Reproducing the Examples in this Vignette

hyperSpec Introduction

Claudia Beleites <chemometrie@beleites.de>
CENMAT and DI3, University of Trieste
Spectroscopy - Imaging, IPHT Jena e.V.

September 23, 2012

All spectra used in this manual are installed automatically with hyperSpec.
Note that some definitions are executed in vignette.defs.

Contents

1.

Introduction

1.1.

Notation and Terms e e

Remarks on R

2.1.
2.2.
2.3.
24.

Generic Functions L L
Functionality Can be Extended at Runtime
Validity Checking e
Special Function Names L L
2.4.1. The Names of Operators
2.4.2. Assignment Functions

Loading and the package and configuration

The structure of hyperSpec objects

Functions provided by hyperSpec

Obtaining Basic Information about hyperSpec Objects

Creating a hyperSpec Object, Data Import and Export

7.1
7.2.

Creating a hyperSpec Object from Spectra Matrix and Wavelength Vector
Creating Random Spectra L

The Logbook

Access to the data

9.1.
9.2.

Access Functions and Abbreviations for Parts of the hyperSpec Object’s Data
Selecting and Deleting Spectra oL
9.2.1. Random Sampleso

e~ W

[I T TGN -

<chemometrie@beleites.de>

10.

11.

12.

13.

0.2.2. Sequences e e
9.3. Selecting Extra Data Columns
9.4. More on the [[1] and [[]1]1<- Operators: Accessing Single Elements of the Spectra
Matrix o e
9.5. Wavelengths L
9.5.1. Converting Wavelengths to Indices and vice versa.
9.5.2. Selecting Wavelength Ranges
9.5.3. Deleting Wavelength Ranges
9.5.4. Changing the Wavelength Axis
9.5.5. Ordering the Wavelength Axis
9.6. Conversion to Long- and Wide-Format data.frames
9.7. Conversion to Matrix L

Combining and Decomposing hyperSpec Objects

10.1. Binding Objects together
10.2. Binding Objects that do not Share the Same Extra Data and/or Wavelength Axis .
10.3. Binding Objects that do not Share the Same Spectra
10.4. Matrix Multiplication o
10.5. Decomposition oL L e

Plotting

Spectral (Pre)processing
12.1. Cutting the Spectral Range o
12.2. Shifting Spectra e
12.2.1. Calculating the Shift oo
12.3. Removing Bad Data
12.3.1. Bad Spectra e
12.3.2. Removing Spectra outside mean +nsd
12.3.3. Bad Data Points
12.3.4. Spikes in Raman Spectra Lo
12.4. Smoothing Interpolation L o
12.5. Background Correction
12.6. Offset Correction e
12.7. Baseline Correction L
12.8. Intensity Calibration
12.8.1. Correcting by a constant, e.g. Readout Bias
12.8.2. Correcting Wavelength Dependence
12.8.3. Spectra Dependent Correction oL
12.9. Normalization
12.10Centering the Data L
12.11Variance Scaling L L
12.12Multiplicative Scatter Correction (MSC)
12.13Spectral Arithmetic e

Data Analysis
13.1. Data Analysis Methods using a data.frame
e.g. Principal Component Analysis with prcomp
13.1.1. PCA as Noise Filter
13.2. Data Analysis using long-format data.frame
e.g. plotting with ggplot2

22

22
22
23
24
24
24
25
25
26
26
27
27
27
28
28
28
29
29
29
30
30
30

31

13.3. Data Analysis Methods using a matrix

e.g. Hierarchical Cluster Analysis. 33
13.4. Calculating group-wise Sum Characteristics, e. g. Cluster Mean Spectra 33
13.5. Splitting an Object, and Binding a List of hyperSpec Objects 34

14.Speed and Memory Considerations 35

A. Overview of the functions provided by hyperSpec 38

Suggested Packages

To build this vignette, some packages are suggested but not strictly needed:
pls: available
baseline: available
ggplot2: available
compiler: available

mline: available

1. Introduction

hyperSpec is a R package that allows convenient handling of hyperspectral data sets, i.e. data sets
combining spectra with further data on a per-spectrum basis. The spectra can be anything that is
recorded over a common discretized axis.

This vignette gives an introduction on basic working techniques using the R package hyperSpec. This
is done mostly from a spectroscopic point of view: rather than going through the functions provided
by hyperSpec, it is organized in spectroscopic tasks. However, the functions discussed are printed on
the margin for a quick overview.

hyperSpec comes with five data sets,

chondro a Raman map of chondrocytes in cartilage,
flu a set of fluorescence spectra of a calibration series, and
laser a time series of an unstable laser emission

paracetamol a Raman spectrum of paracetamol (acetaminophene) ranging from 100 to 3200 cm ™!

with overlapping wavelength ranges.
barbiturates GC-MS spectra with differing wavelength axes as a list of 286 hyperSpec objects.

In this vignette, the data sets are used to illustrate appropriate procedures for different tasks and
different spectra. In addition, the first three data sets are accompanied by their own vignettes
showing exemplary work flows for the respective data type.

This document describes how to accomplish typical tasks in the analysis of spectra. It does not give
a complete reference on particular functions. It is therefore recommended to look up the methods
in R’s help system using ? command.

A complete list of the functions available in hyperSpec is given in appendix A (p. 38).

1.1. Notation and Terms

Throughout the documentation of the package, the following terms are used:

wavelength: spectral abscissa
frequency, wavenumbers, chemical shift, Raman shift, ==, etc.

intensity: spectral ordinate

€

transmission, absorbance, €-, intensity, ...

extra data: further information/data belonging to each spectrum
spatial information (spectral images, maps, or profiles), temporal information (kinetics,
time series), concentrations (calibration series), class membership information, etc.
hyperSpec object may contain arbitrary numbers of extra data columns.

In R, slots of a S4 class are accessed by the @ operator. In this vignette, the notation @xxx will
thus mean “slot zzz of an object”. Likewise, named elements of a list and columns of a data.frame
are accessed by the $ operator, and $xxx will be used for “column zzz”, and as an abbreviation
for “column zxx of the data.frame in slot data of the object” (the structure of hyperSpec objects is
discussed in section 4, p. 5).

2. Remarks on R

2.1. Generic Functions

Generic Functions are functions that apply to a wide range of data types or classes, e. g.plot, print,
mathematical operators, etc. These functions can be implemented in a specialized way by each class.
hyperSpec implements with a variety of such functions, see appendix A (p. 38).

2.2. Functionality Can be Extended at Runtime

R’s concept of functions offers much flexibility. Functions may be added or changed by the user in
his workspace at any time. This is also true for methods belonging to a certain class. Neither restart
of R nor reloading of the package or anything the like is needed. If the original function resides in a
namespace (as it is the case for all functions in hyperSpec), the original function is not deleted. It is
just masked by the user’s new function but stays accessible via the :: operator.

The same is true for “normal” variables: You may create changed copies of the example data sets,
work with these and then “reset” to hyperSpec’s version of the data set by removing the object in
your workspace.

This offers the opportunity of easily writing specialized functions that are adapted to specific tasks.
hyperSpec’s vignettes use this to set up special versions of the lattice graphics functions that are
already wrapped in print (see also R FAQ: Why do lattice/trellis graphics not work?) and allow
the code in the code chunks of the vignettes to be exactly what one would type during an interactive
R session. For the code, check the vignettes.defs file accompanying all hyperSpec vignettes.

2.3. Validity Checking

S4 classes have a mechanism to define and enforce that the data actually stored in the object is
appropriate for this class. In other words, there is a mechanism of validity checking.

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-lattice_002ftrellis-graphics-not-work_003f

The functions provided by hyperSpec check the validity of hyperSpec objects at the beginning, and
— if the validity could be broken by inappropriate arguments — also before leaving the function.

It is highly recommended to use validity checking also for user-defined functions. In addition, non-
generic functions should first ensure that the argument actually is a hyperSpec object. The two tasks
are accomplished by:

> chk.hy (object)
> validObject (object)

The first line checks whether object is a hyperSpec object, the second checks its validity. Both
functions return TRUE if the checks succeed, otherwise they raise an error and stop.

2.4. Special Function Names
2.4.1. The Names of Operators

Operators such as +, -, %%, etc. are in fact functions in R. Thus they can be handed over as
arguments to other functions (particularly to the vectorization functions *apply, sweep, etc.). In
this case the name of the function must be quoted: ~-" is the recommended style (although "-" will
often work as well), e. g.:

> sweep (flu, 2, mean, ~-")
These functions can also be called in a more function-like style (prefix notation):
> "+ (8, 5)

[1]1 8

2.4.2. Assignment Functions

R allows the definition of functions that do an assignment (set some part of the object), such as:
> wl (flu) <- new.wavelength.values

an assignment to variable wl: ~wl<-".

3. Loading and the package and configuration

To load hyperSpec, use
> library ("hyperSpec")

The global behaviour of hyperSpec can be configured via options. The values of the options are
retrieved with hy.getOptions and hy.getOption, and changed with hy.setOptions. Table 1 gives
an overview.

4. The structure of hyperSpec objects

hyperSpec is a S4 (or new-style) class. Four slots contain the parts of the object:
@wavelength containing a numeric vector with the wavelength axis of the spectra.
@data a data.frame with the spectra and all further information belonging to the spectra

@label a list with appropriate labels (particularly for axis annotations)

validObject,
chk.hy

name default wvalue description used by

(range)
debuglevel 0 (1L 2L) amount of debugging information produced spc.identify,
map.identify
gc FALSE triggers frequent calling of gc () read.ENVI,
new ("hyperSpec")
log TRUE automatically create logbook entries logbook

Table 1: hyperSpec options. Please refer to the documentation of the respective functions for details
about the effect of the options.

slot get set
@wavelength wl wl<-

@data [, [[, $, as.data.frame, as.long.df, ... [<-, [[<-, $<-
@label labels labels<-
Qlog logbook logentry

Table 2: Get and set functions for the slots of hyperSpec objects

@log a data.frame keeping track of what is done with the object

While the parts of the hyperSpec object can be accessed directly, it is good practice to use the
functions provided by hyperSpec to handle the objects rather than accessing the slots directly (tab. 2).
This also ensures that proper (valid) objects are returned. In some cases, however, direct access to
the slots can considerably speed up calculations, see section 14 (p. 35).

Most of the data is stored in @data. This data.frame has one special column, $spc. It is the
column that actually contains the spectra. The spectra are stored in a matrix inside this column, as
illustrated in figure 1. Even if there are no spectra, $spc must still be present. It is then a matrix
with zero columns.

Slot @label contains an element for each of the columns in @data plus one holding the label for
the wavelength axis, .wavelength. They are accessed by their names which must be the same for
columns of @data and the list elements. The elements of the list may be anything suitable for axis
annotations, i.e. they should be either character strings or expressions for “pretty” axis annotations
(see e.g. figure 7 on page 27). To get familiar with expressions for axis annotation, see ? plotmath
and demo (plotmath).

——nwl =8 ——
| | | | | | | | |@wavelength

\

$x[3y] $spc > @data

F— nrow = 6 —

————ncol = 3 ———

Figure 1: The structure of the data in a hyperSpec object.

5. Functions provided by hyperSpec

Table A (p. 38) in the appendix gives an overview of the functions implemented by hyperSpec.

6. Obtaining Basic Information about hyperSpec Objects

As usual, the print and show methods display information about the object, and summary yields print, show,
some additional details about the data handling done so far: summary

> chondro

hyperSpec object
875 spectra
4 data columns
300 data points / spectrum

wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (875 rows x 4 columns)
1. y: y/(mu * m) [numeric] -4.77 -4.77 ... 19.23
2. x: x/(mu * m) [numeric] -11.556 -10.55 ... 22.45
3. clusters: clusters [factor] matrix matrix ... lacuna + NA
4. spc: I / a.u. [matrix300] 501.82 500.46 ... 169.29

> summary (chondro)

hyperSpec object
875 spectra
4 data columns
300 data points / spectrum

wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (875 rows x 4 columns)
1. y: y/(mu * m) [numeric]l -4.77 -4.77 ... 19.23
2. x: x/(mu * m) [numeric] -11.55 -10.55 ... 22.45
3. clusters: clusters [factor] matrix matrix ... lacuna + NA
4. spc: I / a.u. [matrix300] 501.82 500.46 ... 169.29
log:

The data set chondro consists of 875 spectra with 300 data points each, and 4 data columns: two for nrow, ncol,
the spatial information, one factor with the results of a cluster analysis plus $spc. These information = »¥l, dim
can be directly obtained by

> nrow (chondro)
[1] 875

> nwl (chondro)
[1] 300

> ncol (chondro)
[1] 4

> dim (chondro)

nrow ncol nwl
875 4 300

The names of the columns in @data are accessed by colnames,
rownames,

> colnames (chondro) dimnames, wl

[1] lly" llxll "CluSterS" llspcll

Likewise, rownames returns the names assigned to the spectra, and dimnames yields a list of these
three vectors (including also the column names of $spc). The column names of the spectra matrix
contain the wavelengths as character, while wl (see section 9.5.4, p. 15) yields the numeric vector of
wavelengths.

Extra data column names and rownames of the object may be set by colnames<- and rownames<-, colnames<-,
respectively. colnames<- renames the labels as well. rounames<-

7. Creating a hyperSpec Object, Data Import and Export

hyperSpec comes with filters for a variety of file formats. These are discussed in detail in a separate
vignette accessible via vignette ("fileio").

7.1. Creating a hyperSpec Object from Spectra Matrix and Wavelength Vector

If the data is in R’s workspace, a hyperSpec object is created by:

> spc <- new ("hyperSpec", spc = spectra.matrix, wavelength = wavelength.vector, data = extra.data)
The most frequently needed arguments are:

spc the spectra matrix

wavelength the wavelength axis vector

data the extra data (can already contain the spectra matrix in column $spc)

label a list with the proper labels. Do not forget the wavelength axis label in $.wavelength
and the spectral intensity axis label in $spc.

7.2. Creating Random Spectra

If mutnorm is available, multivariate normally distributed spectra can be generated from mean

and covariance matrix using rmmvnorm (fig. 2a). Note that the hyperSpec function’s name has an rmmvnorm
additional “m”: it already takes care of multiple groups. Mean spectra and pooled covariance matrix

can be calculated using pooled.cov: pooled. cov

> pcov <- pooled.cov (chondro, chondro$clusters)
> rnd <- rmmvnorm (rep (10, 3), mean = pcov$mean, sigma = pcov$COV)

> cluster.cols <- c¢ ("dark blue", "orange", "#C02020")
> plot (rnd, col = cluster.cols [rnd$.groupl)

fig. 2b shows the linear discriminant analysis (LDA) scores of such simulated specta in comparison
to the real spectra in the chondro object:

require ("MASS")

rnd <- rmmvnorm (rep (200, 3), mean = pcov$mean, sigma = pcov$COV)
lda <- 1lda (clusters ~ spc, rnd)

pred.chondro <- predict (lda, chondro)

pred.sim <- predict (lda)

vV V. V V V

\

colors <- c("#00008040", "#FFA50040", "#C0202040")
plot (pred.chondro$x, col = colors [chondro$clusters], pch = 3)
> points (pred.sim$x, col = colors [rnd$clusters], pch = 20, cex = 0.5)

v

If individual covariance matrices should be used for each group, sigma should be an array with the
3rd dimension corresponding to the group.

I/au.
600 800 1000 1200 1400

200 400

600

T
700

T
800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

AV/em™

(a) rmmvnorm (b) LDA of simulated spectra. Crosses

mark real spectra.

Figure 2: Multivariate normally distributed random spectra.

8. The Logbook

Deprecated

The logbook is now DEPRECATED and the functionality will be removed in the future.
This feature has never seen much use, but slows down hyperSpec considerably.

Slot @log of hyperSpec objects is intended to keep track of the history of the object. This loghook
part of the output of the summary, and can also be retrieved by logbook.

> logbook (flu)
data frame with O columns and O rows
New entries can be created manually by calling logentry:

> tmp <- logentry (flu, short = "test", long = "This could also be a list of parameters")

> logbook (tmp)
data frame with O columns and O rows
In addition, hyperSpec by default logs automatically all changes to the object:

> tmp <- tmp [1:3]
> logbook (tmp)

data frame with O columns and O rows

The automatic logging mechanism can only log function calls and parameters (as opposed to the
intention of the function call). hyperSpec functions that return a changed object allow to use more
meaningful short descriptions: they are assigned via the argument short:

> tmp <- sweep (tmp, 2, mean, short =
> logbook (tmp)

"centering")

data frame with O columns and O rows
Automatic logging may be turned off by
> hy.setOptions (log = FALSE)

This can help optimizing program execution speed, see section 14 (p. 14).

logentry,
logbook

9. Access to the data

The main functions to retrieve the data of a hyperSpec object are []1 and [[]].

The difference between these functions is that [] returns a hyperSpec object, whereas the result of

[[1]1 is a data.frame if extra data columns were selected or otherwise the spectra matrix. Single
extra data columns may be retrieved by $.

In order to change data, use [1<-, [[11<-, and $<- (see 9.4 and 9.3).

9.1. Access Functions and Abbreviations for Parts of the hyperSpec Object’s Data

hyperSpec comes with three abbreviation functions for easy access to the data:

x [[] returns the spectra matrix (x$spc).

x [[Z, , 1]] the cut spectra matrix is returned if wavelengths are specified in [.

x [[2, 7, 1]] If data columns are selected (second index), the result is a data.frame.

x [[%, , 111 <= Also, parts of the spectra matrix can be set (only indices for spectra and wave-
length are allowed for this function).

x [z, 7] <= sets parts of x@data.

x$. returns the complete data.frame x@data, with the spectra in column $spc.

x$.. returns the extra data (x@data without x$spc).

x$.. <- sets the extra data (x@data without x$spc). The columns must match exactly

in this case.

9.2. Selecting and Deleting Spectra

The extraction function [] takes the spectra as first argument (For detailed help: see ? ~[*). It
may be a vector giving the indices of the spectra to extract (select), a vector with negative indices
indicating which spectra should be deleted, or a logical. Note that a matrix given to []1 will be
treated as a vector.

> plot (flu, col = "gray")
> plot (flu [1 : 3], add = TRUE)

In/a.u.

o
S —
~

o
S
n

300
|

100
|

T T T T T T T T T
410 420 430 440 450 460 470 480 490
A nm

> plot (flu, col = "gray")
> plot (flu [-3], add = TRUE)

10

1, [l

$

[I<-, [01<-,
$<-

[1 01 s.
$.. [<-
[011<- $<-

700
|

e
g

3: -

8 o

= S
Oi/r——_\\
S

T T T T T T T T T
410 420 430 440 450 460 470 480 490
A/nm

> plot (flu, col = "gray")

> plot (flu [flu$c > 0.2], add = TRUE)
o
8 -
e
8

3: —

8 o

= L
.
8 -

T T T T T T T T T
410 420 430 440 450 460 470 480 490
A/nm

9.2.1. Random Samples

A random subset of spectra is conveniently selected by sample :
> sample (chondro, 3)

hyperSpec object

3 spectra

4 data columns

300 data points / spectrum
wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (3 rows x 4 columns)

1. y: y/(mu * m) [numeric] 1.23 -1.77 19.23

2. x: x/(mu * m) [numeric] -3.55 20.45 1.45

3. clusters: clusters [factor] lacuna matrix matrix

4. spc: I / a.u. [matrix300] 331.23 296.73 ... 150.68

If appropriate indices into the spectra are needed instead, use isample:

> isample (chondro, 3)

[1] 644 126 120

9.2.2. Sequences

Sequences of every n*? spectrum or the like can be retrieved with seq:
> seq (chondro, length.out = 3, index = TRUE)

[1] 1 438 875

> seq (chondro, by = 100)

11

sample

isample

seq

hyperSpec object
9 spectra
4 data columns
300 data points / spectrum
wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (9 rows x 4 columns)
. y: y/(mu * m) [numeric] -4.77 -2.77 ... 17.23
x: x/(mu * m) [numeric] -11.55 18.45 ... 18.45
. clusters: clusters [factor] matrix matrix ... lacuna
. spc: I / a.u. [matrix300] 501.82 400.94 ... 124.64

e

Sw N

Here, indices may be requested using index = TRUE.

9.3. Selecting Extra Data Columns

The second argument of the extraction functions [1 and [[1] specifies the (extra) data columns.
They can be given like any column specification for a data.frame, i. e. numeric, logical, or by a vector
of the column names:

> colnames (chondro)
[1] "y" "x" "clusters" "spc"
> chondro [[1 : 3, 1]]
y
1 -4.77

-4.77
3 -4.77

N

> chondro [[1 : 3, -4]]

y x clusters
-4.77 -11.55 matrix
-4.77 -10.55 matrix
3 -4.77 -9.55 matrix

N =

> chondro [[1 : 3, "x"]]

X

1 -11.55
2 -10.55
3 -9.55
> chondro [[1 : 3, ¢ (TRUE, FALSE)]] # note the recycling!

y clusters
1 -4.77 matrix
2 -4.77 matrix
3 -4.77 matrix

To select one column, the $ operator is more convenient:

> flu$c

[1] 0.05 0.10 0.15 0.20 0.25 0.30

hyperSpec supports command line completion for the $ operator.
The extra data may also be set this way:

> flu$n <- list (1 : 6, label = "sample no.")

This function will append new columns, if necessary.

12

$<-

9.4. More on the [[1] and [[]1]<- Operators: Accessing Single Elements of the Spectra

Matrix

[[1]1 works mostly analogous to []. In addition, however, these two functions also accept index
matrices of size n x 2. In this case, a vector of values from the spectra matrix is returned.

> indexmatrix <- matrix (¢ (1 : 3, 1 : 3), ncol = 2)

> indexmatrix
[,11 [,2]
[1,]1 1 1
[2,] 2 2
[3,1 3 3
> chondro [[indexmatrix, wl.index = TRUE]]
[1] 501.82 507.81 456.03
> diag (chondro [[1 : 3, , min ~ min + 2i]])

[1] 501.82 507.81 456.03

[[11<- also accepts index matrices of size n x 2.

> indexmatrix <- matrix (¢ (1 : 3, 1 : 3), ncol = 2)

> indexmatrix
[,11 [,2]
[1,] 1 1
[2,] 2 2
[3,1 3 3
> chondro [[indexmatrix, wl.index = TRUE]]
[1] 501.82 507.81 456.03

> diag (chondro [[1 : 3, , min ~ min + 2i]])

[1] 501.82 507.81 456.03

9.5. Wavelengths

9.5.1. Converting Wavelengths to Indices and vice versa

Spectra in hyperSpec have always discretized wavelength axes, they are stored in a matrix with each
column corresponding to one wavelength. hyperSpec provides two functions to convert the respective
column indices into wavelengths and vice versa: i2wl and wl2i.

If the wavelengths are given as a numeric vector, they are each converted to the corresponding
wavelength. In addition there is a more sophisticated possibility of specifying wavelength ranges
using a formula. The basic syntax is start ~ end. This yields a vector indez of start : index of end.

The result of the formula conversion differs from the numeric vector conversion in three ways:

e The colon operator for constructing vectors accepts only integer numbers, the tilde (for formu-

las) does not have this restriction.

e If the vector does not take into account the spectral resolution, one may get only every n!

point or repetitions of the same index:

> wl2i (flu, 405 : 410)

13

wl2i i2wl

[11 1 3 5 7 911

> wl2i (flu, 405 ~ 410)
[1] 1 2 3 4 5 6 7 8 910 11

> wl2i (chondro, 1000 : 1010)

[1] 100 101 101 101 101 102 102 102 102 103 103
> w1l2i (chondro, 1000 ~ 1010)
[1] 100 101 102 103

e If the object’s wavelength axis is not ordered, the formula approach will give weird results. In
that (probably rare) case, use orderwl first to obtain an object with ordered wavelength axis.

start and end may contain the special variables min and max that correspond to the lowest and
highest wavelengths of the object:

> wl2i (flu, min ~ 410)

[1] 1+ 2 3 4 5 6 7 8 910 11

Often, specifications like wavelength +n data points are needed. They can be given using complex
numbers in the formula. The imaginary part is added to the index calculated from the wavelength
in the real part:

> wl2i (flu, 450 - 2i ~ 450 + 2i)

[1] 89 90 91 92 93

> wl2i (flu, max - 2i ~ max)

[1] 179 180 181

To specify several wavelength ranges, use a list containing the formulas and vectors':
> wl2i (flu, ¢ (min ~ 406.5, max - 2i ~ max))

[11 1 2 3 4179 180 181

This mechanism also works for the wavelength arguments of [], [[]1], and plotspc.

9.5.2. Selecting Wavelength Ranges

Wavelength ranges can easily be selected using [1’s third argument:

> plot (paracetamol [,, 2800 ~ 3200])

I/au
1500 2500
!

500
|

T T T T T T T T T
2800 2850 2900 2950 3000 3050 3100 3150 3200

AV/em™

By default, the values given are treated as wavelengths. If they are indices into the columns of the
spectra matrix, use wl.index = TRUE:

1Formulas are combined to a list by c.

14

> plot (paracetamol [,, 2800 : 3200, wl.index = TRUE])

I/au.
1100 1300 1500

900
|

T T T T T T T T \
2440 2460 2480 2500 2520 2540 2560 2580 2600
AV/em™

Section 9.5.1 (p. 13) details into the different possibilities of specifying wavelengths.

9.5.3. Deleting Wavelength Ranges

Deleting wavelength ranges may be accomplished using negative index vectors together with wl.index
= TRUE.

> plot (paracetamol [,, -(500 : 1000), wl.index = TRUE])

I/a.u.

0 500 1000 1500 2000 2500 3000
AV/ecm™

However, this mechanism works only if the proper indices are known.

If the range to be cut out is rather known in the units of the wavelength axis, it is easier to select
the remainder of the spectrum instead. To delete the spectral range from 1750 to 2800 cm™ of the
paracetamol spectrum one can thus use:

> plot (paracetamol [,, ¢ (min ~ 1750, 2800 ~ max)])

40000

I/au.
20000

0 500 1000 1500 2000 2500 3000
AV/em™

(It is possible to produce a plot of this data where the cut range is actually omitted and the wave-
length axis is optionally cut in order to save space. For details see the “plotting” vignette).

9.5.4. Changing the Wavelength Axis

Sometimes wavelength axes need to be transformed, e. g. converting from wavelengths to frequencies.

In this case, retrieve the wavelength axis vector with wl, convert each value of the resulting vector w1,

15

wl<-

and assign the result with wl<-. Also the label of the wavelength axis may need to be adjusted.

As an example, convert the wavelength axis of laser to frequencies. As the wavelengths are in
nanometers, and the frequencies are easiest expressed in terahertz, an additional conversion factor

of 1000 is needed:
> laser

hyperSpec object
84 spectra
2 data columns
36 data points / spectrum

wavelength: lambda/nm [numeric] 404.58 404.62 ... 405.82
data: (84 rows x 2 columns)
1. t: t / s [numeric] 0 2 ... 5722
2. spc: I / a.u. [matrix36] 164.65 179.72 ... 112.09
> wavelengths <- wl (laser)
> frequencies <- 2.998e8 / wavelengths / 1000
> wl (laser) <- frequencies
> labels (laser, ".wavelength") <- "f / THz"
> laser

hyperSpec object
84 spectra
2 data columns
36 data points / spectrum

wavelength: f / THz [numeric] 741.01 740.95 ... 738.76
data: (84 rows x 2 columns)

1. t: t / s [numeric] 0 2 ... 5722

2. spc: I / a.u. [matrix36] 164.65 179.72 ... 112.09

> rm (laser)

There are other possibilities of invoking wl<- including the new label, e. g.
> wl (laser, "f / THz") <- frequencies

and

> wl (laser) <- list (wl = frequencies, label = "f / THz")

see 7 wl<-" for more information.

9.5.5. Ordering the Wavelength Axis

If the wavelength axis of an object needs reordering (e.g. after collapse), orderwl can be used: orderwl

> barb <- collapse (barbiturates [1 : 3])
> wl (barb)

[1] 160.90 158.85 147.00 140.90 133.05 130.90 119.95 119.15 118.05 116.95 112.90 106.00 105.10
[14] 98.95 96.95 91.00 85.05 83.05 77.00 71.90 71.10 70.00 69.00 57.10 56.10 55.00
[27] 43.85 43.05 41.10 40.10 39.00 32.15 31.15 30.05 29.05 28.15 27.05 132.95 131.00
[40] 120.05 119.05 117.95 113.00 105.90 82.95 72.00 69.10 56.00 44.05 40.00 30.15 28.05
[63] 27.15 84.15 68.90 55.10 43.95

> barb <- orderwl (barb)
> wl (barb)

[1] 27.05 27.15 28.05 28.15 29.05 30.05 30.156 31.15 32.15 39.00 40.00 40.10 41.10
[14] 43.05 43.85 43.95 44.05 55.00 55.10 56.00 56.10 57.10 68.90 69.00 69.10 70.00
[27] 71.10 71.90 72.00 77.00 82.95 83.05 84.15 85.05 91.00 96.95 98.95 105.10 105.90
[40] 106.00 112.90 113.00 116.95 117.95 118.05 119.05 119.15 119.95 120.05 130.90 131.00 132.95
[63] 133.05 140.90 147.00 158.85 160.90

16

9.6. Conversion to Long- and Wide-Format data.frames
as.data.frame

as.data.frame extracts the @data slot as a data.frame:

\

flu <- flu [,,400 ~ 407] # make a small and handy version of the flu data set
> as.data.frame (flu)

file spc.405 spc.405.5 spc.406 spc.406.5 spc.407 cn .row
1 rawdata/flul.txt 27.150 32.345 33.379 34.419 36.531 0.05 1 1
2 rawdata/flu2.txt 66.801 63.715 66.712 69.582 72.530 0.10 2 2
3 rawdata/flu3.txt 93.144 103.068 106.194 110.186 113.249 0.15 3 3
4 rawdata/flud.txt 130.664 139.998 143.798 148.420 152.133 0.20 4 4
5 rawdata/flub.txt 167.267 171.898 177.471 184.625 189.752 0.25 5 5
6 rawdata/flu6.txt 198.430 209.458 215.785 224.587 232.528 0.30 6 6
> colnames (as.data.frame (flu))
[1] ||filell "spcll ||Cl| ||n" ll.rowll
> as.data.frame (flu) $ spc
405 405.5 406 406.5 407
[1,] 27.150 32.345 33.379 34.419 36.531
[2,] 66.801 63.715 66.712 69.582 72.530
s 93.144 103.068 106.194 110.186 113.249
[4,] 130.664 139.998 143.798 148.420 152.133
[6,] 167.267 171.898 177.471 184.625 189.752
[6,] 198.430 209.458 215.785 224.587 232.528
Note that the spectra matrix is still a matrix inside column $spc.
as.data.frame and the abbreviations $. and $.. retrieve the usual wide format data.frames: $., ..
> flu$.
file spc.405 spc.405.5 spc.406 spc.406.5 spc.407 cn
1 rawdata/flul.txt 27.150 32.345 33.379 34.419 36.531 0.05 1
2 rawdata/flu2.txt 66.801 63.715 66.712 69.582 72.530 0.10 2
3 rawdata/flu3.txt 93.144 103.068 106.194 110.186 113.249 0.15 3
4 rawdata/flud.txt 130.664 139.998 143.798 148.420 152.133 0.20 4
5 rawdata/flub.txt 167.267 171.898 177.471 184.625 189.752 0.25 5
6 rawdata/flu6.txt 198.430 209.458 215.785 224.587 232.528 0.30 6
> flu$..
file cn
1 rawdata/flul.txt 0.05 1
2 rawdata/flu2.txt 0.10 2
3 rawdata/flu3.txt 0.15 3
4 rawdata/flud.txt 0.20 4
5 rawdata/flub.txt 0.25 5
6 rawdata/flu6.txt 0.30 6
If another subset of colums needs to be extracted, use [[1]: [l

> flu [[’ c ("C", "SPC")]]

c spc.405 spc.405.5 spc.406 spc.406.5 spc.407

1 0.05 27.150 32.345 33.379 34.419 36.531
2 0.10 66.801 63.715 66.712 69.582 72.530
3 0.15 93.144 103.068 106.194 110.186 113.249
4 0.20 130.664 139.998 143.798 148.420 152.133
5 0.25 167.267 171.898 177.471 184.625 189.752
6 0.30 198.430 209.458 215.785 224.587 232.528

17

This can be combined with extracting certain spectra and wavelengths, see below in subsection
“Conversion to Matrix” on page 18.

The transpose of a wide format data.frame can be obtained by as.t.df. For further examples, see as.t.daf
the discussion of ggplot2 in vignette ("plotting").

> as.t.df (apply (flu, 2, mean_pm_sd))

.wavelength mean.minus.sd mean mean.plus.sd

spc.405 405.0 49.958 113.91 177.86
spc.405.5 405.5 53.396 120.08 186.77
spc.406 406.0 55.352 123.89 192.43
spc.406.5 406.5 57.310 128.64 199.96
spc.407 407.0 59.513 132.79 206.06

Some functions need the data being an unstacked or long-format data.frame. as.long.df is the as.long.af
appropriate conversion function.

> head (as.long.df (flu), 20)

.wavelength spc file cn
1 405.0 27.150 rawdata/flul.txt 0.05 1
2 405.0 66.801 rawdata/flu2.txt 0.10 2
3 405.0 93.144 rawdata/flu3.txt 0.15 3
4 405.0 130.664 rawdata/flud.txt 0.20 4
5 405.0 167.267 rawdata/flub.txt 0.25 5
6 405.0 198.430 rawdata/flu6.txt 0.30 6
1.1 405.5 32.345 rawdata/flul.txt 0.05 1
2.1 405.5 63.715 rawdata/flu2.txt 0.10 2
3.1 405.5 103.068 rawdata/flu3.txt 0.15 3
4.1 405.5 139.998 rawdata/flud.txt 0.20 4
5.1 405.5 171.898 rawdata/flu5.txt 0.25 5
6.1 405.5 209.458 rawdata/flu6.txt 0.30 6
1.2 406.0 33.379 rawdata/flul.txt 0.05 1
2.2 406.0 66.712 rawdata/flu2.txt 0.10 2
3.2 406.0 106.194 rawdata/flu3.txt 0.15 3
4.2 406.0 143.798 rawdata/flud.txt 0.20 4
5.2 406.0 177.471 rawdata/flub.txt 0.25 5
6.2 406.0 215.785 rawdata/flu6.txt 0.30 6
1.3 406.5 34.419 rawdata/flul.txt 0.05 1
2.3 406.5 69.582 rawdata/flu2.txt 0.10 2

9.7. Conversion to Matrix

as.matrix,

[l
The spectra matrix is extracted by as.matrix, the convenient abbreviation is [[1]:
> flu [[1]

405 405.5 406 406.5 407
[1,] 27.150 32.345 33.379 34.419 36.531
[2,] 66.801 63.7156 66.712 69.582 72.530
[3,] 93.144 103.068 106.194 110.186 113.249
[4,] 130.664 139.998 143.798 148.420 152.133
[56,] 167.267 171.898 177.471 184.625 189.752
[6,] 198.430 209.458 215.785 224.587 232.528

> class (flu [[1])
[1] "matrix"

containing parts of the spectra matrix:

> flu [[1:3,, 406 ~ 407]]

18

406 406.5 407
[1,] 33.379 34.419 36.531
[2,] 66.712 69.582 72.530
[3,] 106.194 110.186 113.249

If indices for the columns to extract are given, a data.frame is returned instead of a matrix:
> flu [[1:3, ¢ ("file", "spc"), 406 ~ 407]]

file spc.406 spc.406.5 spc.407
rawdata/flul.txt 33.379 34.419 36.531
rawdata/flu2.txt 66.712 69.582 72.530
3 rawdata/flu3.txt 106.194 110.186 113.249

N =

> rm (flu)

10. Combining and Decomposing hyperSpec Objects

10.1. Binding Objects together

hyperspec Objects can be bound together, either by columns (cbind) to append a new spectral range cbind rbind
or by row (rbind) to append new spectra:

> dim (flu)

nrow ncol nwl
6 3 181

> dim (cbind (flu, flu))

nrow ncol nwl
6 3 362

> dim (rbind (flu, flu))

nrow ncol nwl
12 3 181

There is also a more general function, bind, taking the direction ("r" or "c") as first argument
followed by the objects to bind either in separate arguments or in a list.

As usual for rbind and cbind, the objects that should be bound together must have the same rows
and columns, respectively.

For binding row-wise (rbind), collapse is more flexible but also faster. collapse

10.2. Binding Objects that do not Share the Same Extra Data and/or Wavelength Axis

collapse combines objects that should be bound together by row, but they do not share the columns coliapse
and/or spectral range. The resulting object has all columns from all input objects, and all wave-

lengths from the input objects. If an input object does not have a particular column or wavelength,

its value in the resulting object is NA.

The barbiturates data is a list of 286 hyperSpec objects, each containing one mass spectrum. The
spectra have between 4 and 101 data points each.

> barb <- collapse (barbiturates)
> wl (barb) [1 : 25]

[1] 160.90 158.85 147.00 140.90 133.05 130.90 119.95 119.15 118.05 116.95 112.90 106.00 105.10
[14] 98.95 96.95 91.00 85.05 83.05 77.00 71.90 71.10 70.00 69.00 57.10 56.10

19

The resulting object does not have an ordered wavelength axis. This can be obtained in a second

step:

> barb <- orderwl (barb)
> barb [[1:3, , min ~ min + 10i]]

25.95 26.05 26.15 26.95 27.05 27.15 28.05 28.15 29.05 29.15 29.95
NA NA NA NA 562 NA NA 11511 6146 NA NA
NA NA NA NA NA 618 10151 NA 5040 NA NA
NA NA NA NA 638 NA NA 10722 5253 NA NA

s

[
2,
[

—

10.3. Binding Objects that do not Share the Same Spectra

merge adds a new spectral range (like cbind), but works also if spectra are missing in one of the
objects. The arguments by, by.z, and by.y specify which columns should be used to decide which
spectra are the same. The arguments all, all.x, and all.y determine whether spectra should be kept
for the result set if they appear in only one of the objects. For details, see also the help on the base

function merge.

As an example, let’s construct a version of the chondro data like being taken as two maps with

different spectral ranges. In each data set, some spectra are missing.

> chondro.low <- sample (chondro [,, 600 ~ 1200], 700)
> nrow (chondro.low)

[11 700

> chondro.high <- sample (chondro [,, 1400 ~ 1800], 700)
> nrow (chondro.high)

[11 700

As all extra data columns are the same, no special declarations are needed for merging the data:

> chondro.merged <- merge (chondro.low, chondro.high)
> nrow (chondro.merged)

[1] 559

By default, the result consists of only those spectra, where both spectral ranges were available. To

keep all spectra replacing missing parts by NA (see fig. 3):

> chondro.merged <- merge (chondro.low, chondro.high, all = TRUE)
> nrow (chondro.merged)

[1]1 841

> merged <- merge (chondro [1:7,, 610 ~ 620], chondro [5:10,, 615
> merged$.

y x clusters .nx .ny spc.610 spc.614 spc.618 spc.614 spc.618
1 -4.77 -11.556 matrix 1 NA 488.63 466.18 492.00 NA NA
2 -4.77 -10.55 matrix 2 NA 489.48 465.05 490.53 NA NA
3 -4.77 -9.55 matrix 3 NA 456.03 436.62 458.06 NA NA
4 -4.77 -8.55 matrix 4 NA 464.82 444.85 470.02 NA NA
5 -4.77 -7.55 matrix 5 1 428.66 410.80 433.12 410.80 433.12
6 -4.77 -6.55 matrix 6 2 426.07 407.86 431.21 407.86 431.21
7 -4.77 -5.55 lacuna 7 3 412.37 396.50 421.27 396.50 421.27
8 -4.77 -4.55 lacuna NA 4 NA NA NA 381.95 406.25
9 -4.77 -3.55 lacuna NA 5 NA NA NA 397.51 423.30
10 -4.77 -2.55 ~lacuna NA 6 NA NA NA 377.39 402.23

20

~ 625], all = TRUE)

spc.622

461.
458.
445,
429.
446.
424 .

NA
NA
NA
NA
19
15
54
67
15
19

spc.626

397.
394.
382.
368.
381.
362.

NA
NA
NA
NA
38
18
72
46
87
43

merge

I
1650 1/cm

H
=
8
00

2000

80

1500

©
8
60

1000

row

40

500

20

500 600 800 1000 1200 1400 1600 1800

-10 -5 0 5 10 15 20 Avfom™

(a) (b)

Figure 3: (a) For both spectral ranges some spectra are missing. (b) The missing parts of the spectra
are filled with NA.

If the spectra overlap, the result will have both data points. In the example here one could easily
delete duplicate wavelengths. For real data, however, the duplicated wavelength will hardly ever
contain the same values. The appropriate method to deal with this situation depends on the data
at hand, but it will usually be some kind of spectral interpolation.

One possibility is removing duplicated wavelengths by using the mean intensity. This can conve-
niently be done by using approx using method = "constant". For duplicated wavelengths, the
intensities will be combined by the tie function. This already defaults to the mean, but we need
na.rm = TRUE.

Thus, the function to calculate the new spectral intensities is

> approxfun <- function (y, wl, new.wl){

+ approx (wl, y, new.wl, method = "constant",

+ ties = function (x) mean (x, na.rm = TRUE)
+)8y

+ 3}

which can be applied to the spectra:

> merged <- apply (merged, 1, approxfun,

+ wl = wl (merged), new.wl = unique (wl (merged)),
+ new.wavelength = "new.wl")
> merged$.

y x clusters .nx .ny spc.610 spc.614 spc.618 spc.622 spc.626
1 -4.77 -11.55 matrix 1 NA 488.6323.... 466.1774.... 492.0015.... NA NA
2 -4.77 -10.55 matrix 2 NA 489.4758.... 465.0506.... 490.5328.... NA NA
3 -4.77 -9.55 matrix 3 NA 456.0323.... 436.6220.... 458.0576.... NA NA
4 -4.77 -8.55 matrix 4 NA 464.8207.... 444.8485.... 470.0171.... NA NA
5 -4.77 -7.55 matrix 5 1 428.6619.... 410.7955.... 433.1227.... 461.1903.... 397.3773....
6 -4.77 -6.55 matrix 6 2 426.0734.... 407.8569.... 431.2144.... 458.1502.... 394.1775....
7 -4.77 -5.65 lacuna 7 3 412.3674.... 396.5000.... 421.2737.... 445.5431.... 382.7197....
8 -4.77 -4.55 lacuna NA 4 NA 381.9504.... 406.2470.... 429.6728.... 368.4599....
9 -4.77 -3.55 lacuna NA 5 NA 397.5075.... 423.3002.... 446.1478.... 381.8674....
10 -4.77 -2.55 lacuna NA 6 NA 377.3917.... 402.2348.... 424.1901.... 362.4296....

10.4. Matrix Multiplication

Two hyperSpec objects can be matrix multiplied by %#*%. For an example, see the principal component %%
analysis below (section 13.1 on page 31).

21

10.5. Decomposition

Matrix decompositions are common operations during chemometric data analysis. The results, e. g.
of a principal component analysis are two matrices, the so-called scores and loadings. The results can
have either the same number of rows as the spectra matrix they were calculated from (scores-like),
or they have as many wavelengths as the spectra (loadings-like).

Both types of result objects can be “re-imported” into hyperSpec objects with function decomposition.

A scores-like object retains all per-spectrum information (i.e. the extra data) while the spectra ma-
trix and wavelength vector are replaced. A loadings-like object retains the wavelength information,
while extra data is deleted (set to NA) unless the value is constant for all spectra.

A demonstration can be found in the principal component analysis example (section 13.1) on page
31.

11. Plotting

hyperSpec offers a variety of possibilities to plot spectra, spectral maps, the spectra matrix, time
series, depth profiles, etc.. This all is discussed in a separate document: see vignette ("plotting").

12. Spectral (Pre)processing

12.1. Cutting the Spectral Range

The extraction functions [] and [[]] can be used to cut the spectra: Their third argument
takes wavelength specifications as discussed above and also logicals (i.e. vectors specifying with
TRUE/FALSE for each column of $spc whether it should be included or not.

[1 returns a hyperSpec object, [[1] the spectra matrix $spc (or the data.frame @data if in addition
data columns were specified) only.

> flu [,, min ~ 408.5]

hyperSpec object
6 spectra
3 data columns
8 data points / spectrum
wavelength: lambda/nm [numeric] 405.0 405.5 ... 408.5
data: (6 rows x 3 columns)
1. file: [factor] rawdata/flul.txt rawdata/flu2.txt ... rawdata/flu6.txt
2. spc: I[fl]/"a.u." [matrix8] 27.150 66.801 ... 256.89
3. c: ¢/ (mg /1) [numeric] 0.05 0.10 ... 0.3

> flu [[,, ¢ (min ~ min + 2i, max - 2i ~ max)]]

405 405.5 406 494 494.5 495
[1,] 27.150 32.345 33.379 47.163 46.412 45.256
[2,] 66.801 63.715 66.712 96.602 96.206 94.610
[3,] 93.144 103.068 106.194 149.539 148.527 145.793
[4,] 130.664 139.998 143.798 201.484 198.867 195.867
[5,] 167.267 171.898 177.471 252.066 248.067 246.952
[6,]1 198.430 209.458 215.785 307.519 302.325 294.649

22

decomposition

[1 [0l

T T
600 800 1000 1200 1400 1600 1800 600 800 1000 1200 1400 1600 1800 990 992 994 996 998 1000 1004 1008
AV/em™ AV/em™ AV/em™

1000
1000

I/au.
I/au.
600

I/au.

600
600 700 800 900

200
200

(a) wl<- (b) interpolation (c)

Figure 4: Shifting the Spectra along the Wavelength Axis. (a) Changing the wavelength values. (b)
Interpolation. (c¢) Detail view of the phenylalanine band: shifting by wl<- (red) does not
affect the intensities, while the spectrum is slightly changed by interpolations (blue).

12.2. Shifting Spectra

Sometimes, spectra need to be aligned along the spectral axis.
In general, two options are available for shifting spectra along the wavelength axis.

1. The wavelength axis can be shifted, while the intensities stay unaffected.

2. the spectra are interpolated onto a new wavelength axis, while the nominal wavelengths stay.
The first method is very straightforward (see fig 4a):

> tmp <- chondro
> wl (tmp) <- wl (tmp) - 10

but it cannot be used if each spectrum (or groups of spectra) are shifted individually.

In that case, interpolation is needed. R offers many possibilities to interpolate (e.g. approx for
constant / linear approximation, spline for spline interpolation, loess can be used to obtain
smoothed approximations, etc.). The appropriate interpolation strategy will depend on the spectra,
and hyperSpec therefore leaves it up to the user to select a sensible interpolation function.

As an example, we will use natural splines to do the interpolation. It is convenient to set it up as a
function:

> interpolate <- function (spc, shift, wl){
+ spline (wl + shift, spc, xout = wl, method = "natural")$y

+}
This function can now be applied to a set of spectra (see fig 4b):
> tmp <- apply (chondro, 1, interpolate, shift = -10, wl = wl (chondro))

If different spectra need to be offset by different shift, use a loop?

shifts <- rnorm (nrow (chondro))
tmp <- chondro [[]]
for (i in seq_len (nrow (chondro)))
tmp [i,] <- interpolate (tmp [i,], shifts [i], wl = wl (chondro))
chondro [[]] <- tmp

vV + V Vv V

2sweep cannot be used here, and while there is the possibility to use sapply or mapply, they are not faster than the
for loop in this case. Make sure to work on a copy of the spectra matrix, as that is much faster than row-wise
extracting and changing the spectra by [[and [[<-.

23

12.2.1. Calculating the Shift

Often, the shift in the spectra is determined by aligning a particular signal. This strategy works
best with spectrally oversampled data that allows accurate determination of the signal position.

For the chondro data, let’s use the maximum of the phenylalanine band between 990 and 1020 cm™—!.

As just the very maximum is too coarse, we’ll use the maximum of a square polynomial fitted to the
maximum and its two neighbours.

> find.max <- function (y, x){

+ pos <- which.max (y) + (-1:1)

+ X <= x [pos] - x [pos [2]]

+ Y <=y [pos] - y [pos [2]]

+

+ X <- cbind (1, X, X°2)

+ coef <- gr.solve (X, Y)

+

+ - coef [2] / coef [3] / 2 + x [pos [2]]
+}

> bandpos <- apply (chondro [[,, 990 ~ 1020]], 1, find.max, wl (chondro [,, 990 ~ 1020]))
> refpos <- find.max (colMeans (chondro[[,, 990 ~ 1020]]1), wl (chondro [,, 990 ~ 1020]))
> shiftl <- refpos - bandpos

A second possibility is to optimize the shift. For this strategy, the spectra must be sufficiently similar,
while low spectral resolution is compensated by using larger spectral windows.

> chondro <- chondro - spc.fit.poly.below (chondro [,,min+3i ~ max - 3i], chondro)
Fitting with npts.min = 15
> chondro <- sweep (chondro, 1, rowMeans (chondro [[]], na.rm = TRUE), "/")

targetfn <- function (shift, wl, spc, targetspc){
error <- spline (wl + shift, spc, xout = wl)$y - targetspc
sum (error~2)
}
shift2 <- numeric (nrow (chondro))
tmp <- chondro [[]]
target <- colMeans (chondro [[]])
for (i in 1 : nrow (chondro))
shift2 [i] <- unlist (optimize (targetfn, interval = c (-5, 5), wl = chondro@wavelength,
spc = tmp[i,], targetspc = target)$minimum)

+ + VV VYV + + + V

Figure 5 shows that the second correction method works better for the chondrocyte data. This was
expected, as the spectra are hardly or not oversampled, but are very similar to each other.

12.3. Removing Bad Data
12.3.1. Bad Spectra

Occasionally, one may want to remove spectra because of too low or too high signal.

E.g. for infrared spectra one may state that the absorbance maximum should be, say, between 0.1
and 1. hyperSpec’s comparison operators return a logical matrix of the size of the spectra that is
suitable for later indexing:

> ir.spc <- chondro / 1500 ## fake IR data

> high.int <- apply (ir.spc > 1, 1, any) # any point above 1 is bad

> low.int <- apply (ir.spc, 1, max) < 0.1 # the maximum should be at least 0.1
> ir.spc <- ir.spc [! high.int & ! low.int]

24

-2 0 2

1 1 1 1 1 1

find maximum interpolation original
=
[}
£ 804 =
£
3
8 60 r
o
g 40 r
5
g 204 r
<
[P _‘a:d]ﬂl[[tnlh_ L

T T T T T T T T T

-2 0 2 -2 0 2

shift

Figure 5: The shifts used to disturb the chondrocyte data (original), and the remaining shift after
correction with the two methods discussed here.

I/au.
I/au.

00 05 10 15 20 25 30 35

T T
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 600 605 610 615 620 625 630 635 640 645 650 655 660
AVfem™ AVfem™

(a) mean =+ sd filter (b) remove bad points

Figure 6: filtering data

12.3.2. Removing Spectra outside mean + n sd

mean_sd_filter <- function (x, n = 5) {
X <- x - mean (x)
s <- n * sd (x)
(x <= 8) & (x > -s)
}
0K <- apply (chondro [[]], 2, mean_sd_filter, n = 4) # logical matrix
spc.0K <- chondro [apply (0K, 1, all)]

VV 4+ + 4+ 4V

v

plot (chondro [! apply (OK, 1, all)])
i <- which (! 0K, arr.ind = TRUE)
points (wl (chondro) [i [,2]], chondro[[!0K]], pch = 19, col = "red", cex = 0.5)

Vv Vv

12.3.3. Bad Data Points

Assume the data contains once in a while a detector readout of 0:

> spc <- chondro [1 : 3,, min ~ min + 15i]
> spc [[cbind (1:3, sample (nwl (spc), 3)), wl.index = TRUE]] <- 0
> spc [[1]

602 606 610 614 618 622 626 630 634 638
[1,] 0.000000 0.10513 0.076263 0.025742 0.070615 0.15337 1.1900e-02 -0.050551 -0.057757 -0.034975
[2,] 0.095706 0.00000 0.073545 0.027911 0.084776 0.15077 -6.3468e-05 -0.048842 -0.056024 -0.020162
[3,] 0.094272 0.11296 0.000000 0.033812 0.085700 0.15102 3.1869e-03 -0.050212 -0.057195 -0.019839
642 646 650 654 658 662

25

[1,] 0.060953 0.029118 -4.1191e-03 0.0018884 0.0050977 0.010940
[2,] 0.071493 0.032087 -1.4624e-03 0.0065555 0.0106143 0.018861
[3,]1 0.071704 0.033565 3.5887e-05 0.0064116 0.0081407 0.015933

We can set these points to NA, again using that the comparison returns a suitable logical matrix:

> spc [[spc < 1le-4]] <- NA
> spc [[1]

602 606 610 614 618 622 626 630 634 638 642 646
[1,]1 NA 0.10513 0.076263 0.025742 0.070615 0.15337 0.0119004 NA NA NA 0.060953 0.029118
[2,] 0.095706 NA 0.073545 0.027911 0.084776 0.15077 NA NA NA NA 0.071493 0.032087
[3,] 0.094272 0.11296 NA 0.033812 0.085700 0.15102 0.0031869 NA NA NA 0.071704 0.033565
650 654 658 662
[1,] NA 0.0018884 0.0050977 0.010940
[2,] NA 0.0065555 0.0106143 0.018861
[3,] NA 0.0064116 0.0081407 0.015933

Depending on the type of analysis, one may wants to replace the NAs by interpolating the neighbour
values. So far, hyperSpec provides three functions that can interpolate the NAs: : spc.NA.linapprox, spc.NA.linapprox,

spc.loess, and spc.bin with na.rm = TRUE (the latter two are discussed below). ziz'i‘i’iss’
> spc.corrected <- spc.NA.linapprox (spc)
> spc.corrected [[1]
602 606 610 614 618 622 626 630 634 638
[1,] 0.105133 0.105133 0.076263 0.025742 0.070615 0.15337 0.0119004 0.024164 0.036427 0.048690
[2,] 0.095706 0.084626 0.073545 0.027911 0.084776 0.15077 0.1349172 0.119061 0.103205 0.087349
[3,] 0.094272 0.112959 0.073386 0.033812 0.085700 0.15102 0.0031869 0.020316 0.037446 0.054575
642 646 650 654 658 662
[1,] 0.060953 0.029118 0.015503 0.0018884 0.0050977 0.010940
[2,] 0.071493 0.032087 0.019321 0.0065555 0.0106143 0.018861
[3,] 0.071704 0.033565 0.019988 0.0064116 0.0081407 0.015933
12.3.4. Spikes in Raman Spectra
...coming soon...
12.4. Smoothing Interpolation
spc.bin
spc.loess

Spectra acquired by grating instruments are frequently interpolated onto a new wavelength axis,
e. g. because the unequal data point spacing should be removed. Also, the spectra can be smoothed:
reducing the spectral resolution allows to increase the signal to noise ratio. For chemometric data
analysis reducing the number of data points per spectrum may be crucial as it reduces the dimen-
sionality of the data.

hyperSpec provides two functions to do so: spc.bin and spc.loess.
spc.bin bins the spectral axis by averaging every by data points.

plot (paracetamol, wl.range = c (300 ~ 1800, 2800 ~ max), xoffset = 850)
p <- spc.loess (paracetamol, c(seq (300, 1800, 2), seq (2850, 3150, 2)))
plot (p, wl.range = c (300 ~ 1800, 2800 ~ max), xoffset = 850, col = "red", add = TRUE)
b <- spc.bin (paracetamol, 4)
plot (b, wl.range = c (300 ~ 1800, 2800 ~ max), xoffset = 850,
lines.args = list (pch = 20, cex = .3, type = "p"), col = "blue", add = TRUE)

+ V. V. V Vv VvV

26

I/au.
20000 25000
I I

15000
I

10000
1

T T T T T T T T 1T T T T T
1600 1610 1620 1630 1640 1650 1660 1670

0 &0 om0 1000 1200 1400 1600 1800 280 3000 3200 AV/cm™

Figure 7: Smoothing interpolation by spc.loess with new data point spacing of 2 cm™ (red) and
spc.bin (blue). The magnification on the right shows how interpolation may cause a loss
in signal height.

spc.loess applies R’s loess function for spectral interpolation. Figure 7 shows the result of inter-
polating from 300 to 1800 and 2850 to 3150 cm™! with 2 cm™ data point distance. This corresponds
to a spectral resolution of about 4 cm™!, and the decrease in spectral resolution can be seen at the
sharp bands where the maxima are not reached (due to the fact that the interpolation wavelength
axis does not necessarily hit the maxima. The original spectrum had 4064 data points with unequal
data point spacing (between 0 and 1.4 cm™). The interpolated spectrum has 902 data points.

12.5. Background Correction

To subtract a background spectrum of each of the spectra in an object, use sweep (spectra, 2,
background.spectrum, "-").

12.6. Offset Correction

Calculate the offsets and sweep them off the spectra:

> offsets <- apply (chondro, 1, min)
> chondro.offset.corrected <- sweep (chondro, 1, offsets, "-")

If the offset is calculated by a function, as here with the min, hyperSpec’s sweep method offers a
shortcut: sweep’s STATS argument may be the function instead of a numeric vector:

> chondro.offset.corrected <- sweep (chondro, 1, min, "-")

12.7. Baseline Correction

hyperSpec comes with two functions to fit polynomial baselines.

spc.fit.poly fits a polynomial baseline of the given order. A least-squares fit is done so that the
function may be used on rather noisy spectra. However, the user must supply an object that is cut
appropriately. Particularly, the supplied wavelength ranges are not weighted.

spc.fit.poly.below tries to find appropriate support points for the baseline iteratively.

Both functions return a hyperSpec object containing the fitted baselines. They need to be subtracted
afterwards:

27

sweep

apply sweep

spc.fit.poly
spc.fit.poly.below

1500
I
1500
I

I/au.
1000
I
au.
1000
I

500
500

T T
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
a7 /em™ Av/em™

(a) Raw data with baseline (b) Baseline corrected spectrum

Figure 8: Baseline correction using the baseline package: the first spectrum of chondro with baseline
(left) and after baseline correction (right) with method “modpolyfit”.

> bl <- spc.fit.poly.below (chondro)
Fitting with npts.min = 15
> chondro <- chondro - bl

For details, see vignette (baselinebelow).

Package baseline [1] offers many more functions for baseline correction. The baseline function
works on the spectra matrix, which is extracted by [[1]. The result is a baseline object, but can
easily be re-imported into the hyperSpec object:

> corrected <- hyperSpec::chondro [1] # start with the unchanged data set
> require ("baseline")

> bl <- baseline (corrected [[]], method = "modpolyfit", degree = 4)

> corrected [[]] <- getCorrected (bl)

Fig. 8 shows the result for the first spectrum of chondro.

> rm (bl, chondro)

12.8. Intensity Calibration
12.8.1. Correcting by a constant, e.g. Readout Bias

CCD cameras often operate with a bias, causing a constant value for each pixel. Such a constant
can be immediately subtracted:
spectra - constant

12.8.2. Correcting Wavelength Dependence

sweep

For each of the wavelengths the same correction needs to be applied to all spectra.

1. There might be wavelength dependent offsets (background or dark spectra). They are sub-
tracted:
sweep (spectra, 2, offset.spectrum, "-")

2. A multiplicative dependency such as a CCD’s photon efficiency:
sweep (spectra, 2, photon.efficiency, "/")

28

12.8.3. Spectra Dependent Correction

If the correction depends on the spectra (e.g. due to inhomogeneous illumination while collecting
imaging data, differing optical path length, etc.), the MARGINof the sweep function needs to be 1
or SPC:

1. Pixel dependent offsets are subtracted:
sweep (spectra, SPC, pixel.offsets, "-")

2. A multiplicative dependency:
sweep (spectra, SPC, illumination.factors, "*")

12.9. Normalization

Again, sweep is the function of choice. E.g. for area normalization, use:

> chondro <- sweep (chondro, 1, mean, "/")

(using the mean instead of the sum results in conveniently scaled spectra with intensities around 1.)
If the calculation of the normalization factors is more elaborate, use a two step procedure:

1. Calculate appropriate normalization factors
You may calculate the factors using only a certain wavelength range, thereby normalizing on
a particular band or peak.

2. Again, sweep the factor off the spectra:
normalized <- sweep (spectra, 1, factors, "x*")

> factors <- 1 / apply (chondro [, , 1600 ~ 1700], 1, mean)
> chondro <- sweep (chondro, 1, factors, "*")

For minimum-maximum-normalization, first do an offset- or baseline correction, then normalize using
max.

12.10. Centering the Data

Centering means that the mean spectrum is subtracted from each of the spectra. Many data anal-
ysis techniques, like principal component analysis, partial least squares, etc., work much better on
centered data.

However, from a spectroscopic point of view it depends on the particular data set whether centering
does make sense or not.

To centre the f1u data set, use:

> flu.centered <- sweep (flu, 2, mean, "-")
> plot (flu.centered)

| A

100 200 300

ln/au
0

-300 -

29

sweep

apply sweep

apply sweep

On the other hand, the chondro data set consists of Raman spectra, so the spectroscopic interpreta-
tion of centering is getting rid of the the average chemical composition of the sample. But: what is
the meaning of the “average spectrum” of an inhomogeneous sample? In this case it may be better
to subtract the minimum spectrum (which will hopefully have almost the same benefit on the data
analysis) as it is the spectrum of that chemical composition that is underlying the whole sample.

One more point to consider is that the actual minimum spectrum will pick up (negative) noise. In
order to avoid that, using e.g. the 5" percentile spectrum is more suitable:

> perc.5th <- apply (chondro, 2, quantile, 0.05)
> chondro <- sweep (chondro, 2, perc.5th, "-")
> plot (chondro, "spcprctl5")

I/au.
I I I I

000 005 010 015 020 025 030

T T T T T T T T T T T T T
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Av/em™

12.11. Variance Scaling

apply sweep
. Scale
Variance scaling is often used in multivariate analysis to adjust the influence and scaling of the

variates (that are typically different physical values). However, spectra already do have the same
scale of the same physical value. Thus one has to trade off the the expected numeric benefit with
the fact that wavelengths with low signal will contain exploded noise after variance scaling.

Again, sweep may be used:
> scaled.chondro <- sweep (chondro, 2, var, "/")
Alternatively, R provides a function scale which works on matrices:

> scaled.chondro <- chondro
> scaled.chondro [[]] <- scale (scaled.chondro [[]])

12.12. Multiplicative Scatter Correction (MSC)

pls::msc
MSC can be done using msc from package pls[2]. It operates on the spectra matrix:
> require (pls)

> chondro.msc <- chondro
> chondro.msc [[]] <- msc (chondro [[]])

12.13. Spectral Arithmetic
+ - %/ " log

logl0
Basic mathematical functions are defined for hyperSpec objects. You may convert spectra:
absorbance.spectra = - loglO (transmission.spectra)
In this case, do not forget to adapt the label: labels

> labels (absorbance.spectra)$spc <- "A"

30

Be careful: R’s log function calculates the natural logarithm if no base is given.

The basic arithmetic operators work element-wise in R. Thus they all need either a scalar, or a
matrix (or hyperSpec object) of the correct size.

Matrix multiplication is done by %*% , again each of the operands may be a matrix or a hyperSpec
object, and must have the correct dimensions.

13. Data Analysis

13.1. Data Analysis Methods using a data.frame
e.g. Principal Component Analysis with prcomp

The $. notation is handy, if a data analysis function expects a data.frame. The column names can
then be used in the formula:
> pca <- prcomp (~ spc, data = chondro$., center = FALSE)

Many modeling functions call as.data.frame on their data argument. In that case, the conversion
is done automatically:

> pca <- prcomp (~ spc, data = chondro, center = FALSE)

Results of such a decomposition can be put again into hyperSpec objects. This allows to plot e.g.
the loading like spectra, or score maps, see figure 9.

> scores <- decomposition (chondro, pca$x, label.wavelength = "PC",
+ label.spc = "score / a.u.")
> scores

hyperSpec object
875 spectra
4 data columns
300 data points / spectrum

wavelength: PC [integer] 1 2 ... 300
data: (875 rows x 4 columns)
1. y: y/(mu * m) [numeric] -4.77 -4.77 ... 19.23
2. x: x/(mu * m) [numeric] -11.55 -10.55 ... 22.45
3. clusters: clusters [factor] matrix matrix ... lacuna + NA
4. spc: score / a.u. [AsIs matrix x 300] -0.43543 -0.92192 ... -3.1226e-17

The loadings can be similarly re-imported:

> loadings <- decomposition (chondro, t(pca$rotation), scores = FALSE,
+ label.spc = "loading I / a.u.")
> loadings

hyperSpec object
300 spectra
1 data columns
300 data points / spectrum

wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (300 rows x 1 columns)
1. spc: loading I / a.u. [AsIs matrix x 300] -0.0258979 -0.0014762 ... 0.063234

There is, however, one important difference. The loadings are thought of as values computed from
all spectra together. Thus no meaningful extra data can be assigned for the loadings object (at least
not if the column consists of different values). Therefore, the loadings object lost all extra data (see
above).

retain.columns triggers whether columns that contain different values should be dropped. If it is set
to TRUE, the columns are retained, but contain NAs:

31

YAY)

decomposition

1.0

05

loading I / a.u.
2
|
y/um

0.0

-05

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
AV/em™

(a)

Figure 9: (a) The first three loadings: plot (loadings [1 : 3], stacked = TRUE). (b) The
third score map: plotmap (scores [, , 31).

> loadings <- decomposition (chondro, t(pca$rotation), scores = FALSE,
+ retain.columns = TRUE, label.spc = "loading I / a.u.")
> loadings[1]$..

y X clusters
PC1 NA NA <NA>

If an extra data column does contain only one unique value, it is retained anyways:

> chondro$measurement <- 1

> loadings <- decomposition (chondro, t(pca$rotation), scores = FALSE,
+ label.spc = "loading I / a.u.")

> loadings[1]$..

measurement
PC1 1

13.1.1. PCA as Noise Filter

Principal component analysis is sometimes used as a noise filtering technique. The idea is that the
relevant differences are captured in the first components while the higher components contain noise
only. Thus the spectra are reconstructed using only the first p components.

This reconstruction is in fact a matrix multiplication:

nrowXp) (pxnwl)

spectraTOx*) — geopes! loadings

Note that this corresponds to a model based on the Beer-Lambert law:

Ap(X) = cpi€(i, \) + error
The matrix formulation puts the n spectra into the rows of A and ¢, while the ¢ pure components
appear in the columns of ¢ and rows of the absorbance coefficients e.

For an ideal data set (constituents varying independently, sufficient signal to noise ratio) one would
expect the principal component analysis to extract something like the concentrations and pure com-
ponent spectra.

If we decide that only the first 10 components actually carry spectroscopic information, we can
reconstruct spectra with better signal to noise ratio:

> smoothed <- scores [,, 1:10] %*J loadings [1:10]

32

VAT

Keep in mind, though, that we cannot be sure how much useful information was discarded with
the higher components. This kind of noise reduction may influence further modeling of the data.
Mathematically speaking, the rank of the new 875 x 300 spectra matrix is only 10.

13.2. Data Analysis using long-format data.frame
e.g. plotting with ggplot2

Some functions need the data being an unstacked or long-format data.frame. as.long.df is the
appropriate conversion function.

> require (ggplot2)
> ggplot (as.long.df (chondro [1]), aes (x = .wavelength, y = spc)) + geom_line ()

spe

200
.wavelength

13.3. Data Analysis Methods using a matrix
e.g. Hierarchical Cluster Analysis

Some functions expect their input data in a matrix, so either as.matrix (object) or the abbrevi-
ation object [[]] can be used:

> dist <- pearson.dist (chondro [[]1])

Again, many such functions coerce the data to a matrix automatically, so the hyperSpec object can
be handed over:

> dist <- pearson.dist (chondro)
> dendrogram <- hclust (dist, method = "ward")

> plot (dendrogram)

In order to plot a cluster map, the cluster membership needs to be calculated from the dendrogram.
First, cut the dendrogram so that three clusters result:

> chondro$clusters <- as.factor (cutree (dendrogram, k = 3))

As the cluster membership was stored as factor, the levels can be meaningful names, which are
displayed in the color legend.

> levels (chondro$clusters) <- ¢ ("matrix", "lacuna", "cell")

Then the result may be plotted (figure 10b):

13.4. Calculating group-wise Sum Characteristics,

e.g. Cluster Mean Spectra

aggregate applies the function given in FUN to each of the groups of spectra specified in by.
So we may plot the cluster mean spectra:

> means <- aggregate (chondro, by = chondro$clusters, mean_pm_sd)
> plot (means, col = cluster.cols, stacked = ".aggregate", fill = ".aggregate")

33

as.long.df

[ml

aggregate

Cluster Dendrogram

60
1

Height

20

cell

Iau

ylum
lacuna
L

matrix

T T T T T
600 700 800 900 1000 1200 1400 1600 1800
av/em™

(c)

Figure 10: The results of the cluster analysis: (a) the dendrogram (b) the map of the 3 clusters (c)
the mean spectra.

13.5. Splitting an Object, and Binding a List of hyperSpec Objects

split
A hyperSpec object may also be split into a list of hyperSpec objects:

> clusters <- split (chondro, chondro$clusters)
> clusters

$matrix
hyperSpec object
187 spectra
5 data columns
300 data points / spectrum

wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (187 rows x 5 columns)
1. y: y/(mu * m) [numeric] -4.77 -4.77 ... 19.23
2. x: x/(mu * m) [numeric] -11.55 -10.55 ... -11.55
3. clusters: clusters [factor] matrix matrix ... matrix
4. spc: I / a.u. [matrix300] 0.011964 0.022204 ... 0.13706
5. measurement: measurement [numeric] 1 1 ... 1
$lacuna

hyperSpec object
546 spectra
5 data columns
300 data points / spectrum

wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (546 rows x 5 columns)
1. y: y/(mu * m) [numeric]l -4.77 -4.77 ... 19.23
2. x: x/(mu * m) [numeric] -8.55 -7.55 ... 22.45
3. clusters: clusters [factor] lacuna lacuna ... lacuna
4. spc: I / a.u. [matrix300] 0.038900 0.031386 ... 0.049803
5. measurement: measurement [numeric] 1 1 ... 1
$cell

hyperSpec object

142 spectra

5 data columns

300 data points / spectrum
wavelength: Delta * tilde(nu)/cm”-1 [numeric] 602 606 ... 1798
data: (142 rows x 5 columns)

1. y: y/(mu * m) [numeric] 4.23 4.23 ... 16.23

2. x: x/(mu * m) [numeric] -7.55 -6.55 ... 14.45

3. clusters: clusters [factor] cell cell ... cell

34

4. spc: I / a.u. [matrix300] 0.024574 0.027541 ... 0.017377
5. measurement: measurement [numeric] 1 1 ... 1

Splitting can be reversed by rbind (see section 10.1, page 19). Another, similar way to combine a
number of hyperSpec objects with different wavelength axes or extra data columns is collapse (see
section 10.2, page 19).

14. Speed and Memory Considerations

While most of hyperSpec’s functions work at a decent speed for interactive sessions (of course de-
pending on the size of the object), iterated (repeated) calculations as for bootstrapping or iterated
cross validation may ask for special speed considerations.

As an example, let’s again consider the code for shifting the spectra:

tmp <- chondro [1 : 50]
shifts <- rnorm (nrow (tmp))
system.time ({
for (i in seq_len (nrow (tmp)))
tmp [[i]] <- interpolate (tmp [[i]], shifts [i], wl = wl (tmp))

+ + + VvV VvV V

B

user system elapsed
0.140 0.000 0.141

A first possibility is switching of the automatic logging of how the objects are transformed. This is
now the default setting of the option as the loghook will

Logging involves appending rows to the data.frame in slot @log. While the absolute amount of time
needed to add a logbook entry is small, it may be executed very often (e.g. during each call of [).

> hy.setOptions (log = FALSE)

> tmp <- chondro [1 : 50]

> system.time ({

+ for (i in seq_len (mrow (tmp)))

+ tmp [[i]] <- interpolate (tmp [[i]], shifts [i], wl = wl (tmp))
+ 1

user system elapsed
0.24 0.00 0.24

> hy.setOptions (log = TRUE)

Calculations that involve a lot of subsetting (i.e. extracting or changing the spectra matrix or
extra data) can be sped up considerably if the required parts of the hyperSpec object are extracted
beforehand. This is somewhat similar to model fitting in R in general: many model fitting functions
in R are much faster if the formula interface is avoided and the appropriate data.frames or matrices
are handed over directly.

> tmp <- chondro [1 : 50]
> system.time ({
+ tmp.matrix <- tmp [[]]
wl <- wl (tmp)
for (i in seq_len (nrow (tmp)))
tmp.matrix [i,] <- interpolate (tmp.matrix [i,], shifts [i], wl = wl)
tmp [[]] <- tmp.matrix
»

user system elapsed
0.016 0.000 0.017

+ + + + +

35

rbind

collapse

Compiled code. R provides interfaces to Fortran and C code, see the manual “Writing R Exten-
sions”. Repp[3] allows to conveniently integrate C++ code. inline[4] adds another layer of conve-
nience: inline definition of functions in C, C+4++, or Fortran.

An intermediate level is byte compilation of R code, which is done by compiler[5].

Memory use. In general, it is recommended not to work with variables that are more than ap-
proximately a third of the available RAM in size. Particularly the import of raw spectroscopic data
can consume large amounts of memory. At certain points, hyperSpec provides switches that allow
working with data sets that are actually close to this memory limit.

The initialization method new ("hyperSpec", ...) takes particular care to avoid unneccessary
copies of the spectra matrix. In addition, frequent calls to gc () can be requested by hy.setOption
(gc = TRUE). The same behaviour is triggered in read.ENVI and its derivatives (read.ENVI and
read.ENVI.Nicolet). The memory consumption of scan.txt.Renishaw can be lowered by import-
ing the data in chunks (argument nlines).

36

new
("hyperSpec"),
read.ENVIx*,
scan.txt.Renishaw

Index

see assignment functions, 5
@ operator, 4
$ operator, 4

assignment functions, 5

chk.hy, 5

data sets
barbiturates, 3
chondro, 3
flu, 3
laser, 3
paracetamol, 3

extra data, 4

Generic Functions, 4
hyperspectral data sets, 3
intensity, 4

loading, 5

operators, 5
options, 5
debuglevel, 5
gc, 5, 36
log, 5, 9, 35

validity checking, 4
validObject, 5

wavelength, 4
conversion, 15
conversion to index, 13
formula notation, 13
wavelength indices

conversion to wavelength, 13

37

References

[1] Kristian Hovde Liland and BjA rn-Helge Mevik. baseline: Baseline Correction of Spectra, 2012.
URL http://CRAN.R-project.org/package=baseline. R package version 1.1-0.

[2] Ron Wehrens and Bjgrn-Helge Mevik. pls: Partial Least Squares Regression (PLSR) and Prin-
cipal Component Regression (PCR), 2007. URL http://mevik.net/work/software/pls.html.

R package version 2.1-0.

[3] Dirk Eddelbuettel and Romain Frangois. Rcpp: Seamless R and C++ integration. Journal of
Statistical Software, 40(8):1-18, 2011. URL http://wuw. jstatsoft.org/v40/i08/.

[4] Oleg Sklyar, Duncan Murdoch, Mike Smith, Dirk Eddelbuettel, and Romain Francois. inline:
Inline C, C++, Fortran function calls from R, 2010. URL http://www.ebi.ac.uk/~osklyar/
inline/. R package version 0.3.8.

[5] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2012. URL http://www.R-project.org/. ISBN 3-

900051-07-0.

A. Overview of the functions provided by hyperSpec

Function

Explanation

Access parts of the object

[
[<-

L

[[<-

$

$<-

i2wl
isample
labels
labels<-
logbook
logentry
rownames<-
sample
seq.hyperSpec
wl

wl<-

wl2i
Maths

Select / extract / delete spectra, wavelength ranges or extra data
Set parts of spectra or extra data

Select / extract / delete spectra, wavelength ranges or extra data, get
the result as matrix or data.frame

Set parts of spectra matrix

extract a data column (including $spc)

replace a data column (including $spc)

convert, spectra matrix column indices to wavelengths
get a random sample of the spectra as index vector
get column labels

set column labels

logging the data treatment

make a logbook entry

generate random sample of the spectra

sequence along the spectra, either as hyperSpec object or index vector
extract the wavelengths

replace the wavelengths

convert wavelengths to spectra matrix column indices

38

http://CRAN.R-project.org/package=baseline
http://mevik.net/work/software/pls.html
http://www.jstatsoft.org/v40/i08/
http://www.ebi.ac.uk/~osklyar/inline/
http://www.ebi.ac.uk/~osklyar/inline/
http://www.R-project.org/

Function

Explanation

W*h

Vectorization
aggregate

apply

sweep
Comparison
all.equal
Plotting
alois.palette
levelplot
map.identify
map.sel.poly
mark.dendrogram
matlab.dark.palette
matlab.palette
plot

plotc

plotmap

plotspc

plotvoronoi

sel.poly
spc.identify
spc.label.default
spc.label.wlonly
spc.point.default
spc.point.max
spc.point.min
spc.point.sqr
stacked.offsets
trellis.factor.key
Type conversion
as.data.frame
as.long.df

as.matrix

matrix multiplication

another palette

identify spectra in map plot

identify spectra in map plot: select polygon
mark samples in hclust dendrogram

darker version of matlab.palette

palette resembling Matlab’s jet colors

main switchyard for plotting

intensity over one other dimension: calibration plots, time series, depth
series, etc.

false-colour intensity over two other dimensions: spectral images,
maps, etc. (rectangular tesselation)

spectra plots: intensity over wavelength

false-colour intensity over two other dimensions: spectral images,
maps, etc. (Voronoi tesselation)

polygon selection in lattice plot

identify spectra and wavelengths in spectra plot

helper for spc.identify

helper for spc.identify

helper for spc.identify

helper for spc.identify

helper for spc.identify

helper for spc.identify

calculate intensity axis offsets for stacked spectral plots

modify list of levelplot arguments according to factor levels

convert to a long-format data.frame.

39

Function

Explanation

as.t.df
as.wide.df

decomposition

Combine/split
bind
cbind.hyperSpec

collapse
merge

rbind.hyperSpec
split

Basic information
chk.hy

colnames
colnames<-

ncol

nrow

nwl

print

rownames
summary

Create and initialize an object

empty

Options
hy.getOption
hy.getOptions
hy.setOptions
Tests
hy.unittest
Utility functions
mean
mean_pm_sd
mean_sd

pearson.dist

convert to a transposed data.frame (spectra in columns)
convert to a wide-format data.frame with each wavelength one column

re-import results of spectral matrix decomposition (or the like) into
hyperSpec object

commom interface for rbind and cbind

combine objects by adding columns if necessary. See
plyr::rbind.fill.

combines spectral ranges. works if spectra are in only one of the data
sets

bind objects by row, i.e. add wavelength ranges or extra data

checks whether the object is a hyperSpec object

number of data columns (extra data plus spectra matrix)
number of spectra
number of data points per spectrum

summary information

summary information including the log

creates an hyperSpec object with 0 rows, but the same wavelengths as
another object

get an option
get more options

set options

run all unit tests

mean spectrum

mean =+ one standard deviation of a vector

mean and standard deviation of a vector

distance measure based on Pearson’s R?

40

Function

Explanation

quantile

rbind.fill.matrix

we

Spectra-specific transformations
orderwl

spc.bin

spc.fit.poly

spc.fit.poly.below

spc.loess

File import/export
read.ENVI
read.ENVI.Nicolet
read.spc

read.spc.KaiserMap

read.txt.long
read.txt.wide
scan.txt.Renishaw
scan.txt.Witec

scan.zip.Renishaw

write.txt.long

write.txt.wide

quantile spectra
transitional until plyr::rbind.fill. matrix is out

word count using wc if available on the system

sort columns of spectra matrix according to the wavelengths
spectral binning
least sqares fit of a polynomial

least sqares fit of a polynomial with automatic support point determi-
nation

loess smoothing interpolation

import ENVT file
import ENVT files writen by Nicolet spectrometers
import .spc file

import a Raman map saved by Kaiser Optical Systems’ Hologram soft-
ware as multiple .spc files

import long-type ASCII file

imort wide-type ASCII file

import ASCII files produced by Renishaw (InVia) spectrometers
import ASCII files produced by Witec Raman spectrometers

directly read zip packed ASCII files produced by Renishaw spectrom-
eters

export as long-type ASCII file
export as wide-type ASCII file

Session Info

[,1]
sysname "Linux"
release "3.2.0-30-generic"
version
nodename "cb-t61p"
machine "x86_64"
login "unknown"
user "cb"

effective_user "cb"

R version 2.15.1 (2012-06-22)

"#48-Ubuntu SMP Fri Aug 24 16:52:48 UTC 2012"

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=de_DE.UTF-8
[4] LC_COLLATE=C

[7] LC_PAPER=C

[10] LC_TELEPHONE=C

LC_NUMERIC=C LC_TIME=de_DE.UTF-8
LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
LC_NAME=C LC_ADDRESS=C

LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C

41

attached base packages:

[1] tools grid stats graphics grDevices utils datasets methods Dbase

other attached packages:

[1] ggplot2_0.9.2.1 baseline_1.1-0 plotrix_3.4-5 MASS_7.3-21
[5] hyperSpec_0.98-20120923 mvtnorm_0.9-9992 lattice_0.20-10
loaded via a namespace (and not attached):
[1] RColorBrewer_1.0-5 SparseM_0.96 colorspace_1.1-1 dichromat_1.2-4 digest_0.5.2
[6] gtable_0.1.1 labeling 0.1 memoise_0.1 munsell_0.4 plyr_1.7.1
[11] proto_0.3-9.2 reshape2_1.2.1 scales_0.2.2 stringr_0.6.1

42

	Introduction
	Notation and Terms

	Remarks on R
	Generic Functions
	Functionality Can be Extended at Runtime
	Validity Checking
	Special Function Names
	The Names of Operators
	Assignment Functions

	Loading and the package and configuration
	The structure of hyperSpec objects
	Functions provided by hyperSpec
	Obtaining Basic Information about hyperSpec Objects
	Creating a hyperSpec Object, Data Import and Export
	Creating a hyperSpec Object from Spectra Matrix and Wavelength Vector
	Creating Random Spectra

	The Logbook
	Access to the data
	Access Functions and Abbreviations for Parts of the hyperSpec Object's Data
	Selecting and Deleting Spectra
	Random Samples
	Sequences

	Selecting Extra Data Columns
	More on the [[]] and [[]]<- Operators: Accessing Single Elements of the Spectra Matrix
	Wavelengths
	Converting Wavelengths to Indices and vice versa
	Selecting Wavelength Ranges
	Deleting Wavelength Ranges
	Changing the Wavelength Axis
	Ordering the Wavelength Axis

	Conversion to Long- and Wide-Format data.frames
	Conversion to Matrix

	Combining and Decomposing hyperSpec Objects
	Binding Objects together
	Binding Objects that do not Share the Same Extra Data and/or Wavelength Axis
	Binding Objects that do not Share the Same Spectra
	Matrix Multiplication
	Decomposition

	Plotting
	Spectral (Pre)processing
	Cutting the Spectral Range
	Shifting Spectra
	Calculating the Shift

	Removing Bad Data
	Bad Spectra
	Removing Spectra outside mean n sd
	Bad Data Points
	Spikes in Raman Spectra

	Smoothing Interpolation
	Background Correction
	Offset Correction
	Baseline Correction
	Intensity Calibration
	Correcting by a constant, e.g. Readout Bias
	Correcting Wavelength Dependence
	Spectra Dependent Correction

	Normalization
	Centering the Data
	Variance Scaling
	Multiplicative Scatter Correction (MSC)
	Spectral Arithmetic

	Data Analysis
	Data Analysis Methods using a data.frame e.g. Principal Component Analysis with prcomp
	PCA as Noise Filter

	Data Analysis using long-format data.frame e.g. plotting with ggplot2
	Data Analysis Methods using a matrix e.g. Hierarchical Cluster Analysis
	Calculating group-wise Sum Characteristics, e. g. Cluster Mean Spectra
	Splitting an Object, and Binding a List of hyperSpec Objects

	Speed and Memory Considerations
	Overview of the functions provided by hyperSpec

