, hereafter KOH) proposed the following
coupling of M and F . Let yFj (x) denote the jth replication of the field “run” at x, and

yM (x, u) denote the (deterministic) output of a computer model run. KOH represent the real
mean process R as the computer model output at the best setting of the tuning parameters,
u∗, plus a bias term acknowledging that there can be systematic discrepancies between the
computer model and the underlying mean of the physical process. In symbols, the mean of
the physical process is yR(x) = yM (x, u∗) + b(x). The field observations connect reality with
data:

yFj (x) = yR(x) + εxj , εxj
iid∼ N (0, σ2ε), j = 1, . . . , nx.

giving yFj (x) = yM (x, u∗) + b(x) + εxj , (9)

The unknown parameters are u∗, σ2ε , and the discrepency or bias b(·).
If evaluating the computer model is fast, then inference can proceed via residuals yFj (x) −
yM (x, u), which can be computed at will for any (x, u) (Higdon, Kennedy, Cavendish, Cafeo,
and Ryne 2004). However, yM simulations are usually time consuming, in which case it helps
to build an emulator ŷM (·, ·) fit to code outputs obtained on a computer experiment design
of NM locations (x, u). KOH recommend a GP prior for yM , however rather learn ŷM in
isolation, using just the NM runs, as we have been doing throughout this document, they
recommend inference joint with b(·), u, and σ2ε using both field observations and runs of the
computer model. From a Bayesian perspective this is the coherent thing to do: infer all
unknowns jointly given all data.

This is a practical approach when the computer model is very slow, giving small NM . In
that setup, the field data can be informative for emulation of yM (·, ·), especially when the
bias b(·) is very small or easy to estimate. Generally however, the computation required for
inference in this setup is fraught with challenges, especially in the fully Bayesian formulation



Robert B. Gramacy 29

recommended by KOH. The coupled b(·) and yM (·, ·) lead to parameter identification and
MCMC mixing issues. And GP regression, taking a substantial computational toll when
deployed in isolation, faces a compounded burden when coupled with other processes.

4.2. Calibration as optimization

Gramacy et˜al. (2014a) proposed a thriftier approach pairing local approximate GP models
for emulation with a modularized calibration framework (Liu, Bayarri, and Berger 2009) and
derivative free optimization (Conn, Scheinberg, and Vicente. 2009). Modularized calibration
sounds fancy, but its really just back-to-basics: fitting the emulator ŷM (·, ·) separately or
independently from the bias, using only the outputs of runs at a design of NM inputs (x, u).
Liu et˜al.’s justification for modularization stemmed from a “contamination” concern echoed
by other researchers (e.g., Joseph 2006; Santner et˜al. 2003) where, in the fully Bayesian
scheme, joint inference allows “pristine” field observations to be contaminated by an imperfect
computer model.

Gramacy et˜al. motivate modularization from a more practical perspective, that of de-
coupling inference for computational tractability in large NM settings. They argue that there
is little harm in doing so for most modern calibration applications, in terms of the quality
of estimates obtained irrespective of computational considerations. Due to the relative costs,
the number of computer model runs involved increasingly dwarfs the data available from the
field, i.e., NM � NF , making it unlikely that field data would substantively enhance the
quality of the emulator, leaving only risk that joint inference with the bias will obfuscate
traditional computer model diagnostics, and possibly stunt their subsequent re-development
or refinement.

Combining modularization with local approximate GPs for emulation, and full GP regressions
(with nugget η) for estimating bias-plus-noise from a relatively small number of field data
observations, NF , Gramacy et˜al. recommend viewing calibration as an optimization which
acts as the glue that “sticks it all together”. Algorithm 1 provides pseudocode comprised

Require: Calibration parameter u, fidelity parameter nM , computer data DM
NM

,

and field data DF
NF

.
1: for j = 1, . . . , NF do
2: I ← laGP(xFj , u | nM , DM

NM
) {get indicies of local design}

3: θ̂ ← mleGP(DM
NM

[I]) {local MLE of correlation parameter(s)}
4: y

M |u
j ← muGP(xFj | DM

NM
[I], θ̂) {predictive mean emulation following Eq.˜(3)}

5: end for
6: b̂NF ← Y F

NF
− YM |u {vectorized bias calculation}

7: Db̂
NF
← (b̂NF , X

F
NF

) {create data for estimating b̂(·)|µ}
8: θ̂ ← mleGP(Db̂

NF
) {full GP estimate of b̂|u}

9: return predGP(Y F
NM
|XNM , θ̂) {multivariate Student-t density generalizing (3)}

Algorithm 1: Objective function evaluation for modularized local GP calibration.

library functions describing the objective function. In laGP, this objective is implemented as
fcalib, comprising of first (steps 1–5) a call to aGP.seq to emulate on a schedule of sequential
stages of local refinements [Figure 7]; and then (6–8) a call to discrep.est which estimates the
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GP discrepancy or bias term. The notation used in the psuedo-code, and further explanation,
is provided below.

Let the field data be denoted as DF
NF

= (XF
NF
, Y F

NF
) where XF

NF
is the design matrix of NF

field data inputs, paired with a NF vector of yF observations Y F
NF

. Similarly, let DM
NM

=

([XM
NM

, UNM ], YM
NM

) be the NM computer model input-output combinations with column-

combined x- and u-design(s) and yM -outputs. Then, with an emulator ŷM (·, u) trained on

DM
NM

, let Ŷ
M |u
NF

= ŷM (XF
NF
, u) denote a vector of NF emulated output y-values at the XF

locations obtained under a setting, u, of the calibration parameter. With local approximate

GP modeling, each ŷ
M |u
j -value therein, for j = 1, . . . , NF , can be obtained independently (and

in parallel) with the others via local sub-design XnM (xFj , u) ⊂ [XM
NM

, UNM ] and local inference
for the correlation structure. A key advantage of this approach, which makes laGP methods
well-suited to the task, is that emulation is performed only where it is needed, at a small
number NF of locations XF

NF
, regardless of the size NM of the computer model data. The

size of the local sub-design, nM , is a fidelity parameter, meaning that larger values provide
more accurate emulation at greater computational expense. Finally, denote the NF -vector of

fitted discrepancies as b̂NF = Y F
NF
− ŶM |u

NF
. Given these quantities, the objective function for

calibration of u, coded in Algorithm 1, is the (log) joint probability density of observing Y F
NF

at inputs XF
NF

. Since NF is small, this can be obtained from a best-fitting GP regression

model trained on data Db̂
NF

= (b̂NF , X
F
NF

), representing the bias estimate b̂(·).

Objective function in hand, we turn to optimizing. The discrete nature of independent local
design searches for ŷM (xFj , u) ensures that the objective is not continuous in u. It can look
‘noisy’, although it is in fact deterministic. This means that optimization with derivatives—
even numerically approximated ones—is fraught with challenges. Gramacy et˜al. suggest a
derivative-free approach via the mesh adaptive direct search (MADS) algorithm (Audet and
Dennis, Jr. 2006) known as NOMAD (Le˜Digabel 2011). The authors of the crs package
(Racine and Nie 2012) provide snomadr, an R wrapper to the underlying C++ NOMAD
implementation. MADS/NOMAD proceeds by successive pairs of search and poll steps, trying
inputs to the objective function on a sequence of meshes which are refined in such a way as
to guarantee convergence to a local optima under very weak regularity conditions; for more
details see Audet and Dennis, Jr. (2006).

As MADS is a local solver, NOMAD requires initialization. Gramacy et˜al. recommend
choosing starting u-values from the best value(s) of the objective found on a small random
space-filling design. We note here that although laGP provides functions like fcalib, aGP.seq
and discrep.est to facilitate calibration via optimization, there is no single subroutine au-
tomating the combination of all elements: selection of initial search point, executing search,
and finally utilizing the solution to make novel predictions in the field. The illustrative exam-
ple below in Section 4.3 is intended to double as a skeleton for novel application. It involves a
snomadr call with objective fcalib, after pre-processing to find an initial u-value via simple
iterative search over fcalib calls. Then, after optimization returns an optimal u∗ value, the
example demonstrates how estimates of b̂(x) and ŷM (x, u∗) can be obtained by retracing steps
in Algorithm 1 to extract a local design and correlation parameter (via aGP.seq), parallelized

for many x. Finally, using saved Db̂
NF

and θ̂ from the optimization, or quickly re-computing
them via discrep.est, it builds a predictor for the field at new x locations. Emulations and
biases are thus combined into distribution for the yF (x)|u∗, a sum of Student-t random vari-
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ables for ŷM (x, u) and b̂(x) comprising yF (x)|u∗. However, if NF , nM ≥ 30 summing normals
suffices.

4.3. An illustrative example

Consider the following computer model test function used by Goh, Bingham, Holloway,
Grosskopf, Kuranz, and Rutter (2013), which is an elaboration of one first described by
Bastos and O’Hagan (2009).

R> M <- function(x,u)

+ {

+ x <- as.matrix(x)

+ u <- as.matrix(u)

+ out <- (1-exp(-1/(2*x[,2])))

+ out <- out * (1000*u[,1]*x[,1]^3+1900*x[,1]^2+2092*x[,1]+60)

+ out <- out / (100*u[,2]*x[,1]^3+500*x[,1]^2+4*x[,1]+20)

+ return(out)

+ }

Goh et˜al. paired this with the following discrepancy function to simulate real data under a
process like (9).

R> bias <- function(x)

+ {

+ x<-as.matrix(x)

+ out<- 2*(10*x[,1]^2+4*x[,2]^2) / (50*x[,1]*x[,2]+10)

+ return(out)

+ }

Data coming from the “real” process is simulated under a true (but unknown) u-value, and
then augmented with bias and noise processes as follows.

R> library(tgp) ## for lhs sampling in non-unit rectangle

R> rect <- matrix(rep(0:1, 4), ncol=2, byrow=2)

R> ny <- 50

R> X <- lhs(ny, rect[1:2,])

R> u <- c(0.2, 0.1)

R> Zu <- M(X, matrix(u, nrow=1))

R> sd <- 0.5

R> ## Y <- computer output + bias + noise

R> reps <- 2

R> Y <- rep(Zu,reps) + rep(bias(X),reps) + rnorm(reps*length(Zu), sd=sd)

The code uses Y denote field data observations Y F
NF

with NM =˜ny˜=˜50, which stores two

replicates at each XF
NF

= X location. Gramacy et˜al. (2014a) illustrated this example with
ten replicates. We keep it smaller here for faster execution in live demonstration.

The computer model runs are generated as follows



32 laGP: Local Approximate Gaussian Processes

R> nz <- 10000

R> XU <- lhs(nz, rect)

R> XU2 <- matrix(NA, nrow=10*ny, ncol=4)

R> for(i in 1:10) {

+ I <- ((i-1)*ny+1):(ny*i)

+ XU2[I,1:2] <- X

+ }

R> XU2[,3:4] <- lhs(10*ny, rect[3:4,])

R> XU <- rbind(XU, XU2)

R> Z <- M(XU[,1:2], XU[,3:4])

Observe that the design XM
NM

=˜XU is a large LHS in four dimensions, i.e., over design and
calibration parameters jointly, augmented with ten-fold replicated field design inputs paired
with LHS u-values. This recognizes that it is sensible to run the computer model at inputs
where field runs have been observed. Z is used to denote YM

NM
.

The following block sets priors and specifies details of the model(s) to be estimated.

R> bias.est <- TRUE

R> methods <- rep("alc", 2)

R> da <- d <- darg(NULL, XU)

R> g <- garg(list(mle=TRUE), Y)

Changing bias.est = FALSE will cause estimation of bias b̂(·) to be skipped, and instead
only the level of noise between computer model and field data is estimated. The methods

vector specifies the nature of search and number of passes through the data for local design
and inference. Finally da, d and g contain default priors for the lengthscale of the computer
model emulator, the and the bias parameters respectively. The prior is completed with a (log)
prior density on the calibration parameter, u, which we choose to be independent Beta with
a mode in the middle of the space.

R> beta.prior <- function(u, a=2, b=2, log=TRUE)

+ {

+ if(length(a) == 1) a <- rep(a, length(u))

+ else if(length(a) != length(u)) stop("length(a) must be 1 or length(u)")

+ if(length(b) == 1) b <- rep(b, length(u))

+ else if(length(b) != length(u)) stop("length(b) must be 1 or length(u)")

+ if(log) return(sum(dbeta(u, a, b, log=TRUE)))

+ else return(prod(dbeta(u, a, b, log=FALSE)))

+ }

Now we are ready to evaluate the objective function on a “grid” to search for a good initial-
ization for a more penetrating search by NOMAD. The following code builds the “grid” via a
space-filling design on a slightly smaller domain than the input space allows. Experience sug-
gests that initializing too close to the boundary of the input space leads to poor performance
in NOMAD searches.

R> initsize <- 10*ncol(X)

R> imesh <- 0.1
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R> irect <- rect[1:2,]

R> irect[,1] <- irect[,1] + imesh/2

R> irect[,2] <- irect[,2] - imesh/2

R> uinit.cand <- lhs(10*initsize, irect)

R> uinit <- dopt.gp(initsize, Xcand=lhs(10*initsize, irect))$XX

R> llinit <- rep(NA, nrow(uinit))

R> for(i in 1:nrow(uinit)) {

+ llinit[i] <- fcalib(uinit[i,], XU, Z, X, Y, da, d, g, beta.prior,

+ methods, M, bias.est, nth, verb=0)

+ }

By default, fcalib echoes the input and calculated objective value (log likelihood or posterior
probability) to the screen. This can be useful for tracking progress for an optimization,
say via NOMAD, however we suppress this prevent clutter. The fcalib function has an
argument called save.global which (when not FALSE) causes the information which would
be printed to the screen to be saved in a global variable called fcalib.save in the environment
indicated (e.g., save.global = .GlobalEnv), which can be useful for visualization once the
optimization has completed. That flag isn’t engaged above, since the required quantities,
uinit and llinit respectively, are already in hand. We will, however, utilize this feature
below as snomadr does not provide an alternative mechanism for saving progress information
for later inspection.

The next code chunk loads the crs library which contains snomadr, the R interface to NOMAD,
and then creates a list of options that are passed to NOMAD via snomadr.

R> library(crs)

R> opts <- list("MAX_BB_EVAL"=1000, "INITIAL_MESH_SIZE"=imesh,

+ "MIN_POLL_SIZE"="r0.001", "DISPLAY_DEGREE"=0)

We have found that these options work well when the input space is scaled to the unit cube.
They are derived from defaults recommended in the NOMAD documentation.

Now we are ready to invoke snomadr on the best input(s) found on grid established above.
The code below orders those inputs by their objective value, and then loops over them until a
minimum number of NOMAD iterations has been reached. Usually, this threshold results in
just one pass through the while loop, however it offers some robustness in the face of occa-
sional pre-mature convergence. In practice it may be sensible to perform a more exhaustive
search if computational resources are abundant.

R> its <- 0

R> o <- order(llinit)

R> i <- 1

R> out <- NULL

R> while(its < 10) {

+ outi <- snomadr(fcalib, 2, c(0,0), 0, x0=uinit[o[i],],

+ lb=c(0,0), ub=c(1,1), opts=opts, XU=XU,

+ Z=Z, X=X, Y=Y, da=da, d=d, g=g, methods=methods, M=M,

+ bias=bias.est, omp.threads=nth, uprior=beta.prior,

+ save.global=.GlobalEnv, verb=0)
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+ its <- its + outi$iterations

+ if(is.null(out) || outi$objective < out$objective) out <- outi

+ i <- i + 1;

+ }

iterations: 11

time: 106

From the two major chunks of code above, we collect evaluations of fcalib, combining a
space-filling set of u-values and onces placed along stencils in search of the u-value which
maximizes the likelihood (or posterior probability). In this 2-d problem, that’s enough to get
good resolution on the log likelihood/posterior surface in u. The code below discards any
input pairs that are not finite. Infinite values result when NOMAD tries input settings that
lie exactly on the bounding box.

R> Xp <- rbind(uinit, as.matrix(fcalib.save[,1:2]))

R> Zp <- c(-llinit, fcalib.save[,3])

R> wi <- which(!is.finite(Zp))

R> if(length(wi) > 0) { Xp <- Xp[-wi,]; Zp <- Zp[-wi]}

R> surf <- interp(Xp[,1], Xp[,2], Zp, duplicate="mean")

Figure 12 shows an image plot of the surface, with lighter- colored values indicating a larger
value of likelihood/posterior probability. The initialization points (open circles), evaluations
along the NOMAD search (black dots), and the ultimate value found in optimization (green
dot) are also shown.

Observe, by comparing to the true u-value (cross-hairs), that the u.hat value we found is far
from the value that generated the data. In fact, while the surface is fairly peaked around the
best u.hat-value that we found, it gives very little support to the true value. Since there are
were far fewer evaluations made near the true value, it is worth checking if the solver missed
an area of high likelihood/probability.

R> Xu <- cbind(X, matrix(rep(u, ny), ncol=2, byrow=TRUE))

R> Mhat.u <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

R> cmle.u <- discrep.est(X, Y, Mhat.u$mean, d, g, bias.est, FALSE)

R> cmle.u$ll <- cmle.u$ll + beta.prior(u)

Comparing log likelihood/posterior probabilities yields:

R> data.frame(u.hat=-outi$objective, u=cmle.u$ll)

u.hat u

1 -130.6817 -134.7703

Well that’s reassuring in some ways—the optimization part is performing well—but not in
others. Perhaps modeling apparatus introduces some identification issues that prevent recov-
ering the data-generating u-value by maximizing likelihood/posterior probability.

Before searching for an explanation, lets check predictive accuracy in the field on a holdout
set, again pitting the true u-value against our u.hat. We first create a random testing design
and set aside the true predicted values on those inputs for later comparison.
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R> image(surf, xlab="u1", ylab="u2", main="posterior surface",

+ col=heat.colors(128), xlim=c(0,1), ylim=c(0,1))

R> points(uinit)

R> points(fcalib.save[,1:2], col=3, pch=18)

R> u.hat <- outi$solution

R> points(u.hat[1], u.hat[2], col=4, pch=18)

R> abline(v=u[2], lty=2)

R> abline(h=u[1], lty=2)
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Figure 12: A view of the log likelihood/posterior surface as a function of the calibration
inputs, with the optimal u.hat value (green dot), the initial grid (open circles) and points of
evaluation along the NOMAD search (black dots), and the true u-value (cross-hairs) shown.

R> nny <- 1000

R> XX <- lhs(nny, rect[1:2,],)

R> ZZu <- M(XX, matrix(u, nrow=1))

R> YYtrue <- ZZu + bias(XX)

Now we can calculate an out-of-sample RMSE value, first based on the true u-value.

R> XXu <- cbind(XX, matrix(rep(u, nny), ncol=2, byrow=TRUE))

R> Mhat.oos.u <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2,

+ omp.threads=nth, verb=0)

R> YYm.pred.u <- predGP(cmle.u$gp, XX)

R> YY.pred.u <- YYm.pred.u$mean + Mhat.oos.u$mean
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R> rmse.u <- sqrt(mean((YY.pred.u - YYtrue)^2))

R> deleteGP(cmle.u$gp)

Turning to an RMSE calculation using the estimated u.hat value, we must re-build some key
objects under that value as those objects are not returned to us via either fcalib or snomadr.

R> Xu <- cbind(X, matrix(rep(u.hat, ny), ncol=2, byrow=TRUE))

R> Mhat <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

R> cmle <- discrep.est(X, Y, Mhat$mean, d, g, bias.est, FALSE)

R> cmle$ll <- cmle$ll + beta.prior(u.hat)

As a sanity check, it is nice to see that the value of the log likelihood/posterior probability
matches with the one we obtained from snomadr:

R> print(c(cmle$ll, -outi$objective))

[1] -130.6817 -130.6817

Now we can repeat what we did with the true u-value with our estimated one u.hat.

R> XXu <- cbind(XX, matrix(rep(u.hat, nny), ncol=2, byrow=TRUE))

R> Mhat.oos <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2, omp.threads=nth, verb=0)

R> YYm.pred <- predGP(cmle$gp, XX)

R> YY.pred <- YYm.pred$mean + Mhat.oos$mean

R> rmse <- sqrt(mean((YY.pred - YYtrue)^2))

Wrapping up the comparison, we obtain the following:

R> data.frame(u.hat=rmse, u=rmse.u)

u.hat u

1 0.1390981 0.1549145

Indeed, our estimated u.hat-value leads to better predictions of the field data out-of-sample.
Gramacy et˜al. (2014a) offer an explanation. The KOH model is, with GPs for emulation
and bias, overly flexible and consequently challenges identification of the unknown parame-
ters. Authors have commented on this before, including KOH to a limited extent. Interlocking
GP predictors (Bah and Joseph 2012) and the introduction of auxiliary inputs (Bornn, Shad-
dick, and Zidek 2012), of which the u-values are an example, have recently been proposed
as deliberate mechanisms for handling non-stationary features in response surface models,
particularly for computer experiments. The KOH framework combines both, and predates
those works by more than a decade, so in some sense the model being fit is leveraging tools
designed for flexibility in response surface modeling, possibly at the expense of being faithful
to the underlying meanings of parameters like u and bias processes b(·). In any event, we draw
comfort from evidence that the method yields accurate predictions, which in most calibration
applications is the primary aim.
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5. Ongoing development and extensions

The laGP package is under active development, and the corpus of code was developed with
ease of extension in mind. The calibration application from Section 4 is a perfect example:
simple functions tap into local GP emulators and full GP discrepancies alike, and are paired
with existing direct optimizing subroutines from other packages for a powerful solution to
large scale calibration problems that are becoming commonplace in the recent literature.

The library comprises of roughly fifty R functions, although barely a fraction of those are
elevated to the user’s namespace for use in a typical R session. Many of the inaccesi-
ble/undocumented functions have a purpose which, at this time, seem less directly useful
outside their calling environment, but may eventually be promoted. Many higher level func-
tions, like laGP and aGP which access C subroutines, have a development-analog (laGP.R and
aGP.R) which implement similar (usually with identical output, our a superset of output) sub-
routines entirely in R. These were used as stepping stones in the development of the C versions,
however they remain as a window into the inner-workings of the package and as a skeleton
for curious users development of new extensions. The local approximate GP methodology is,
in a nutshell, just a judicious combination of established subroutines from the recent spatial
statistics and computer experiments literature. We hope that exposing those combinations in
well-organized code will spur others to take a similar tack in developing their own solutions
in novel contexts.

As one example we provide a final illustration, here, of how some of the basic functionality
in the package—only utilizing full (non local) GP subroutines—was useful in solving hard
blackbox optimization problems under constraints. Gramacy, Gray, Le˜Digabel, Lee, Ran-
jan, Wells, and Wild (2014) showed how the augmented Lagrangian, an apparatus popular for
solving similar constrained optimization problems in the recent literature (see, e.g., Kannan
and Wild 2012), could be combined with the method of expected improvement (EI; Jones,
Schonlau, and Welch 1998) to solve a particular type of optimization where the objective was
known (and in particular was linear), but where the constraints required (potentially expen-
sive) simulation. Searching for an optimal valid setting of the inputs to the blackbox function
could be substantially complicated by a difficult-to-map constraint satisfaction boundary.

Consider the following objective and constraint function meeting that description.

R> blackbox <- function(x)

+ {

+ f <- sum(x)

+ c1 <- 1.5-x[1]-2*x[2]-0.5*sin(2*pi*(x[1]^2-2*x[2]))

+ c2 <- x[1]^2+x[2]^2-1.5

+ return(list(obj=f, c=c(c1,c2)))

+ }

The input space is two-dimensional, and the goal is to find a solution xstar in the bounding
box, B

R> B <- matrix(c(rep(0,2),rep(1,2)),ncol=2)

R> B

[,1] [,2]
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[1,] 0 1

[2,] 0 1

for which all(blackbox(xstar)$c <= 0, meeting the constraint, yet blackbox(xstar)$obj
minimized. There are three local minima which satisfy the constraints; for more details see
Gramacy et˜al. (2014).

The laGP package implements a hybrid EI–augmented Lagrangian method, which is described
in detail by the above reference, in the function optim.auglag.

R> out.aug <- optim.auglag(blackbox, B, ab=c(3/2,8), end=100, verb=0)

The output object contains information about the inputs that were sent to the blackbox for
evaluation, the corresponding outputs obtained in terms of objective and constraints, and
also tracks the best value of the objective with a valid input (i.e., the progress).

R> out.aug$prog[100]

[1] 0.6023861

R> valid <- apply(out.aug$C, 1, function(x) { all(x <= 0) })

R> m <- which.min(out.aug$obj[valid])

R> (out.aug$obj[valid])[m]

[1] 0.6023861

R> (out.aug$X[valid,])[m,]

[1] 0.2001098 0.4022763

The algorithm is initialized stochastically, and in 99% of restarts it finds the correct global
(valid) minimum (0.6) by the end of the budget of 100 blackbox evaluations. Inspecting the
code in optim.auglag reveals several useful GP-related functions provided in the package,
such as updateGP, rbetter, alGP.

By way of comparison, consider deploying the method of simulated annealing (SA; Kirk-
patrick, Gelatt, and Vecci 1983) as implemented by method="SANN" in the optim function
for R. The optim function only supports box constraints, so we cannot provide the blackbox

function directly. To convert a mixed objective and constraint function into a workable hybrid
objective, we deploy the additive penalty method (APM).

R> blackbox.apm <- function(x, B=matrix(c(rep(0,2),rep(1,2)),ncol=2))

+ {

+ ## check bounding box

+ for(i in 1:length(x)) {

+ if(x[i] < B[i,1] || x[i] > B[i,2]) return(Inf)

+ }

+
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+ ## evaluate objective and constraints

+ f <- sum(x)

+ c1 <- 1.5-x[1]-2*x[2]-0.5*sin(2*pi*(x[1]^2-2*x[2]))

+ c2 <- x[1]^2+x[2]^2-1.5

+

+ ## return APM composite

+ return(f + abs(c1) + abs(c2))

+ }

Now we are ready to optimize with SA.

R> out.sann <- optim(runif(2), blackbox.apm, method="SANN")

The solution returned is:

R> out.sann

$par

[1] 0.9973219 0.2453480

$value

[1] 1.712229

$counts

function gradient

10000 NA

$convergence

[1] 0

$message

NULL

Note that the final value typically does not satisfy the constraints as the search typically
approaches local optima from the invalid side of the boundary. If the final solution isn’t valid,
it is usually very close to the boundary.

R> blackbox(out.sann$par)

$obj

[1] 1.24267

$c

[1] 0.02440597 -0.44515341

The objective value found is near 0.6 only about 60% of the time in repeated random restarts
despite performing hundreds of blackbox evaluations.
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A. Custom compilation

Here we provide hints for enabling the parallelization hooks, via OpenMP for multi-core
machines and CUDA for graphics cards. The package also includes some wrapper functions,
like aGP.parallel, which allow a large predictive set to be divvied up amongst multiple nodes
in a cluster established via the parallel or snow packages.

A.1. With OpenMP for SMP parallelization

Several routines in the laGP package include support for parallelization on multi-core ma-
chines. The most important one is aGP which allows large prediction problems to be divvied
up and distributed across multiple threads to be run in parallel. The speedups are roughly
linear as long as the numbers of threads is less than or equal to the number of cores. This is
controlled through the omp.threads argument.

If R is compiled with OpenMP support enabled—which at the time of writing standard in most
builds—-then no special action is needed in order to extend that functionality to laGP. It will
just work. One way to check if this is the case on your machine is to provide an omp.threads

argument, say to aGP, which is bigger than one. If OpenMP support is not enabled then you
will get a warning. If you are working within a well-managed supercomputing facility, with a
custom R compilation, it is likely that R has been properly compiled with OpenMP support.
If not, perhaps it is worth requesting that it be re-compiled as there are many benefits to
doing so, beyond those which extend to the laGP package. For example, many linear algebra
intensive packages, of which laGP is one, benefit from liking to MKL libraries from Intel, in
addition to OpenMP.

In the case where you are using a standard R binary, it is still possible to compile laGP from
source with OpenMP features assuming your compiler (e.g., GCC) supports them. This is a
worthwhile step if you are working on a multi-core machine, which is rapidly becoming the
standard setup for desktops and laptops alike. For those with experience compiling R packages
from source, the procedure is quite straightforward and does not require compiling or installing
a bespoke version of R. Obtain the package source (e.g., from CRAN) and, before compiling,
open up the package and make two small edits to laGP/src/Makevars. These instructions
assume a GCC compiler. For other compilers, please consult documentation for appropriate
flags.

1. Replace $(SHLIB_OPENMP_CFLAGS) in the PKG_CFLAGS line with -fopenmp.

2. Replace $(SHLIB_OPENMP_CFLAGS) in the PKG_LIBS line with -lgomp

The laGP/src/Makevars file contains commented out lines which implement these changes.
Once made, simply install the package as usual, either doing “R CMD INSTALL” on the mod-
ified directory our, or after re-tarring it up. Note that for Apple machines as of Xcode v5, with
OSX Mavericks, the Clang compiler provided by Apple does not include OpenMP support.
We suggest downloading GCC v9 or later, for example from http://hpc.sourceforge.net,
and following the instructions therein.

If hyperthreading is enabled, then a good default for omp.threads is two-times the number of
cores. Choosing a omp.threads value which is greater than the max allowed by the OpenMP

http://hpc.sourceforge.net
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configuration on your machine leads to a notice being printed indicating that the max-value
will be used instead.

A.2. With NVIDIA CUDA GPU support

The package supports graphics card acceleration of a key subroutine: searching for the next
local design sight xj+1 over a potentially vast number of candidates XN \Xn(x)—Step 2(b)
in Figure 7. Custom complication is required to enable this feature, the details of which
are described here, and also requires a properly configured Nvidia Graphics card, drivers,
and compilation programs (e.g., the Nvidia CUDA compiler nvcc). Compiling and linking to
CUDA libraries can be highly archictecture and operating system specific, therefore the very
basic instructures here may not work widely. They have been tested on a varity of Unix-alikes
including Intel-based Ubuntu Linux and OSX systems.

First compule the alc_gpu.cu file into an object using the Nvidia CUDA compler. E.g., after
untarring the packge change into laGP/src and do

% nvcc -arch=sm_20 -c -Xcompiler -fPIC alc_gpu.cu -o alc_gpu.o

Alternatively, you can use/edit the “alc_gpu.o:” definition in the Makefile provided.

Then, make the following changes to laGP/src/Makevars, possibly augmenting changes made
above to accommodate OpenMP support, as described above. OpenMP (i.e., using multiple
CPU threads) brings out the best in our GPU implementation.

1. Add -D_GPU to the PKG_FLAGS

2. Add alc_gpu.o -L /software/cuda-5.0-el6-x86_64/lib64 -lcudart to the PKG_LIBS.
Please replace “/software/cuda-5.0-el6-x86_64/lib64” with the path to the CUDA
libs on your machine. CUDA 4.x has also been tested.

The laGP/src/Makvars file contains commented out lines which implement these changes.
Once made, simply install the package as usual. Alternatively, use make allgpu to via the
definitions in the Makefile to compile a standalone shared object.

The four functions in the package with GPU support are alcGP, laGP, aGP, and aGP.parallel.
The first two have a simple switch which allows a single search (Step 2(b)) to be off-loaded
to a single GPU. Both also support off-loading the same calculations to multiple cores in
a CPU, via OpenMP if enabled. The latter aGP variations control the GPU interface via
two arguments: num.gpus and gpu.threads. The former specifies how many GPUs you
wish to use, and indicating more you actually have will trip an error. The latter, which
defaults to gpu.threads = num.gpus, specifies how many CPU threads should be used to
queue GPU jobs. Having gpu.threads < num.gpus is an inefficient use of resources, whereas
gpu.threads > num.gpus, up to 2*num.gpus will give modest speedups. Having multiple
threads queue onto the same GPU reduces the amount of time the GPU is idle. OpenMP

support must be included in the package to have more than one GPU thread.

By default, omp.threads is set to zero when num.gpus > 1 since divvying the work amongst
GPU and CPU threads can present load balancing challenges. However, if you get the load
balancing right you can observe substantial speedups. Gramacy et˜al. (2014b) observe up
to 50% speedups, and recommend a scheme for allocating omp.threads=10 with a setting of
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nn.gpu that allocates about 90% of the work to GPUs (nn.gpu = floor(0.9*nrow(XX))) and
10% to the ten OpenMP threads. As with omp.threads, gpu.threads maxes out at the max-
imum number of threads indicated by your OpenMP configuration. Moreover, omp.threads
+ gpu.threads must not exceed that value. When that happens both are first thresholded
independently, then omp.threads may be further reduced to stay within the limit.
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