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Abstract

Thousands of chemicals have been profiled by high-throughput screening programs
such as ToxCast and Tox21; these chemicals are tested in part because most of them have
limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in pre-
dicting tissue concentrations resulting from chemical exposure, and a “reverse dosimetry”
approach can be used to predict exposure doses sufficient to cause tissue concentrations
that have been identified as bioactive by high-throughput screening. We have created four
toxicokinetic models within a new R software package, httk. These models are designed
to be parameterized using high-throughput in vitro data (plasma protein binding and
hepatic clearance), as well as structure-derived physicochemical properties and species-
specific physiological data. The package contains tools for Monte Carlo sampling and
reverse dosimetry along with functions for the analysis of concentration vs. time simu-
lations. The package can currently use human in vitro data to make predictions for 543
chemicals in humans, rats, mice, dogs, and rabbits, including 95 pharmaceuticals and 416
ToxCast chemicals. For 66 of these chemicals, the package includes rat-specific in vitro
data. This package is structured to be augmented with additional chemical data as they
become available. httk enables the inclusion of toxicokinetics in the statistical analysis of
chemicals undergoing high-throughput screening.

Keywords: high-throughput,Toxcast,httk,toxicokinetics,pharmacokinetics.

1. Introduction

Humans are exposed to thousands of chemicals from the environment and consumer products,
most of which have not been tested for toxicity (Park et al. 2012; Wambaugh et al. 2013b;
Egeghy et al. 2011; Judson et al. 2008). In order to screen for potential bioactivity, in vitro
data have been generated in the Tox21 (Bucher 2008) and ToxCast (Judson et al. 2010)
programs using high-throughput screening systems. Over 8500 chemicals have been tested in
at least 50 assays (Tox21), and a subset of around 1800 have had nearly 1200 assay endpoints
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measured (ToxCast). Recently, high-throughput exposure modeling has provided estimates of
daily human exposure for thousands of environmental contaminants (Wambaugh et al. 2014).
However, linking these hazard and exposure predictions to estimate risk requires development
and use of high-throughput toxicokinetics. The terms “pharmacokinetic”, “toxicokinetic”,
and “biokinetic” model have been used somewhat interchangeably in the scientific literature.
However, since this package is intended to provide dose context to high-throughput toxicity
screening projects, we have selected the term “toxicokinetic” even though we include several
compounds with known therapeutic benefits and many others that may not cause adversity
for the highest plausible dose.

Toxicokinetics is a field of study for determining the absorption, distribution, metabolism,
and excretion of substances in the body (O’Flaherty 1981). The necessary data for toxicoki-
netics are commonly collected in rats and other animals, but the collection of these data for
thousands of chemicals is costly in time, money, and animals (Rovida and Hartung 2009).
Creating computational predictive models parameterized with more easily obtained in vitro
data may help address these problems. Inputting estimated exposures into toxicokinetic mod-
els yields information about the steady state and time course concentrations in various parts
of the body. These concentrations can then be compared to concentrations that cause bio-
logical activity in in vitro assays. The models can also be used in a reverse manner, known
as reverse toxicokinetics, by predicting the dose needed to produce a specific concentration
of interest, such as the in vitro AC50 or other levels of biological activity as done in Wet-
more et al. (2012) and Wetmore (2015). Thus chemicals can be ranked based on the ratio
of the predicted exposure dose to the back-calculated bioactive dose (Thomas et al. 2013),
which, due to the linearity of these models, is equal to the ratio of the predicted steady state
concentration to the in vitro bioactive concentration.

Many basic toxicokinetic models (Wetmore et al. 2012; Wetmore 2015; Pelekis et al. 1997)
only predict steady state plasma concentrations (Css), assuming a dose rate that is both
continuous and constant (e.g., infusion dose). With a more dynamic model, such as a phys-
iologically based toxicokinetic (pbtk) model, we can simulate discrete doses to reach steady
state, which we observe to oscillate around the infusion dose prediction. Our pbtk models
include multiple compartments with partition coefficients. These models are expressed as a
set of mass balance differential equations describing the rate of change of the amount of a
substance in each compartment. Chemical-specific physicochemical data and species-specific
in vitro and physiological data are used in calculating the partition coefficients, clearance,
tissue volumes, and blood flows. These in vitro data consist of the intrinsic hepatic clearance,
Clint, and the plasma protein binding, fub. httk provides tools for Monte Carlo sampling
and reverse dosimetry (Tan et al. 2006) along with functions that solve for concentration
vs. time curves, steady state concentrations, the number of days to steady state, and other
toxicokinetic summary statistics for chemicals as shown in Table 4 with the corresponding
abbreviations in Table 1. With this R package we provide data, models, and examples to
allow the inclusion of toxicokinetics in statistical analysis of chemical exposure and toxicity
for 543 chemicals. The package is structured to be modular and expandable to allow new
modeling approaches and chemical data to be added as they become available.
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Variable Name

1compartment One compartment model (O’Flaherty 1981), shown in Figure 1
3compartment Three compartment model (Jamei et al. 2009), shown in Figure 1
3compartmentss Three compartment steady state model (Wetmore et al. 2012; Wetmore 2015)
BW Body weight
Css Average plasma concentration of a chemical at steady state
Clint In vitro intrinsic hepatic clearance
Clmetabolism Whole liver hepatic clearance, scaled from Clint
Clwell−stirred Hepatic clearance modeled with well-stirred approximation using Clmetabolism

fub Fraction unbound, in vitro ratio of unbound to total concentration in plasma
httk High-throughput toxicokinetics
kelim Elimination rate
kgutabs Gut absorption rate, default of 1 h−1

logP Logarithm (base 10) of octanol to water partition coefficient
pbtk Physiologically based toxicokinetic model, shown in Figure 1
Qcardiac Cardiac output, blood flow through the heart and lungs
Qgfr Glomerular filtration rate
Qrest The difference between Qcardiac and the flow to the liver, kidney, and gut
Qtissue Blood flow to a tissue
QSAR Quantitative structure-activity relationship
Rblood2plasma Ratio of the blood concentration of a chemical to the plasma concentration
SBML Systems biology markup language
SMILES Simplified molecular-input line-entry system
Vdist Volume of distribution, the weighted sum of all partition coefficients

Table 1: List of abbreviations.

2. Methods

Version 1.4 of httk is used in this manuscript.

2.1. Models included

The four models in httk include: “pbtk”, “3compartment”, “3compartmentss”, and “1com-
partment”; the predictions and parameters of these models are compared in Table 2. All
models currently use only oral and intravenous (i.v.) dosing. The models pbtk and 3com-
partment, shown in Figure 1, use tissue to unbound plasma partition coefficients calculated
with Schmitt’s method (Schmitt 2008b) (using fub, octanol-water partitioning, membrane
affinity, acid/base dissociation constants, and tissue compositions) to simulate chemical con-
centrations over time for multiple tissue compartments. The model pbtk contains separate
tissue compartments for the gut, liver, lungs, arteries, veins, and kidneys while the model
3compartment only contains compartments for the liver and gut and is essentially a con-
densed form of the model pbtk. The tissues contained in tissue.data that are unused in
each of these models are aggregated into a single compartment termed “rest”, whose partition
coefficient is calculated by averaging the remaining partition coefficients, weighted by their



4 httk: R Package for High-Throughput Toxicokinetics

species-specific tissue volumes. Absorption from the gut lumen into gut tissue is modeled as a
first order process with an arbitrary “fast” absorption rate of 1 h−1. The fraction of the dose
absorbed into the system through the gut wall is set to 1 when measured data are unavail-
able. The gut blood flows directly into the liver, where the hepatic clearance, Clmetabolism, is
calculated with a unit conversion of Clint using the density of hepatocytes in the liver (1.1
x 108 hepatocytes per gram of liver from Birnbaum et al. (1994) and a liver density of 1.05
g/mL from Ito and Houston (2004)). Both models also feature renal elimination by passive
glomerular filtration through the kidneys. We assume perfusion-limited tissue (i.e., tissue, red
blood cells, and plasma come to equilibrium rapidly with respect to the flow of blood), and a
constant Rblood2plasma is used throughout the body and is predicted using the hematocrit and
the predicted partitioning between red blood cells and plasma.

The models 3compartmentss and 1compartment both contain only plasma without separate
compartments for blood and tissue (and thus no partition coefficients). The model 3com-
partmentss, “ss” standing for steady state, is a single equation for the Css of the rest-of-body
compartment in the model 3compartment resulting from i.v. dosing with Rblood2plasma = 1.
This is the same equation used for determining Css in previous work (Rotroff et al. 2010;
Wetmore et al. 2012; Wetmore 2015; Wilkinson and Shand 1975) and is equal to the steady
state concentration of the model 1compartment resulting from infusion dosing. The model
1compartment features an absorption compartment and a total clearance equal to the sum of
the metabolism of the parent compound in the liver, modeled with the “well-stirred” approx-
imation (Wilkinson and Shand 1975; Houston and Carlile 1997), and the renal clearance by
passive glomerular filtration. The elimination rate, ke, is equal to the total clearance divided
by the volume of distribution, Vdist. Vdist is used as the volume of the compartment and is
calculated by summing the plasma volume and the products of each tissue to unbound plasma
partition coefficient, its corresponding volume , and fub (Schmitt 2008b).

Among the four models in the package, the simplest model, 3compartmentss, is applicable to
the largest number of chemicals, specifically those which are missing information needed to
parameterize the other models. It is the only model that does not use partition coefficients
and thus does not require logP, and when fub is below the limit of detection, the model can be
used with Monte Carlo to simulate Css distributions. Thus, fub below the limit of detection
(set to zero in chem.physical_and_invitro.data and 0.005 in default parameter lists) and
Clint are the minimum data requirements for running a model. The model 1compartment is
included to compare our predictions with in vivo experiments which are often characterized
by one compartment model parameters (Vdist and kelim). We note that fully understand-
ing the kinetics of a given chemical might require additional data on features currently not
accessible with high-throughput in vitro approaches, such as bioavailability, transporters,
protein-binding kinetics, and extra-hepatic or strongly saturable metabolism (Rotroff et al.
2010).
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Figure 1: Models(A) 1compartment, (B) 3compartment, and (C) pbtk. In order to preserve
mass-balance, Qrest is defined as the difference between Qcardiac and the flow to the liver,
kidney, and gut. Variable names are defined in Table 1.
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pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes

Table 2: Model parameter and prediction comparison. *Partition coefficients are needed in
calculating Vdist. Clearances and fub are needed in calculating kelim.

2.2. Model equations

The differential equations below describe changes in the concentrations or amounts of a sub-
stance within the model compartments. Although the models are written as changes in tissue
concentrations, excluding the gut lumen, the equations actually express changes in the amount
of substance in the blood of each tissue divided by the tissue volume with the blood and tis-
sue concentrations related through the out-flowing concentration in blood. A blood flow, Q
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(L/day), multiplied by a concentration, C (mol/L), is equal to the amount of the substance
entering or leaving a compartment through the blood, QC (mol/day). We define partition co-
efficients as the ratio of the concentration in a tissue to the unbound concentration in plasma
of that tissue; Ktissue2pu = Ctissue/(fubCplasma). Thus dividing Ctissue by Ktissue2pu and fub
and then multiplying by Rblood2plasma yields the blood concentration of the compartment at
equilibrium, CtissueRblood2plasma/(fubKtissue2pu). Assuming perfusion-limited tissue, we sub-
stitute this term for the out-flowing blood concentrations (Campbell et al. 2012) and assume
negligible blood volume fractions in all tissues to justify dividing by the tissue volume without
a blood volume fraction and partition coefficient dependency. The flow to the rest-of-body,
Qrest, is calculated by subtracting the sum of all the other tissue flows (i.e., gut, liver, and
kidney) from the total cardiac output. The glomerular filtration rate, Qgfr, and the hepatic
clearance, Clmetabolism, (both in L/day) are both multiplied by the unbound plasma concen-
trations, Ctissue/Ktissue2pu, in the kidney and liver to express the amount of the substance
leaving the system. Note that although the units of the clearances, flows, and absorption rate
are in days, being consistent with the model outputs, they are initially entered in units of
hours. The model 3comparmentss assumes a constant dose rate, kdose (mg/kg BW/day), and
the other models use discrete changes in the amount in the gutlumen or venous concentra-
tion, depending on which type of dose is specified. The function that is part of the gut lumen
equation, g(t) describes the oral dosing schedule. MCSim (Bois and Maszle 1997) was used
for converting the model equations into C code, which is used with deSolve (Soetaert et al.
2010a) in solving each system of equations.

pbtk equations

d

dt
Agutlumen = −kgutabsAgutlumen + g(t)

d

dt
Cgut =

(
kgutabsAgutlumen +Qgut

(
Cart −

Rblood2plasma

Kgut2pufub
Cgut

))/
Vgut

d

dt
Cliver =

(
QliverCart +

QgutRblood2plasma

Kgut2pufub
Cgut−

(Qliver +Qgut)Rblood2plasma

Kliver2pufub
Cliver −

Clmetabolism

Kliver2pu
Cliver

)/
Vliver

d

dt
Cven =

((
Qliver +Qgut

Kliver2pu
Cliver +

Qkidney

Kkidney2pu
Ckidney+

Qrest

Krest2pu
Crest

)
Rblood2plasma

fub
−QcardiacCven

)/
Vven

d

dt
Clung = Qcardiac

(
Cven −

Rblood2plasma

Klung2pufub
Clung

)/
Vlung

d

dt
Cart = Qcardiac

(
Rblood2plasma

Klung2pufub
Clung − Cart

)/
Vart
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d

dt
Crest = Qrest

(
Cart −

Rblood2plasma

Krest2pufub
Crest

)/
Vrest

d

dt
Ckidney =

(
QkidneyCart −

QKidneyRblood2plasma

Kkidney2pufub
Ckidney −

Qgfr

Kkidney2pu
Ckidney

)/
Vkidney

3compartment equations

d

dt
Agutlumen = −kgutabsAgutlumen + g(t)

d

dt
Cgut =

(
kgutabsAgutlumen +

QgutRblood2plasma

Krest2pufub
Crest −

QgutRblood2plasma

Kgut2pufub
Cgut

)/
Vgut

d

dt
Cliver =

(
QgutRblood2plasma

Kgut2pufub
Cgut +

QliverRblood2plasma

Krest2pufub
Crest−(

(Qliver +Qgut)Rblood2plasma

fubKliver2pu
+
Clmetabolism

Kliver2pu

)
Cliver

)/
Vliver

d

dt
Crest =

(
(Qgut +Qliver)Rblood2plasma

fubKliver2pu
Cliver−(

Rblood2plasma

fub

(
Qgut +Qliver

)
+Qgfr

)
Crest

Krest2pu

)/
Vrest

1compartment equations

d

dt
Agutlumen = −kgutabsAgutlumen + g(t)

d

dt
Crest =

kgutabs
Vdist

Agutlumen − kelimCrest

3compartmentss

Css = kdose

/(
fubQgfr +

(Qliver +Qgut)fubClmetabolism

(Qliver +Qgut) + fubClmetabolism

)
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Data table Description

chem.invivo.PK.data This data set includes time and dose specific measurements of chemi-
cal concentrations in tissues taken from animals administered control
doses of the chemicals either orally or intravenously. These plasma
concentration-time data are from rat experiments reported in public
sources. Toxicokinetic data were retrieved from those studies by the
Netherlands Organisation for Applied Scientific Research (TNO) using
curve stripping (TechDig v2). These data are provided for statistical
analysis as in Wambaugh et al. (2015).

chem.invivo.PK.summ-
ary.data

This data set summarizes the time course data in the
chem.invivo.PK.data table. Maximum concentration (Cmax),
time integrated plasma concentration for the duration of treatment
(AUC.treatment) and extrapolated to zero concentration (AUC.infinity)
as well as half-life are calculated. Summary values are given for each
study and dosage.

chem.physical and inv-
itro.data

This data set contains the necessary information to make basic, high-
throughput toxicokinetic predictions for compounds, including fub,
Clint, molecular weight, logP, logMA (membrane affinity), and pKa.

tissue.data This data set contains values from Schmitt (2008a) describing the com-
position of specific tissues and from Birnbaum et al. (1994) describing
volumes of and blood flows to those tissues, allowing parameterization
of toxicokinetic models for human, mouse, rat, dog, or rabbit.

physiology.data This data set contains additional physiological values necessary to para-
materize a toxicokinetic model for human, mouse, rat, dog, or rabbit.

Wetmore.data This data set gives the chemical-specific predictions for serum concen-
tration at steady state resulting from infusion exposure at a constant
rate, as published in a series of papers from Barbara Wetmore’s group
(Wetmore et al. 2012, 2013; Wetmore 2015) at the Hamner Institutes
for Life Sciences. Predictions include the median and 90% interval in
µM and mg/L. Calculations were made using the 1 and 10 µM in vitro
measured clearances.

Table 3: List of data tables in the package.

2.3. In vitro chemical data

In vitro experiments provide empirical data for two model parameters. The first, Clint,
the intrinsic hepatic clearance of the parent compound by primary hepatocytes (substrate
depletion approach), was measured in a well on a multi-compound plate (Shibata et al. 2002).
This was determined by dividing the in vitro clearance of the unbound parent chemical by
the fraction of chemical unbound in the hepatocyte intrinsic clearance assay provided in the
parameter lists, which was estimated using a distribution coefficient calculated from pKa
and the method of Kilford et al. (2008). The second in vitro measurement is fub, assessed
using rapid equilibrium dialysis (RED) in which two wells are separated by a membrane that
is permeable by smaller molecules but prevents the plasma protein added to one well from
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migrating to the other well (the relative chemical concentration in the two linked wells gives
the free fraction of chemical) (Waters et al. 2008).

For non-pharmaceutical chemicals, in vitro experimental data were obtained primarily from
Wetmore et al. (2012), Wetmore (2015), and Tonnelier et al. (2012) for humans and Wet-
more et al. (2013) for rats. For pharmaceutical compounds these values are compiled from
Obach (1999), Jones et al. (2002), Naritomi et al. (2003), Ito and Houston (2004), Ri-
ley et al. (2005), Schmitt (2008a), and Obach et al. (2008). These data are contained in
chem.physical_and_invitro.data.

2.4. Physicochemical properties

Physicochemical properties were collated from various sources: molecular weight and structure
are determined from the DSStox database (http:// www.epa.gov/ncct/dsstox), and octanol
to water partitioning is predicted for most compounds with EPA’s Estimation Program Inter-
face (EPI) Suite (http://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-
interface). EPI Suite quantitative structure activity relationships (QSARs) were used to
estimate octanol to water partitioning (logP) if Simplified Molecular Input Line Entry Sys-
tem (SMILES) descriptions of chemical structure were available and the QSARs did not fail
for that structure. In addition to QSAR model estimates, EPI Suite contains a database
of experimentally obtained octanol to water partition coefficients that were used in place of
estimated values when available. Where available, ionization association/dissociation equi-
librium constants (pKa) were curated from the literature; otherwise predictions were made
from structure using the SPARC (SPARC Performs Automated Reasoning in Chemistry)
model (Hilal et al. 1995). Experimental values for membrane affinities (i.e., lipid-bilayer to
water concentration ratios) were taken from Endo et al. (2011) or predicted using a regres-
sion of the data (Endo et al. 2011) when unavailable based on octanol to water partitioning
and temperature in the calculation of partition coefficients. These data are contained in
chem.physical_and_invitro.data.

2.5. Physiological and tissue data

The tissue data needed for calculating partition coefficients, taken from the corrected table
in Schmitt (2008a), include: cellular and water fractions of total volume, lipid and protein
fractions of cellular volume, lipid fractions of the total lipid volume, and the pH of each
tissue. A default plasma pH of 7.4 is taken from Schmitt (2008b) in calculating ionization.
The partition coefficient for the mass and volume of the body unaccounted for by the tissues
included in Schmitt (2008b) is calculated with the averages of the fractional volumes and
pH of these tissues, excluding red blood cells. Temperature data used in the regression for
membrane affinity in the calculation of partition coefficients are taken from Robertshaw and
Reece (2004), Stammers (1926), and Gordon (1993). Tissue flows, volumes, liver density,
hematocrit, and glomerular filtration are taken from Birnbaum et al. (1994). Tissue volumes
are scaled linearly to body weight while the flows, including glomerular filtration, are scaled
by body weight to the 3/4 power (Campbell et al. 2012). The fractional volume of protein
in plasma is calculated by dividing the protein concentration in plasma from Gardner and
Scott (1980) by the density of plasma (calculated with the specific gravity of plasma from
Trudnowski and Rico (1974) and the density of water from Weast and Astle (1982)). The
available data for the fraction of a dose absorbed into the gutlumen are taken from Naritomi
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et al. (2003). The remaining data are taken from Davies and Morris (1993). These data are
included in the physiology.data and tissue.data tables that are accessible in the package.

2.6. Determination of steady state

Although the discrete dosing in our models produces an oscillating steady state, we use the
steady state resulting from equivalent oral infusion dosing at a constant rate, calculated by
analytically solving the differential equations at steady state, to determine when steady state
is reached. The day a chemical reaches steady state is found by determining when the average
concentration of the numerically solved solution for a given day falls within a specified percent
of the analytic solution from oral infusion dosing, calc_css defaulting to 1%.

2.7. Monte Carlo sampler

The package contains a Monte Carlo sampler, monte_carlo, used in calc_mc_css with the
model 3compartmentss for probabilistically simulating biological variability and measurement
uncertainty in parameters determining Css (Thomas et al. 1996). Normal distributions, trun-
cated to ensure positive values are used in the sampler with mean values equal to the model
parameters and default coefficients of variation of 0.3. Body weight, liver volume and blood
flow, cellular density in the liver, Qgfr, and Clmetabolism are all varied in this manner. fub
is drawn from a censored distribution with identical properties to the other distributions,
where values are sampled from a uniform distribution between 0% and the limit of detection
(default of 1% unbound) at a rate proportional to the number of samples from the truncated
normal distribution below the limit of detection. fub below the limit of detection (set to
zero in chem.physical_and_invitro.data) is set to a default value of 0.005 in the model
parameters. For each chemical, a default of 1000 different combinations of parameters are
used to determine Css. These concentrations are determined with doses of 1 mg/kg BW/day
but, given the linear concentration response of the models, can be extrapolated to other doses
with calc_mc_css. Using calc_mc_oral_equiv, we can, in a reverse manner, back calcu-
late the dose for a given concentration and quantile. The functions get_wetmore_css and
get_wetmore_oral_equiv perform the same operations on doses and concentrations using
the published Css results from Wetmore et al. (2012), Wetmore et al. (2013), and Wetmore
(2015), contained in the Wetmore.data table, which used the same in vitro data as contained
in the package. However, these data only contain the 5%, median, and 95% quantiles for
humans and the median for rats. These results were obtained with the SimCYP population
simulator (Jamei et al. 2009) in a manner identical to the default simulation in calc_mc_css

with two exceptions. The Wetmore data assumed fub = 0.005 for chemicals with fub below
the limit of detection instead of sampling the value from a censored distribution, and the
Clmetabolism values were accepted as nonzero if the p-value was less than 0.1 instead of 0.05
as used in our sampler.
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Function Description

add chemtable Adds a table of chemical data to the data tables contained in the package.
calc analytic css Calculates Css and blood concentrations for the four models used in the

package from infusion dosing at a constant rate.
calc css Calculates the max and average steady state concentrations along with

the day steady state is reached from the numerical solution.
calc elimination rate Calculates kelim for a one compartment model due to the liver and kid-

neys, dividing the total clearance by Vdist.
calc hepatic clearance Calculates the hepatic clearance for a well-stirred model or other type if

specified. (Ito and Houston 2004)
calc mc css Monte Carlo simulation of the model 3compartmentss.
calc mc oral equiv Converts Css to an oral equivalent dose using a concentration obtained

from calc_mc_css.
calc rblood2plasma Calculates the ratio of chemical concentration in blood to plasma.
calc stats Calculates the area under the curve, mean, and peak values for the blood

or plasma concentration of either a specified chemical or all chemicals
for a given simulation.

calc total clearance Calculates the total clearance rate for a one compartment model where
clearance is equal to the sum of the well-stirred metabolism by the liver
and glomerular filtration in the kidneys.

calc vdist Calculates the volume of distribution for a one compartment model.
(Schmitt 2008b)

export pbtk jarnac Exports the model pbtk to Jarnac. (Sauro and Fell 2000)
export pbtk sbml Exports the model pbtk to SBML. (Hucka et al. 2003)
get cheminfo Provides a list of CAS numbers along with compound names, logP, pKa,

molecular weight, Clint and its p-value, and fub if specified for chemicals
with sufficient data for a given model.

get wetmore cheminfo Provides the names and CAS numbers of chemicals with information
from Wetmore et al. (2012), Wetmore et al. (2013), and Wetmore (2015).

get wetmore css Retrieves Css as a result of oral infusion dosing from Wetmore et al.
(2012), Wetmore et al. (2013), and Wetmore (2015).

get wetmore
oral equiv

Converts Css to an oral equivalent dose using the values from Wetmore
et al. (2012), Wetmore et al. (2013), and Wetmore (2015).

lump tissues Lumps tissue flows, volumes, and input partition coefficients based on
specified grouping.

monte carlo Runs a monte carlo simulation of a given model.
parameterize 1comp Parameterizes the model 1compartment.
parameterize 3comp Parameterizes the model 3compartment.
parameterize pbtk Parameterizes the model pbtk.
parameterize schmitt Parameterizes predict_partitioning_schmitt.
parameterize steady-
state

Parameterizes the model 3compartmentss, used in Wetmore et al. (2012)
and Wetmore (2015).

predict partitioning
schmitt

Predicts partition coefficients using Schmitt’s method (Schmitt 2008b).

solve 1comp Solves the model 1compartment.
solve 3comp Solves the model 3compartment.
solve pbtk Solves the model pbtk.

Table 4: List of functions in the package. Models are described in Table 2. Parameters are
defined in Table 1. Jarnac and SBML are external languages for systems biology models.
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3. Examples

The following examples are run with version 1.4 and may not generate the same outputs as
other versions. If using httk for regulatory purposes, archive a copy of the version used. To
check if the version installed is 1.4:

R> sessionInfo()$otherPkgs$httk$Version == "1.4"

3.1. Accessing and changing model parameters

httk allows the user to access and change the parameters used in each of the models. The
models each contain their own parameterize function that generates a list of the parameters
required by the model. For example, to get a list of parameters for the pbtk model of triclosan
in a rat:

R> parameters <- parameterize_pbtk(chem.name = "triclosan", species = "rat")

To see the effect a change in parameters has on the model, we can modify the desired entries in
the list and use the new parameter list as an input for the parameters argument of a function
that uses that model. For example, to change the fub in the previous parameters list to 0.1
from the default of 0.005 (noting the warning that fub is below the limit of detection) and use
it in a simulation of the pbtk model for a single dose of 1 mg/kg BW of triclosan in a rat:

R> parameters["Funbound.plasma"] <- 0.1

R> out <- solve_pbtk(parameters=parameters)

Individual parameters such as the Rblood2plasma, total clearance, Vdist, metabolic clearance,
and kelim can also be calculated using the functions with the prefix calc followed by the
parameter name and the same arguments as the above parameterize function.

3.2. Making data frames and tables

In order to compare predictions or models, we can construct tables or data frames. Suppose
we want to look at how Css at 1 mg/kg BW/day compares for the model pbtk, the median
of the Monte Carlo simulation, and the Wetmore data. We can construct a data frame
(used with ggplot2 (Wickham 2009) in the following examples) containing these data with
a for loop. The intersection of get_wetmore_cheminfo and get_cheminfo contains all the
CAS numbers that will work for all three functions. In the example below, setting model

to “pbtk” in get_cheminfo removes the chemicals from the list with fub below the limit of
detection. This is the same as setting exclude.fub.zero to true. However, we could include
these chemicals by using the default model option of “3compartmentss”, and fub would then
automatically be set to 0.005.

R> table <- NULL

R> for(this.cas in intersect(get_cheminfo(model = "pbtk"),

+ get_wetmore_cheminfo())){

+ this.row <- as.data.frame(this.cas)

+ this.row <- cbind(this.row, as.data.frame(calc_analytic_css(
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+ chem.cas = this.cas, model = "pbtk", output.units = "mg/L")))

+ this.row <- cbind(this.row, as.data.frame(get_wetmore_css(

+ chem.cas = this.cas, which.quantile = .50)))

+ this.row <- cbind(this.row, as.data.frame(calc_mc_css(

+ chem.cas = this.cas, which.quantile = .50)))

+ table <- rbind(table, this.row)

+ }

R> colnames(table) <- c("CAS", "PBTK", "Wetmore", "MC")

3.3. Plotting

Concentration vs time

The function solve_pbtk has the option of returning plots for the compartment concentra-
tions vs. time, but to see how Css resulting from discrete dosing deviates from the average
steady state concentration, we can make a plot with ggplot2 that includes a horizontal line
through the y axis at the predicted Css for oral infusion dosing (Figure 2). We calculate the
analytic Css and enter it into geom_hline as the y intercept and add all the other options to
our ggplot object.

R> library("ggplot2")

R> out <- solve_pbtk(chem.name = "Bisphenol A", days = 50, doses.per.day = 3)

R> plot.data <- as.data.frame(out)

R> css <- calc_analytic_css(chem.name = "Bisphenol A")

R> c.vs.t <- ggplot(plot.data,aes(time, Cplasma)) + geom_line() +

+ geom_hline(yintercept = css) + ylab("Plasma Concentration (uM)") +

+ xlab("Day") + theme(axis.text = element_text(size = 16), axis.title =

+ element_text(size = 16), plot.title = element_text(size = 17)) +

+ ggtitle("Bisphenol A")

R> print(c.vs.t)

This example plots the concentration vs. time of 1 mg/kg BW/day of Bisphenol A broken into
three doses per day. The same plots can be made for the other models by substituting one of
the other two solve functions, solve_3comp or solve_1comp, for solve_pbtk and setting the
model argument of calc_analytic_css to the corresponding model. These three functions
also have the option of simulating a single oral or i.v. dose and setting the initial values of
each compartment with units matching the specified output units (default is µM).
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Figure 2: Css at 3 doses per day, 1 mg/kg BW/day.

Days to steady state histogram

Creating histograms can allow us to visualize how a given value varies across all the chemicals
contained within the package. To create a histogram using ggplot2 of the number of days to
steady state, we must first set up a for loop with get_cheminfo and calc_css to generate a
vector containing the data. Vectors containing the average and maximum concentrations at
steady state are also generated in this example, avg and max. The data contained in the days
vector are then plotted as a histogram (Figure 3). We can just as easily create a histogram
containing the average or maximum steady state concentrations by substituting avg or max
for days.

R> library("ggplot2")

R> days <- NULL

R> avg <- NULL

R> max <- NULL

R> for(this.cas in get_cheminfo()){

+ css.info <- calc_css(chem.cas = this.cas, doses.per.day = 1,
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+ suppress.messages=T)

+ days[[this.cas]] <- css.info[["the.day"]]

+ avg[[this.cas]] <- css.info[["avg"]]

+ max[[this.cas]] <- css.info[["max"]]

+ }

R> days.data <- as.data.frame(days)

R> hist <- ggplot(days.data, aes(days)) +

+ geom_histogram(fill = "blue", binwidth = 1/6) + scale_x_log10() +

+ ylab("Number of Chemicals") + xlab("Days") + theme(axis.text =

+ element_text(size = 16), axis.title = element_text(size = 16))

R> print(hist)
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Figure 3: Days to steady state histogram.

Average vs maximum concentration

We can compare the average and maximum concentrations at steady state using the average
and maximum concentration at steady state vectors, avg and max, from the previous example.
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The vectors are bound into a data frame and plotted with a line through the origin with a
slope of 1 (Figure 4).

R> library("ggplot2")

R> avg.max.data <- as.data.frame(cbind(avg, max))

R> avg.vs.max <- ggplot(avg.max.data, aes(avg, max)) + geom_point() +

+ geom_abline() + scale_x_log10() + scale_y_log10() +

+ xlab("Average Concentration at Steady State (uM)") +

+ ylab("Max Concentration at Steady State (uM)") +

+ theme(axis.text = element_text(size = 16),

+ axis.title = element_text(size = 16))

R> print(avg.vs.max)
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Figure 4: Average vs. maximum concentration at steady state for 1 dose per day, 1 mg/kg
BW/day.

3.4. Calculating AUC, peak, and mean values

The function calc_stats calculates the area under the curve (AUC), peak, and mean concen-
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trations of any of the solve functions. If a chemical name or CAS number is specified, it will
calculate the specified statistics for that chemical, and if not, it will calculate the values for
all chemicals with sufficient data. To calculate the peak statistics for all chemicals simulated
for 10 days at 1 mg/kg BW/day with 3 doses per day and a list containing the AUC, peak,
and mean for a single 1 mg dose of triclosan over 10 days, we have:

R> all.peak.stats <- calc_stats(days=10, doses.per.day = 3, stats = "peak")

R> triclosan.stats <- calc_stats(days=10, chem.name = "triclosan")

3.5. Monte Carlo sampler

The functions calc_mc_css and get_wetmore_css generate Css vectors of Monte Carlo
samples and their quantiles. While calc_mc_css generates new values using the sampler,
get_wetmore_css retrieves literature values from Wetmore.data. Below are examples of these
two functions, comparing the medians of the Wetmore data in humans for 1 mg/kg BW/day
of Bisphenol A with the calc_mc_css simulation with probability distributions containing a
third of the standard deviation, half the limit of detection for fub, and double the number of
samples of the parameters used in Wetmore et al. (2012) and Wetmore (2015).

R> get_wetmore_css(chem.cas="80-05-7", daily.dose = 1,

+ which.quantile = 0.5, output.units = "uM")

R> calc_mc_css(chem.cas = "80-05-7", daily.dose = 1, which.quantile = 0.5,

+ censored.params = list(Funbound.plasma = list(cv = 0.1, lod = 0.005)),

+ vary.params = list(BW = 0.15, Vliverc = 0.15, Qgfrc = 0.15,

+ Qtotal.liverc = 0.15, million.cells.per.gliver = 0.15, Clint = 0.15),

+ output.units = "uM", samples = 2000)

The oral equivalent functions convert Css into a dose. Below is an example of a 50 µM
Css of Bisphenol A converted to an oral equivalent dose using the Wetmore data for the
95th quantile of human Css. We can call calc_mc_oral_equiv in the same manner, passing
additional arguments to calc_mc_css within the function and specifying any quantile we
want.

R> get_wetmore_oral_equiv(50, chem.cas = "80-05-7")

We can also use the Monte Carlo sampler used in calc_mc_css, monte_carlo, to perform
the same simulations using another model. Setting the return.samples argument of the
calc_mc or monte_carlo functions to true, we can generate the sampling distribution for the
Monte Carlo simulation from which the quantiles are calculated. To perform a Monte Carlo
simulation on zoxamide (Figure 5) with the model pbtk with the same limit of detection and
coefficients of variation of two thirds the size of those used in calc_mc_css, we have:

R> vary.params <- NULL

R> params <- parameterize_pbtk(chem.name = "Zoxamide")

R> for(this.param in names(subset(params,

+ names(params) != "Funbound.plasma"))) vary.params[this.param] <- .2
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R> censored.params <- list(Funbound.plasma = list(cv = 0.2, lod = 0.01))

R> set.seed(1)

R> out <- monte_carlo(params, cv.params = vary.params,

+ censored.params = censored.params, return.samples = T,

+ model = "pbtk", suppress.messages = T)

R> zoxamide <- ggplot(as.data.frame(out), aes(out)) +

+ geom_histogram(fill="blue", binwidth=1/6) + scale_x_log10() +

+ ylab("Number of Samples") + xlab("Steady State Concentration (uM)") +

+ theme(axis.text = element_text(size = 16),

+ axis.title = element_text(size = 16))

R> print(zoxamide)

The out vector is then plotted in a similar way to the days vector in the previous histogram
example.
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Figure 5: Sampling distribution of zoxomide Css from the model pbtk.

3.6. Adding a tissue

The fractional volumes and pH values from Schmitt (2008a) needed to calculate the partition
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coefficients are contained in tissue.data. New tissues can be added to this table to generate
their partition coefficients. We can add thyroid to the tissue data by making a row containing
its data, subtracting the volumes and flows from the rest-of-body, and binding the row to
tissue.data. Here we assume it contains the same partition coefficient data as the spleen
and a tenth of the volume and blood flow:

R> new.tissue <- tissue.data[tissue.data$Tissue == "spleen",]

R> new.tissue[, "Tissue"] <- "thyroid"

R> new.tissue[, 11:20] <- new.tissue[, 11:20] / 10

R> tissue.data[tissue.data$Tissue == "rest", 11:20] <-

R> tissue.data[tissue.data$Tissue == "rest", 11:20] - new.tissue[, 11:20]

R> tissue.data <- rbind(tissue.data, new.tissue)

We can also choose what tissues we want lumped together or in the rest-of-body compartment.
The tissuelist argument in parameterize_pbtk contains a list of the desired compartment
names, each containing a vector of the names of the tissues in tissue.data to be lumped
together in that compartment. All unspecified tissues in tissue.data are lumped together
in the rest-of-body. Lumped flows and volumes are calculated through addition of the indi-
vidual component flows and volumes while the lumped partition coefficients are calculated
through dividing the sum of the products of the partition coefficients and their corresponding
compartment volumes by the new lumped volume. To generate the parameters for a model
with kidneys, thyroid, a liver compartment combining the liver and gut, and a rest-of-body
compartment:

R> compartments <- list(liver = c("liver", "gut"),

+ kidney = c("kidney"), thyroid = c("thyroid"))

R> parameterize_pbtk(chem.name="Nicotine", tissuelist = compartments)

No matter which compartments we specify, the liver volume as well as the gut, liver, and
kidney flows are returned for the calculation of clearance and metabolism.

3.7. Export functions

Jarnac (Sauro and Fell 2000) and SBML (Hucka et al. 2003) are commonly used languages
for systems biology models of cellular and physiological processes. In the event that a mod-
eler wishes to couple such a model to a toxicokinetic model, we provide functions to export
model equations and chemical-specific parameters to these languages. The two functions,
export_pbtk_sbml and export_pbtk_jarnac, have the same arguments and only differ in
the file extension names (.xml and .jan) entered into the filename argument. Both use liters
as the units for volume, but the amounts are unitless and to be determined by the user. If
we suppose that we enter an initial amount of 1 mg in the gut lumen, then all the other
compartments will contain amounts in mg. Below is a call of an export function for a dose of
1 given to a rat.

R> export_pbtk_sbml(chem.name = "Bisphenol A", species = "Rat",

+ initial.amounts = list(Agutlumen = 1), filename = "PBTKmodel.xml")
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Concluding remarks

The R software platform is increasingly being used for the statistical analysis of mathemat-
ical models (Wambaugh et al. 2015; Gelman et al. 2013). With the launch of the package
odesolve (Setzer 2001), which was expanded and replaced by deSolve (Soetaert et al. 2010b),
R can be used to solve models consisting of systems of differential equations. R further al-
lows organization and handling of large data sets, making it especially suitable for analyzing
the results from high-throughput experiments (Judson et al. 2010). Given the reliance on
mathematical models and in vitro testing to prioritize investigation of the large number of
relatively untested environmental chemicals (Wetmore et al. 2012; Wetmore 2015), software
platforms such as R allow the systematic statistical evaluation of the performance of these
technologies (Wambaugh et al. 2015). httk allows the simulation of four toxicokinetic models
for 543 chemicals (including 416 ToxCast chemicals and 95 pharmaceuticals) in humans, rats,
mice, dogs, and rabbits.

All models in httk are parameterized using data on key determinants of toxicokinetics that
can be measured in vitro using relatively high-throughput methods (Wetmore et al. 2012;
Wetmore 2015). The package includes toxicokinetic models ranging from a one compartment
model to a PBTK model, but even the PBTK model is relatively spare, with most tissues
lumped into a rest-of-body compartment. Rowland (2004) argued that the “best” model is the
one that most reliably answers the question at hand (Rowland et al. 2004). Thus, the most
parsimonious model — that is, the simplest, most easily understood model allowing useful
predictions — should be preferred (Chiu and White 2006). However, since PBTK models allow
the incorporation of additional, physiological information, we may expect our model pbtk to
be the most accurate on average. We hope these models provide predictions of chemical-
specific toxicokinetics as informed by in vitro data and physicochemical properties without
introducing errors from unnecessary assumptions (Rowland et al. 2004; Chiu and White 2006).
The parameterize_pbtk function provides parameter estimates for more complex models as
needed (Yang and Lu 2007), though our solvers are currently limited to the four model
structures. In future versions, we expect to have the ability to add new compartments using
these parameters and simulate dermal and inhalation exposure.

The httk package provides functions for the application of Monte Carlo methods, in vitro-in
vivo extrapolation, and reverse dosimetry. httk links exposure scenarios, including constant
oral infusion, a single dose, or multiple discrete doses, to predicted tissue and plasma concen-
trations. Standard toxicokinetic statistics including peak concentration and time-integrated
plasma concentration (area under the curve or AUC) can be predicted, facilitating dosimetric
anchoring (Wambaugh et al. 2013a) for comparing in vivo toxicity studies where toxicokinetic
data were not collected (Wetmore et al. 2013). Important aspects of the steady-state behav-
ior of the chemicals can be predicted for use in analysis of biomonitoring data, including the
time to steady-state and Css (Wetmore et al. 2012; Wetmore 2015; Aylward and Hays 2011;
Wambaugh et al. 2013b, 2014). Finally, as ongoing in vitro experiments allow parameter-
ization of the models for additional chemicals, these new data can be easily distributed as
updates to the package on the CRAN repository.
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