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1 Introduction

This manual is meant to provide an introduction to using icenReg to analyze
interval censored data. It is written with expectation that the reader is familiar
with basic survival analysis methods. Familiarity with the Kaplan Meier curves
and Cox proportional hazards model should be sufficient.

1.1 Interval Censoring

Interval censoring occurs when a response is known only up to an interval. A
classic example is testing for diseases at a doctor’s clinic; if a subject tests neg-
ative at t; and positive at to, all that is known is that the subject acquired
the disease in (t1, t3), rather than an exact time. Other classic examples in-
clude examining test mice for tumors after sacrifice (results in current status or
case I interval censored data, in which all observations are either left or right
censored, as opposed to the more general case II, which allows for any inter-
val), customer choice models in economics (customers are presented a price for



a product and chose to purchase or not, researcher wants to know distribution
of maximum spending amount; this results in current status data again), data
reduction methods for sensor analyses (to reduce load on sensor system, message
is intentionally surpressed if outcome is in an expected region) and data binning
(responses reported only up to an interval, in some cases to keep the subjects
anonymous, in some cases to reduce size of data).

Often interval censoring is ignored in analysis. For example, age is usually
reported only up to the year, rather than as a continuous variable; when a
subject reports that their age is 33, the information we have is really that their
age is in the interval [33,34). In the case that these intervals are very short
relative to the question of interest, such as with reported age when the scientific
quesiton is about age of onset of type II diabetes, the bias introduced by ignoring
the interval censoring may besmall enough to be safely ignored. However, in the
case that the width of intervals is non-trivial, statistical methods that account
for this should be used for reliable analysis.

Standard notation for interval censoring is that each observation contains
a response interval [l;,r;] such that the true event time is known to have oc-
curred within. Note that this allows for uncensored observations (I; = r;), right
censored(r; = 00), left censored (I; = 0) or none of the above (0 < I; < r; < 00).

In icenReg, the response value is allowed to be interval censored. If our
data contains the values L and R, representing the left and right sides of the
response interval, we can pass our response to a regression model using either

cbind(L, R)
Surv(L, R, type = "interval2")

It is worth nothing that other R packages, specifically for non-parametric
estimation, allow you to declare whether the response intervals are open, closed
or a combination of partially opened, for example [l;,7;). In icenReg, it is
always assumedthat the intervals are closed.

1.2 Classic Estimators

The topic of interval censoring began in the field of survival analysis. Although
it is now considered in other fields of study (such as tobit regression), at this
time icenReg focusses on survival models.

One of the earliest models is the Non-Parametric Maximum Likelihood Es-
timator (NPMLE), also referred to as Turnbull’s Estimator. This is a gener-
alization of the Kaplan Meier curves (which is a generalization of the empiri-
cal distribution function) that allows for interval censoring. Unlike the Kaplan
Meier curves, the solution is not in closed form and several algorithms have been
proposed for efficient computation. A special topic regarding the NPMLE is the
bivariate NPMLE; this is for the special case of two interval censored outcomes,
in which the researcher wants a non-parametric estimator of the joint distribu-
tion. This is especially computationally intense as the number of parameters
can be up to n?.

Semi-parametric models exist in the literature as well; two classic regression
models fit by icenReg are the Cox-PH model and the proportional odds model.
The well known Cox-PH, or proportional hazards regression model, has the
property that



Wt X, B) = ho(t)eX ?

where h(t| X, 8) is the hazard rate conditional on covariates X and regression
parameters (3, with h, as the baseline hazard function. This relation is equivalent
to

T
S(HX. 8) = So(0)”

where S(t| X, ) is the conditional survival and S, (t) is the baseline survival
function.

The less known proportional odds model can be expressed as

0dds(S(t|X, ) = eX POdds(S,(t))
S(t|X,ﬂ) _ XTp So(t)
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Unlike the special example of the Cox PH model with right-censored data,
the baseline parameters must be estimated concurrently with the regression pa-
rameters. The model can be kept semi-parametric (i.e. no need to decide on
a parametric baseline distribution) by using the Turnbull estimator, modified
to account for the given regression model, as the baseline distribution. The
semi-parametric model can be computationally very difficult, as the number of
baseline parameters can be quite high (up to n), which must follow shape con-
straints (i.e. either a set of probability masses or a cumulative hazard function,
which must be strictly increasing) and there is no closed form solution to ei-
ther regression or baseline parameters. One of the contribution the algorithms
in icenReg make to the field of statistical computing is efficient computation
of the non-parametric and semi-parametric estimators, allowing for relatively
efficient estimation on standard computers (i.e. less than one second) of rel-
atively large samples (n = 10,000 for the semi-paramtric model, n = 100,000
for the non-parametric model), although the semi-parametric models are still
significantly slower than fully-parametric models.

Fully parametric models exist as well and can be calculated using fairly
standard algorithms. In addition to the proportional hazards and odds models,
the accelerated failure time model can be used for parameteric modeling. These
models have the following relationship:

St X, B) = So(teX " 7)

For technical reasons not discussed here, this model is very simple to im-
plement for a fully parameteric model, but very difficult for a semi-parametric
model. As such, icenReg contains tools for a fully-parametric accelerated fail-
ure time model, but not a semi-parametric one.

There are slight complications in that the interval censoring can cause the log
likelihood function to be non-concave. However, for reasonable sized data, the
log likelihood function is usually locally concave near the mode and only slight
modifications are required to address this issue. In practice, fully-parametric
models should be used with caution; the lack of observed values means that
model inspection can be quite difficult; there are no histograms, etc., to be made.



As such, even if fully parametric models are to be used for the final analysis, it is
strongly encouraged to use semi-parametric models at least for model inspection.
icenReg fits fully parametric accelerated failure time, proportional odds and
proporitonal hazard models for interval censored data.

1.3 Models fit with icenReg

At this time, the following set of models can be fit (name in paratheses is
function call in icenReg):

e NPMLE (ic_np)
e Semi-parametric model (ic_sp)

— model for model type

x "po" for proportional odds
* "ph" for proportional hazards

e Fully parametric model (ic_par)

— model for model type

* "po" for proportional odds

* "ph" for proportional hazards

x "aft" for accelerated failure time model
— dist for baseline distribution
"exponential"
"gamma"
"weibull"
"lnorm"

"loglogistic"

EE I R

"generalgamma"
In addition, icenReg includes various diagnostic tools. These include

e Plots for diagnosising baseline distribution (diag_baseline)

e Plots for diagnosising covariate effects (diag_covar)

1.4 Data Examples in icenReg

The package includes 3 sources of example data: one function that simulates
data and two sample data sets. The simulation function is simIC_weib, which
simulates interval censored regression data with a Weibull baseline distribution
The sample data sets are miceData, which contains current status data regarding
lung tumors from two groups of mice and IR_diabetes, which includes data on
time from diabetes to diabetic nephronpathy in which 136 of 731 observations
are interval censored due to missed follow up.



2 Fitting Models using icenReg

An important note about icenReg is that in all models, it is assumed that the
response interval is closed, i.e. the event is known to have occurred within
[t1,t2], compared with [t1,t2), (t1,t2), etc. This is of no consequence for fully
parametric models, but does mean the solutions may differ somewhat in compar-
ison with semi- and non-parametric models that allow different configurations
of open and closed response intervals.

2.1 Non-parametric models

The non-parametric maximum likelihood estimator can be using ic_np. If the
data set is relatively small and the user is interested in non-parametric tests,
such as the log-rank statistic, we actually advise using the interval package, as
this provides several testing functions. However, icenReg is several fold faster
than interval, so if large datasets are used (i.e. n > 1,000), the user may have
no choice but to use icenReg. In discussions with the author of interval, it
was indicated that a user could build a wrapper around ic_np to be used in
interval’s logrank tests, but this has not been done yet.

To fit an NPMLE model for interval censored data, we will consider the
miceData provided in icenReg. This dataset contains three variables: 1, u
and grp. 1 and u represent the left and right side of the interval containing the
event time (note: data is current status) and grp is a group indicator with two
categories.

> data(miceData)
> head(miceData, 3)

1 ugrp
1 0 381 ce
2 0 477 ce
3 0 485 ce

We can fit a non-parametric estimator for each group by
> np_fit = ic_np(cbind(1, u) ~ grp, data = miceData)

If we wanted only a single fit for both groups, this can be done in two ways.
The two fits are equivalent, but are just used to demonstrate differing possible
syntax.

> groupedFitl <- ic_np(cbind(1,u) ~ 0, data = miceData)
> groupedFit2 <- ic_np(miceDatal[,c('1l', 'u')])

The fits can be plotted as follows:

> plot(np_fit, col = c('blue', 'orange'),
+ xlab = 'Time', ylab = 'Estimated Survival')
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Looking at the plots, we can see a unique feature about the NPMLE for
interval censored data. That is, there are two lines used to represent the survival
curve. This is because with interval censored data, the NPMLE is not always
unique (in fact, it usually is not); any curve that lies between the two lines has
the same likelihood. For example, any curve that lies between the two blues
lines maximizes the likelihoodassociated with "ge" group of mice.

Formal statistical tests using the NPMLE are not currently supported by
icenReg. We recommend using the interval package for this.

2.2 Semi-parametric models

Semi-parametric models can be fit with ic_sp function. This function follows
standard regression syntax. As an example, we will fit the IR_diabetes dataset,
which contains data on time from diabetes to diabetic nephropathy. In this
dataset, we have the left and right sides of the observation interval containing
the true response time and the gender of the patient.

> data("IR_diabetes")
> head(IR_diabetes, 3)

left right gender

1 24 27 male
22 22 female

3 37 39 male

We fit the model below. Note that this may be time consuming, as the
semi-parametric model is somewhat computationally intense and we are taking
bs_samples bootstrap samples of the estimator.



fit_ph <- ic_sp(cbind(left, right) ~ gender, model = 'ph',
bs_samples = 100, data = IR_diabetes)

fit_po <- ic_sp(cbind(left, right) ~ gender, model = 'po',
bs_samples = 100, data = IR_diabetes)

+ VvV + V

The first model by default fits a Cox-PH model, while the second fits a
proportional odds model. We can look at the results using either the summary
function, or just directly looking at the results (what is displayed is the same).

> fit_po

Model: Proportional 0dds

Baseline: semi-parametric

Call: ic_sp(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "po", bs_samples = 100)

Estimate Exp(Est) Std.Error z-value )
gendermale 0.399 1.49 0.1302 3.065 0.002178
final 11k = -1956.969
Iterations = 21

Bootstrap Samples = 100
> fit_ph

Model: Cox PH

Baseline: semi-parametric

Call: ic_sp(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "ph", bs_samples = 100)

Estimate Exp(Est) Std.Error z-value P
gendermale -0.1392 0.87 0.0886 -1.572 0.116
final 11k = -1959.489
Iterations = 38

Bootstrap Samples = 100

For the semi-parametric models, bootstrap samples are used for inference on
the regression parameters. The reason for this is that as far as we know, the
limiting distribution of the baseline distribution is currently not characterized.
In fact, to our knowledge, even using the bootstrap error estimates for the
baseline distribution is not valid. Because the regression parameters cannot be
seperated in the likelihood function, using the negative inverse of the Hessian
for the regression standard errors is not generally valid. However, it has been
shown that using the bootstrap for inference on the regression parameters leads
to valid inference.

We can use these fits to create plots as well. The plot function will plot the
estimated survival curves or CDF for subjects with the set of covariates provided
in the newdata argument. If newdata is left equal to NULL, the baseline survival
function will be plotted.

Below is a demonstration of how to plot the semi-parametric fit for males
and females.



> newdata <- data.frame(gender = c('male', 'female') )
>  rownames (newdata) <- c('males', 'females')
> plot(fit_po, newdata)
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2.3 Parametric Models

We can fit parametric models in icenReg using the ic_par function. The
syntax is essentially the same as above, except that the user needs to specify
dist, the parametric family that the baseline distribution belongs to. The
current choices are "exponential", "weibull" (default), "gamma", "lnorm",
"loglogistic" and "generalgamma" (generalized gamma distribution). The
user must also select model = "ph", "po", or "aft" as the model type.

It is not necessary to specify bs_samples for parametric models, as inference
is done using the asymptotic normality of the estimators. Fitting a parametric
model is typically faster than the semi-parametric model, even if no bootstrap
samples are taken for the semi-parametric model. This is because the fully-
parametric model is of lower dimensional space without constraints.

Suppose we wanted to fit a proportional odds model to the IR_diabets data
with a generalized gamma distribution. This could be fit by

> fit_po_gamma <- ic_par(cbind(left, right) ~ gender,
+ data = IR_diabetes, model = "po", dist = "gamma')

We can examine the regression coeflicients in the same way as with the
semi-parametric model.

> fit_po_gamma



Model: Proportional 0dds

Baseline: gamma

Call: ic_par(formula = cbind(left, right) ~ gender, data = IR_diabetes,
model = "po", dist = "gamma")

Estimate Exp(Est) Std.Error z-value P
log_shape 1.9980 7.377 0.05447 36.69 0.000000
log_scale 0.8248 2.281 0.05560 14.83 0.000000
gendermale  0.3496 1.419 0.13550 2.58 0.009876

final 11k = -2006.619
Iterations = 4

We can also examine the survival/cdf plots in the same way.

> plot(fit_po_gamma, newdata, lgdLocation = "topright")
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3 Inspecting model fit

3.1 Examining Baseline Distribution

Althought the semi-parametric model is more flexible, and thus more robust to
unusual baseline distributions, there are many reasons one may decide to use
a parametric model instead. One reasons is that, as stated earlier, we are not
aware of any general distributional theory regarding the baseline distribution,
outside of the univariate case with case I interval censored data. Even in this



case, the estimator is highly inefficient, observing convergence rates of n'/? in-
stead of the more standard n'/2. Because of this, making inference about values
that directly require the baseline distribution, such as creating a confindence in-
terval for the median for subjects with a given set of covariates, cannot be done
with the semi-parametric model.

However, even if a parametric model is used for final inference, the semi-
parametric model is still useful for assessing model fit. This is especially impor-
tant for interval censored data, as we do not have the option of examining typical
residuals or histograms as we would if the outcome was uncensored. icenReg
has the function diag_baseline that plots several choices of parametric baseline
distributions against the semi-parametric estimate. If the parametric distribu-
tion shows no systematic deviations from the semi-parametric fit, this implies
the choice of parametric family may do a reason job of describing the underlying
distribution. If there are clear deviations, this model should not be trusted.

To use diag_baseline, you must provide either a fitted model, or a formula,
data and model. You then select the parametric families that you would like
plotted against the non-parametric estimate (default is to fit all available). As
an example, suppose we wanted to examine the different parametric fits for the
IR_diabetes dataset. This could be done with

> diag_baseline(cbind(left, right) ~ gender,
+ model = "po",

+ data = IR_diabetes,
+ dists = c("exponential, "weibull",
+ "loglogistic", "gamma"),
+ lgdLocation = "topright")
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Alternatively, using the fits from earlier, we can just call

> diag_baseline(fit_po, lgdLocation = "topright",

+ dists = c("exponential", "weibull",
+ "loglogistic", "gamma")
+ )

Visual diagnostics are always subjective, but in this case we definitively
know that the exponential fit is not appropriate and we believe the gamma
baseline is most appropriate for the proporitonal odds model (although there is
not overwhelming evidence that it is best).

3.2 Examining Covariate Effect

Although semi-parametric models do not make assumptions about the paramet-
ric family of the baseline distribution, both fully-parametric and semi-parametric
models make assumptions about the form of the covariate effect, akin to the link
function in generalized linear models.

A rule of thumb for identifying gross violations of proportional hazards is to
check if the Kaplan Meier curves cross; if they do, and this cross appears not
purely by chance, the proportional hazards assumption seems inappropriate.

This can naturally extend to the case of interval censored data by replacing
the Kaplan Meier curves with the NPMLE. Also, this informal test can be
generalized to the proportional odds model; the proportional odds assumption
also implies that survival curves that differ only by a constant factor of the odds
of survival should not cross.

Another method of assessing involves transforming yoursurvival estimates
such that if the assumptions are met, the difference in transformed survival will
be constant. For the proportional hazards model, this is the complementary
log-log tranformation (i.e. log(—1log(s))). For the proportional odds model, this
is the logit transformation (i.e. log(s/(1 — s)) ).

Plotting these functions can be done automatically in icenReg using the
diag_covar function. The basic flow is that function takes in the fit, divides
the data up on a covariate of interest. If it is categorical, it simply breaks up by
category, if it is numeric, it attempts to find break point to evenly split up the
data. Then, for each subset of the data, it fits the corresponding semi-parametric
model and plots the transformation of the baseline distribution.

To demonstrate, suppose we wanted to assess whether the Cox-PH or pro-
portional odds model was more appropriate for the IR_diabetes. This could
be done by

> diag_covar(fit_po, lgdLocation = "topright",

+ main = "Checking Proportional 0dds")
> diag_covar(fit_ph, lgdLocation = "topright",
+ main = "Checking Proportional Hazards")

We see that especially for gender, the porportional odds seems somewhat
more appropriate (the difference between transformed values seems more con-
stant). This agrees with the fact that the likelihood is approximately 2.5 greater
for the proportional odds model than Cox-PH.
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4 Appendix

4.1 Parallel Bootstrapping

Bootstrapping can be very computationally intensive. Fortunately, it is also
embarrassingly parallel. As such, icenReg is written to work seamlessly with
doParallel

> library(doParallel)
> myCluster <- makeCluster(4) #uses 4 cores
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> registerDoParallel (myCluster)

> fit <- ic_sp(cbind(left, right) ~ gender,

+ data = IR_diabetes, model = "po",
+ bs_samples = 50, useMCores = TRUE)
>stopCluster (myCluster)
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