
Self- and Super-organising Maps in R:

the Kohonen Package

Ron Wehrens
Lutgarde M.C. Buydens

Institut for Molecules and Materials
Analytical Chemistry

Radboud University Nijmegen
Toernooiveld 1

6525 ED Nijmegen, Netherlands
E-mail: {r.wehrens, l.buydens}@science.ru.nl

URL: http://www.cac.science.ru.nl/

September 7, 2007

Abstract

In this age of ever-increasing data set sizes, especially in the natural
sciences, visualisation becomes more and more important. Self-organising
maps have many features that make them attractive in this respect: they
do not rely on distributional assumptions, can handle huge data sets with
ease, and have shown their worth in a large number of applications. In
this paper, we highlight the kohonen package for R, which implements
self-organising maps as well as some extensions for supervised pattern
recognition and data fusion. It is available from CRAN.

keywords: self-organising maps, visualisation, classification, clustering

1 Introduction

In many areas in science, the past decades have seen a shift towards high-
dimensional data. Exploratory analysis, where visualization plays a very
important role, has become more and more difficult, and there is a real
need for methods that provide meaningful mappings into two dimensions,
so that we can fully utilize the pattern recognition capabilities of our
own brains. There are many approaches, of which Principal Component
Analyis (PCA) [1] is probably the most-used. However, even PCA in
many cases would need more than two dimensions, and in its pure form
does not incorporate information on how objects should be compared.
Methods starting from distance or similarity matrices, in this respect, may
prove more useful. First of all, they are not bothered by large numbers of

1

variables, and second, by choosing the appropriate distance function, one
can concentrate on those aspects of the data that are most informative.

One approach to visualize a distance matrix in two dimensions is Multi-
Dimensional Scaling (MDS) and its many variants [2]. This technique aims
to find a configuration in two-dimensional space whose distance matrix in
some sense approaches the original distance matrix, calculated from the
high-dimensional data. The procedure may end up in a local optimum
and may have to be performed several times, which for larger numbers of
objects can be quite tedious. Moreover, there is no simple way to project
new objects into the same space.

Self-Organising Maps (SOMs) [3] aim at something similar as MDS,
but instead of trying to reproduce distances they aim at reproducing
topology, or in other words, try to keep the same neighbours. So if two
high-dimensional objects are very similar, then their position in a two-
dimensional plane should be very similar as well. Rather than mapping
objects in a continuous space, SOMs use a regular grid of “units” onto
which objects are mapped. The differences with MDS can be seen as
both strengths and weaknesses: where in a 2D MDS plot a distance –
also a large distance – can be directly interpreted as an “estimate” of the
true distance, in a SOM plot this is not the case: one can only say that
objects mapped to the same, or neighbouring, units are very similar. In
other words, SOMs concentrate on the largest similarities, whereas MDS
concentrates on the largest dissimilarities. Which of these is more useful
depends on the application.

SOMs have seen many diverse applications in a broad range of fields
(see [3] for some examples). This paper presents the kohonen package for
R, initially based on the class library by B.D. Ripley. It features SOMs
and two extensions that make it possible to use SOMs for classification and
regression purposes, and for data mining. The package features extensive
graphics to provide what is for us the most basic function of SOMs, namely
visualization and information packaging. The next section gives some
background on SOMs; next, the kohonen package is described in some
detail. We conclude with some plans for the near future.

2 Theory

In a sense, SOMs can be thought of as a spatially constrained form of
k-means clustering [4]. The number of clusters is defined by the size of
the grid, that typically is arranged in a rectangular or hexagonal fashion.
Indeed, one of the training strategies for SOMs (the “batch” algorithm)
is very similar to k-means. One starts by assigning a so-called codebook
vector to every unit, that will play the role of a typical pattern associated
with that unit. Usually, one randomly assigns a subset of the data to the
map units. During training, objects are repeatedly presented – in random
order – to the map. The “winning unit”, i.e., the one most similar to
the current training object, will be updated to become even more similar;
a weighted average is used, where the weight of the new object is one
of the training parameters of the SOM. Also referred to as the learning
rate α, it typically is a small value in the order of 0.05. During training,

2

this value decreases so that the map converges. The spatial constraint
mentioned before lies in the fact that SOMs require clusters that are close
to be similar. This is achieved by not only updating the winning unit,
but also the units in the immediate neighbourhood of the winning unit.
The size of the neighbourhood decreases during training as well, so that
eventually (in our implementation after one-third of the iterations) only
the winning units are adapted. At that stage, the procedure is exactly
equal to k-means. The algorithm terminates after a predefined number of
iterations. More information can be found in [3].

The algorithm is very simple and allows for many subtle adapta-
tions. One can experiment with different distance measures, different
map topologies, different training parameters (learning rate and neigh-
bourhood), etcetera. Even with identical settings, repeated training of a
SOM will lead to sometimes even quite different mappings, because of the
random initialisation. However, in our experience the conclusions drawn
from the map remain remarkably consistent, which makes it a very useful
tool in many different circumstances. Nevertheless, it is always wise to
train several maps before jumping to conclusions.

The classical description of SOMs given above focusses on unsuper-
vised exploratory analysis. However, SOMs can be used as supervised
pattern recognizers, too. This means that additional information, e.g.
class information, is available that can be modelled as a dependent vari-
able for which predictions can be obtained. The oldest and simplest ap-
proach is to assess the extra information only after the training phase; if
a continuous variable is being predicted, the mean of all objects mapped
to a specific unit can be seen as the estimate for that unit. In case of
a class variable, a winner-takes-all strategy is often obtained. Note that
in this approach – sometimes called a Couter-Propagation Network – the
dependent variable does not influence the mapping.

Another strategy, already suggested in [3], is to perform SOM training
on the concatenation of the X and Y matrices. Although this works in
the more simple cases, it can be hard to find a suitable scaling so that
X and Y both contribute to the similarities that are calculated. In [5],
we proposed a more flexible approach where distances in X- and Y -space
are calculated separately. Both are scaled so that the maximal distance
equals 1, and the overall distance is a weighted sum of both. The scaling
takes care of possible differences in units between X and Y . Training is
performed as usual; the winning unit and its neighbourhood are updated,
and during training the learning rate and the size of the neighbourhood
are decreased. The final result consists of two maps: one map for the X
variables, and one for the Y variables. For supervised SOMs, one extra
parameter, the weight for the X (or Y) space needs to be defined by the
user.

This principle can be extended to more layers as well; in that case we
refer to it as super-organised maps. For every layer a similarity value is
calculated, and all individual similarities then are combined into one value
that is used to determine the winning unit. The only extra parameters
that need to be defined by the user (compared to classical SOMs) are the
weights for the individual maps.

3

Table 1: Functions and data sets in the kohonen package, version 2.0.0

Function name Short description
som standard SOM
xyf supervised SOM: two parallel maps
bdk supervised SOM: two parallel maps (alternative formulation)
supersom SOM with multiple parallel maps
plot.kohonen generic plotting function
summary.kohonen generic summary function
map.kohonen map data to the most similar unit
predict.kohonen generic function to predict properties
wines wine data: a 177-by-13 matrix
nir NIR spectra of 95 ternary mixtures
yeast microarray data of the yeast cell cycle

3 The kohonen package for R

The R package kohonen aims to provide simple-to-use functions for self-
organising maps and the above-mentioned extensions, with specific em-
phasis on visualisation. The basic functions are som, for the usual form
of self-organising maps; xyf, for supervised self-organising maps, or X-Y
fused maps, useful when additional information in the form of, e.g., a
class variable is available for all objects – and an alternative formulation
called bi-directional Kohonen maps (function bdk); and finally, from ver-
sion 2.0.0 on, the generalisation of the xyf maps to more than two layers
of information, in the function supersom. These functions can be used to
define the mapping of the objects in the training set to the units of the
map.

After the training phase, one can use several plotting functions for
the visualisation; the package can show where objects are mapped, has
several options for visualising the codebook vectors of the map units, and
provides means to assess the training progress. Summary functions exist
for all SOM types. Furthermore, one can easily project new data into
the trained map; this provides possibilities for property estimation. A
summary of the functions and data sets available in the package is given
in Table 1.

Several data sets are included in the kohonen package: the wine data
from the UCI Machine Learning repository (http://kdd.ics.uci.edu),
near-infrared spectra from ternary mixtures of ethanol, water and iso-
propanol, measured at different temperatures described in [6], and finally
a set of microarray data, the well-known yeast data from [7]. The wine
data set contains information on a set of 177 Italian wine samples from
three different grape cultivars; thirteen variables (such as concentrations
of alcohol and flavonoids, but also colour hue) have been measured. The
yeast data are a subset of the original set containing 6178 genes, that are
assumed to be related to the yeast cell cycle. The set contains 800 genes
for which, using six different synchronisation methods, time-dependent

4

expressions have been measured.
Below, we will elaborate on the different stages in an exploratory anal-

ysis using self-organising maps. We will use the data sets available in the
package, so that the reader can easily reproduce and extend these ex-
amples. The all-important visualisation possibilities of the package are
introduced along the way.

4 Creating the maps

The different types of self-organising maps can be obtained by calling
the functions som, xyf (or bdk), or supersom, with the appropriate data
representation as the first argument(s). Several other arguments provide
additional parameters, such as the map size, the number of iterations,
etcetera. The object that is returned can then be used for inspection,
plotting, mapping, and prediction.

4.1 Self-organising maps: function som

The standard form of self-organising maps is implemented in function som.
To map the 177-sample wine data set to a map of five-by-four hexagonally
oriented units, the following code can be used. First, we load the package
(from now on, we assume the package is loaded), and then the data, which
are subsequently autoscaled because of the widely different ranges (espe-
cially the proline concentration, variable 13, deviates). The fourteenth
variable is a class variable and is not used in the mapping; it will be used
later for visualisation purposes. To allow readers to exactly reproduce the
figures in this paper, we set a random seed, and then train the network.

> library(kohonen)

Loading required package: class

> data(wines)

> wines.sc <- scale(wines[, -14])

> set.seed(7)

> wine.som <- som(data = wines.sc, grid = somgrid(5, 4, "hexagonal"))

> plot(wine.som, main="Wine data") # default plot: codebook vectors

Finally, the result is shown in Figure 1: the codebook vectors are
visualised in a segments plot (the default plotting type). High alcohol
levels, for example, are associated with wine samples projected in the
bottom right corner of the map, while colour intensity is largest in the
bottom left corner. More plotting possibilities will be discussed below.

The som function has several parameters. Default values are available
for all of them, except the first, the data. Because the training parameters
appear in the other SOM functions as well, we mention them briefly below.

grid: the rectangular or hexagonal grid of units. The format is the one
returned by the function somgrid from the class package.

rlen: the numer of iterations, i.e. the number of times the data set will
be presented to the map. The default is 100;

5

alcohol
malic acid
ash
ash alkalinity
magnesium

phenols
flavonoids
non−flavonoid phenols
proanthocyanins
color intensity

color hue
od ratio
proline

Wine data

Figure 1: A plot of the codebook vectors of the 5-by-4 mapping of the wine
data.

alpha: the learning rate, determining the size of the adjustments during
training. The decrease is linear, and default values are to start from
0.05 and to stop at 0.01;

radius: the initial size of the neighbourhood, by default chosen in such a
way that two-thirds of all distances of the map units fall inside this
number. The size of the neighbourhood decreases linearly during
training; after one-third of the iterations only the winning unit is
being adapted and the algorithm corresponds to k-means.

init: optional matrix of codebook vectors. If it is not given, randomly
selected objects from the data are used. This feature can be useful
when re-training a map with new data.

toroidal: by default, FALSE. If TRUE, the edges of the map are not real
edges, and data are actually mapped to a torus. Put differently:
opposite map edges are joined together.

KeepData: default value equals TRUE. However, for large data sets it may
be too expensive to keep the data in the som object, and one may
set this parameter to FALSE.

The result of the training, the wine.som object, is a list. The most im-
portant element is the codes element, which contains the codebook vectors
as rows. Another element worth inspecting is changes, a vector indicating
the size of the adaptions to the codebook vectors during training. This
can be used to assess whether the number of iterations is sufficient.

6

NIR data: counts

1

2

3

4

5

6

7

Figure 2: Counts plot of the map obtained from the NIR data using xyf. Empty
units are depicted in gray.

4.2 Supervised mapping: the xyf function

Supervised mapping, where a dependent variable (categorical or continu-
ous) is available, is implemented in the xyf function of the kohonen pack-
age. An example using the NIR data included in the package is shown
below: for every ternary mixture, we have a near-infrared spectrum, as
well as concentrations of the three chemical compounds (summing to 1).
Moreover, every sample is measured at five different temperatures. The
aim in the example below is to model the water content (the second of the
three concentrations). Of the three chemicals, water has the largest effect
on the NIR spectra. We start by loading the data and attaching the data
frame so that objects spectra, composition and temperature become
directly available. Parameter xweight indicates how much importance is
given to X: here it is set to 0.5 (the same as Y), also the default value in
xyf.

> data(nir); attach(nir)

> set.seed(13)

> nir.xyf <- xyf(data = spectra,

+ Y = composition[,2],

+ xweight = 0.5,

+ grid = somgrid(6, 6, "hexagonal"))

> plot(nir.xyf, type = "counts", main = "NIR data: water content")

This leads to the output shown in Figure 2. The background color of
a unit corresponds to the number of samples mapped to that particular
unit; they are reasonably spread out over the map. Four of the units are
empty: no samples have been mapped to them.

An object generated by the xyf function has a few elements not found
in the unsupervised case. The most important difference is the codes

element, which itself now is a list containing the codebook vectors for
both the X and Y maps. In the example above, the codebook matrix for
Y only has one column (corresponding to the concentration of water). In

7

addition, the changes element is now a matrix rather than a vector, with
a column for both X and Y .

An alternative method, called Bi-Directional Kohonen mapping [5] has
been implemented in the bdk function; there, the meaning of the xweight

parameter is slightly different – consult the manual page for details. Since
the results are usually very similar to the ones obtained with the xyf

implementation we will focus for the remainder of the paper on xyf.
In case the dependent variable contains class information, we can

present that to the xyf function in the form of a class matrix, where every
column corresponds to a class, and where every object is represented by a
row of zeros and one “1”. The distance employed in such a case is the Tan-
imoto distance rather than the Euclidean distance. To convert between a
vector of class names and a class matrix, the functions classvec2classmat
and classmat2classvec are available. We could, e.g., train a map using
the NIR spectra with temperature as a class variable:

> set.seed(13)

> nir.xyf2 <- xyf(data = spectra,

+ Y = classvec2classmat(temperature),

+ xweight = .2, grid = somgrid(6, 6, "hexagonal"))

Note that in this case we put more emphasis on the Y variable to enforce
a spatial grouping of the different temperatures; for this data set it is
necessary to do that since the influence of temperature on the spectra is
only small.

Whether the dependent data should be seen as categorical or continu-
ous is governed by the input parameter contin. By default, this is FALSE
(indicating a categorical variable) when all row sums of Y equal 1; Y is
then seen as a classification matrix. Note that when we want to model
the concentrations of the three chemicals simultaneously, the Y matrix
also sums to 1. Obviously, this is not a classification problem, and we can
prevent the function from thinking it is by providing contin = TRUE.

We can add information to the plot by showing where every object
is mapped, e.g. by plotting a symbol or a label. For the NIR data, we
can make the symbol size dependent on the temperature at which the
sample has been measured. In the left plot of Figure 3, the locations of
the circles indicate the units onto which samples have been mapped –
thus indicating an estimation of the water content – and the circle radii
indicate measurement temperatures. The right plot shows the reverse
situation: there, the map has been trained to predict temperature. Thus,
the position of a circle says something about the expected temperature
at which that sample has been measured, and the water concentration is
indicated by the circle radius. This plot is obtained using the following
code (adapted from the manual page of the xyf function):

> water.predict <- predict(nir.xyf)$unit.prediction

> temp.xyf <- predict(nir.xyf2)$unit.prediction

> temp.predict <- as.numeric(classmat2classvec(temp.xyf))

> par(mfrow = c(1,2))

> plot(nir.xyf, type = "property", property = water.predict,

+ main="Prediction of water content", keepMargins = TRUE)

8

Prediction of water content

0.1

0.2

0.3

0.4

0.5

0.6

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

Prediction of temperatures

30

40

50

60

70

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●● ●● ●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

● ●● ●

● ●

Figure 3: Supervised SOMs for the NIR data. The left plot shows the mapping
of spectra when the XYF map has been trained with the water content as the
y-variable (colors of the units are associated with the color key); the radius of
the circles indicate the temperature at which spectra have been measured. The
right plot does the opposite: temperature is used as y-variable, and the radii of
the circles indicate water content. Here, the background colors of the units, and
the color key indicate the temperature.

> scatter <- matrix(rnorm(length(temperature)*2, sd=.1), ncol=2)

> radii <- (temperature - 20)/250

> symbols(nir.xyfnet$grid$pts[nir.xyfnet$unit.classif,] + scatter,

+ circles = radii, inches = FALSE, add = TRUE)

> plot(nir.xyf2, type = "property", property = temp.predict,

+ palette.name = rainbow, main="Prediction of temperatures")

> scatter <- matrix(rnorm(nrow(composition)*2, sd=.1), ncol=2)

> radii <- 0.05 + 0.4 * composition[,2]

> symbols(nir.xyf2$grid$pts[nir.xyf2$unit.classif,] + scatter,

+ circles = radii, inches = FALSE, add = TRUE)

The plot functions themselves use the property argument to give show
the unit predictions in a background colour; we have chosen a different
palette in the second plot to distinguish also graphically between the pre-
diction of a continuous variable in the left plot and a categorical variable
in the right plot. Circles are added using the symbols function. Their lo-
cation contains two components: first, the position of the unit onto which
a sample is mapped (contained in the unit.classif list element), and,
second, a random component within that unit. The keepMargins = TRUE

argument, which prevents the original graphical parameters from being
restored is needed here (the plotting functions may change margins, for
example, to accomodate all units in the figure and allow for a title or a
legend), since the circles need to be added to the correct position in the
figure. Another application of setting keepMargins = TRUE is to find out
the unit number by the combination of the identify function and clicking
the map.

9

X

30
40

50
60

70

Y

Figure 4: Plots of codebook vectors for the xyf mapping of IR spectra (X) and
temperature (Y).

The plots in Figure 3 show that the modelled parameter, indicated
with the background colors, indeed has a spatially smooth (or coherent)
distribution. Moreover, in the prediction of the water content (the left
plot in the figure), the samples are ordered in such a way that the low
temperatures (the small circles) are located close together, as are the
samples measured at high temperatures. In the right plot, this is even
more clear. Within one color (one measurement temperature), there is a
gradient of water concentrations.

In Figure 4 another use of the codebook vectors is shown.The R code
to generate these figures is quite simple:

> par(mfrow=c(1,2))

> plot(nir.xyf2, "codes")

For large numbers of variables, the default behaviour is to make a line plot
rather than a segment plot, which leads to the spectra-like patterns to the
left. By comparing the codebook vectors with Figure 3 we can immedi-
ately associate spectral features with water content. In the right plot, the
codebook vectors of the dependent variable (in this case the categorical
temperature variable) are shown. These can be directly interpreted as an
indication of how likely a given class is at a certain unit. Note that in
some cases, such as at the boundaries between the higher temperatures,
the classification of a unit is pretty uncertain.

4.3 Super-Organised Maps: data fusion with su-

persom

Instead of one set of independent variables and one set of dependent
variables, one may have several data types for every object. The super-
organised map introduced here accounts for individual data types by using
a separate layer for every type. Thus, when three types of spectroscopy
have been performed on a set of samples for which class information is

10

present as well, we could train a map using four layers. The first three
would be continuous, and the codebook vectors for these maps would
resemble spectra, and the fourth would be discrete where the codebook
vectors can be interpreted as class memberships. A weight is associated
to every layer to be able to define an overall distance of an object to a
unit. Again, this allows much more flexibility than just concatenating the
individual vectors corresponding to the different data entitites for every
sample.

We show an example, based on the well-known yeast cell-cycle data
by [7]. The mapping of these data, based on the four synchronisation
methods with the largest numbers of time points, is shown in Figure 5.
The yeast data set, included in the kohonen package, are already in the
correct form: a list where each element is a data matrix with one row
per gene. Note that the numbers of variables in the matrices need not be
equal. The R code to generate the plot is as follows:

> data(yeast)

> set.seed(7)

> yeast.supersom <- supersom(yeast, somgrid(8, 8, "hexagonal"),

+ whatmap = 3:6)

Warning message:

removing 45 NA objects from the training data

in: supersom(yeast, somgrid(8, 8, "hexagonal"), whatmap = 3:6)

> classes <- levels(yeast$class)

> colors <- c("yellow", "green", "blue", "red", "orange")

> par(mfrow=c(3,2))

> plot(yeast.supersom, type = "mapping",

+ pch = 1, main = "All", keepMargins = TRUE)

> for (i in seq(along=classes)) {

+ X.class <- lapply(yeast,

+ function(x) subset(x, yeast$class == classes[i]))

+ X.map <- map(yeast.supersom, X.class)

+ plot(yeast.supersom, type = "mapping", classif = X.map,

+ col=colors[i], pch=1, main=classes[i], keepMargins = TRUE)

+ }

The first and second elements of the yeast data, containing only two vari-
ables each, are not used in this mapping. This is indicated using the
whatmaps argument of the supersom function; an alternative to achieve
this is to explicitly define the weights for these entities as zero. The warn-
ing message indicates that for 45 genes, at least one of the elements in the
yeast list contains only missing values; these genes have been removed
from the data prior to training the superSOM. They are retained in the
data, however, and may be mapped later, where the missing information
will simply be ignored. The class labels, corresponding to five stages in the
cell cycle, and coloring in the figure are chosen to match that of [7]. The
five classes are concentrated at specific areas in the map, and the order
in the map (starting at the top right and traversing the map clockwise)
corresponds with the cell cycle.

Note that graphical parameters, notably the margin settings, particu-
lar for this figure, are still in effect. When making new plots, it is advisable

11

All

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
● ●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

● ●
●

●

●

●

●

●

● ●
●

● ●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

M/G1

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

● ●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●

●

●

●
●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

G1

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ● ●
●

●

●

●

●

● ●

● ●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●●●
●

●

●

●

●

●

●

●
●

S

●

●
●

●

●

●

●
●
●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●●

●●●

●

●

●

●●●

●

●

●

●

● ●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

● ●

● ●

●

G2

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●
●

● ●

●
●●

●
●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

M

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

● ●●● ●

●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

●
●

●

● ●●
● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

● ●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●●
●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

Figure 5: Mapping of the 800 genes in a eight-by-eight superSOM, based on
the alpha, cdc15, cdc28 and elu data (with equal weights for each of the four
layers). The top left plot shows the position of all 800 genes; the other plots
show the same mapping split up over the five cell-cycle stages.

12

to do this in another plot window, or to close this plot first by issuing

> graphics.off()

5 Inspecting the maps

5.1 Queries and summaries

Generic print and summary methods are available: the print.kohonen

function state the size of the map, the training method and whether or
not the training data have been included in the map object. If the data
are included, the summary.kohonen method provides information on the
data, as well as an indication of the mapping quality, as estimated by the
average distance of an object to its corresponding codebook vector. Of
course, the individual elements of the map objects can be inspected to
obtain more detailed information.

5.2 Plotting

Several plotting functions have already been shown in the examples above:
in particular, plotting types codes, counts, property and mapping. For
more examples and possibilities with these plotting types, consult the
manual pages of the package. One general plot showing the training
progress has not yet been mentioned. During training, the codebook vec-
tors are becoming more and more similar to the closest objects in the
data set. Visualisation of this process can be used to optimize training
parameters; for instance, it may appear that more iterations are needed
to obtain convergence. For every layer, one curve is shown: unsupervised
som objects lead to one curve, supervised xyf and bdk objects yield two
curves, and supersom objects can yield multiple curves. In the case of
more two curves, these are scaled individually so that the whole y-range
of the plot is used; a separate axis is shown on the right. Three examples,
based on the maps created above are shown in Figure 6. In all three cases,
one can see the effect of the neighbourhood shrinking to include only the
winning unit: this is the case after one-third of the iterations. After that
stage, the training is merely fine-tuning. The plots are obtained with the
following code:

> par(mfrow=c(1,3))

> plot(wine.som, type = "changes", main="Wine data: SOM")

> plot(nir.xyfnet, type = "changes", main = "NIR data: XYF")

> plot(yeast.supersom, type = "changes", main="Yeast data: SUPERSOM")

Many other plots can be made using these basic functions. Especially
the property plots are very versatile. One can think, e.g., of a “quality”
plot showing the average similarity of objects mapped to individual units,
for example.1

1In a previous version of the package, this indeed was a separate function.

13

0 20 40 60 80 100

0.
04

0
0.

04
5

0.
05

0
0.

05
5

Wine data: SOM

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t

0 20 40 60 80 100

0e
+

00
2e

−
04

4e
−

04

NIR data: XYF

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

X
Y

0 20 40 60 80 100

0.
01

0
0.

01
2

0.
01

4
0.

01
6

0.
01

8

Yeast data: SUPERSOM

Iteration

M
ea

n
di

st
an

ce
 to

 c
lo

se
st

 u
ni

t

alpha
cdc15
cdc28
elu

Figure 6: Training progress, as measured by the average distance of an object
with the closest codebook vector unit. Left plot: unsupervised mapping of the
wine data using som; middle plot: supervised mapping of the NIR data using
xyf; and right plot: super-organised mapping of the yeast data using supersom.

6 Extra topics

6.1 Mapping

Once a map is trained, we can use it to project new data using the
map.kohonen function. This function calculates (perhaps weighted) dis-
tances of the new data points to the codebook vectors and assigns the data
to the closest unit. It is used internally in the training phase when the data
are stored in the map object: the unit.classif list element mentioned
in relation to Figure 3. The function returns a list. The most important
elements are the unit.classif and distances elements; these contain
the indices of the winning units, and the distances to these winning units,
respectively.

The function provides an extra layer of flexibility: even when som and
xyf maps cannot be trained when missing values are present, they may
be present when mapping new data. In the case of more than one layer
(xyf and supersom) one can even tinker with the weights and the maps
involved; by default, these are equal to the training parameters, but one
can explicitly provide other values for the mapping phase. This makes it
possible, e.g., to assess which of the layers has the biggest influence on
the position of objects, or to try out “what if” scenarios quickly, without
having to repeat the training phase.

6.2 Prediction

The predict.kohonen function takes a trained map and a set of new ob-
jects, maps them to the corresponding winning units, and returns the
dependent variable associated with these units. For supervised maps (xyf
and bdk), this information is already stored in the map. For SOMs and
superSOMs, the user should provide data that can be used for calculating
the predictions per unit. If the training data are stored in the map, the
user only needs to provide the corresponding data for the dependent vari-
able (using the trainY argument); if no training data are stored, the user
should provide both trainX and trainY data. Examples are shown below

14

for the yeast data. The first mapping uses only the alpha synchronisation
element to predict cell cycle phase class.

> set.seed(7)

> training.indices <- sample(800, 400)

> training <- rep(FALSE, 800); training[training.indices] <- TRUE

> yeast.ssom1 <- supersom(lapply(yeast, function(x) x[training,,drop=FALSE]),

+ somgrid(4, 6, "hexagonal"),

+ whatmap = 3)

Warning message:

removing 6 NA objects from the training data

in: ...

> ssom1.predict <- predict(yeast.ssom1,

+ newdata = lapply(yeast,

+ function(x) subset(x, !training)),

+ trainY = subset(classvec2classmat(yeast[[7]]),

+ training))

> prediction1 <- factor(classmat2classvec(ssom1.predict$prediction),

+ levels=levels(yeast$class))

> confus1 <- table(subset(yeast$class, !training), prediction1)

> confus1

prediction1

M/G1 G1 S G2 M

M/G1 22 25 0 10 6

G1 10 127 1 6 0

S 0 10 5 11 1

G2 1 4 6 41 10

M 16 5 1 36 44

> sum(diag(confus1))

239

In total, 239 of the 400 genes in the test set have been classified correctly
on the basis of their alpha-synchronised expression profile. If we include
more information, we would expect this number to go up. Therefore, we
train a second map using three other synchronisation methods, cdc15,
cdc28 and elu, as well.

> yeast.ssom2 <- supersom(lapply(yeast, function(x) subset(x, training)),

+ somgrid(4, 6, "hexagonal"),

+ whatmap = 3:6)

Warning message:

removing 21 NA objects from the training data

in: ...

> ssom2.predict <- predict(yeast.ssom2,

+ newdata = lapply(yeast,

+ function(x) subset(x, !training)),

+ trainY = subset(classvec2classmat(yeast[[7]]),

+ training))

> prediction2 <- factor(classmat2classvec(ssom2.predict$prediction),

+ levels=levels(yeast$class))

> confus2 <- table(subset(yeast$class, !training), prediction2)

> confus2

15

prediction2

M/G1 G1 S G2 M

M/G1 24 22 0 0 17

G1 7 130 5 3 0

S 0 4 14 10 0

G2 0 3 7 38 14

M 1 1 0 9 91

> sum(diag(confus2))

297

Adding the extra three layers in the second mapping leads to 58 more
correctly classified genes, an improvement of fifteen percent points in error
rate. Especially the predictions for the classes M and S have improved.

6.3 Relations between different methods

The functions som and xyf can be seen as special versions of supersom, ap-
plied with a list containing one and two data matrices, respectively. The
som function, in particular, is mainly retained to keep compatibility with
previous versions of the package; it has the disadvantage that it can not
handle missing values, whereas supersom can. The xyf function, on the
other hand, has extra functionality compared to supersom: if the Y vari-
able is a class matrix (i.e., represents a categorical rather than continuous
variable), the Tanimoto distance is used instead of the Euclidean distance.
In our experience, this gives slightly better classification results. Again,
the xyf function has the disadvantage that it does not handle missing
values. Both xyf and som are, because of their greater simplicitly, slightly
faster than supersom although this will hardly be relevant in practical
applications.

7 To do

The package can (and hopefully will) be extended in several directions.
First of all, different similarity measures should be implemented for all
mapping types, such as the Tanimoto distance, correlation, or even spe-
cialised measures. An example is the weighted cross-correlation (WCC),
useful in cases where spectral features show random shifts. The latter
measure, in combination with SOMs, has been implemented in a sepa-
rate R package called wccsom [8], and has proved useful in mapping X-ray
powder diffractograms. For supersom, it should eventually be possible to
assign a useful distance measure to every layer in a map; thus, the need
for a separate xyf function would disappear as well.

When data sets and the corresponding maps are large, or the simi-
larity measure takes a lot of computation time (as in the WCC case),
training can be a time-consuming process. In such cases, it is worthwhile
to start training with a small map that increases in size, rather than a
large map where the size of the neighbourhood is decreased. After adding
the extra units, the codebook vectors for the new units are initialized
through interpolation, and a new round of training begins. An example
has been implemented in function expand.som from the wccsom package

16

[9]. Eventually, the wccsom package should be merged into the kohonen

package.
One major snag in using SOMs and analogues lies in the number of

parameters influencing the mapping: learning rate, map size and topol-
ogy, similarity functions, etcetera. Although the conclusions drawn from
the mapping in many cases are fairly robust for different settings, one
would like to have as few parameters as possible. One parameter that can
be dispensed with by using another algorithm is the learning rate: the
algorithm involved is known as the batch version. In the class package,
a batch version of SOMs has been implemented that could be extended
for the other SOM variants as well. Not only does it require one fewer
parameter, it is usually quicker, too.

Several ways to enhance the graphical capabilities of the package can
be explored as well. One example that would be potentially useful is to
have an arbitarary center unit in the case of toroidal maps. Interpretation
of these maps can be much easier when the focus of attention can be placed
in the middle of the map, so that apparent but in fact non-existent edges
can be ignored. Other plans include plots showing the smoothness of the
map – i.e. the similarity between neighbouring units.

Acknowledgements

The kohonen package started as an extension of the som-related functions
in the class package by B.D. Ripley, and also depends on the MASS package
by the same author.

Willem Melssen (Radboud University Nijmegen) is acknowledged for
invaluable discussions; his Matlab implementation of several of the tools
discussed in this paper is available from http://www.cac.science.ru.nl/software.

References

[1] J.E. Jackson. A user’s guide to principal components. Wiley, New
York, 1991.

[2] T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chapman and
Hall, 2001.

[3] T. Kohonen. Self-Organizing Maps. Number 30 in Springer Series in
Information Sciences. Springer, Berlin, 3 edition, 2001.

[4] B.D. Ripley. Pattern recognition and neural networks. Cambridge
University Press, 1996.

[5] W.J. Melssen, R. Wehrens, and L.M.C. Buydens. Supervised Koho-
nen networks for classification problems. Chemom. Intell. Lab. Syst.,
83:99–113, 2006.

[6] F. Wülfert, W.Th. Kok, and A.K. Smilde. Influence of temperature
on vibration spectra and consequences for multivariate models. Anal.
Chem., 70:1761–1767, 1998.

17

[7] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B.
Eisen, P.O. Brown, D. Botstein, and B. Futcher. Comprehensive
identification of cell cycle-regulated genes of the yeast saccharomyces
cerevisiae by microarray hybridization. Mol. Biol. Cell., 9:3273–3297,
1998.

[8] R. Wehrens, W.J. Melssen, L.M.C. Buydens, and R. de Gelder. Rep-
resenting structural databases in a self-organizing map. Acta Cryst.,
B61:548–557, 2005.

[9] Ron Wehrens and Egon Willighagen. Mapping databases of x-ray
powder patterns. R News, 6(3):24–28, August 2006.

18

