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Abstract

Homogeneity analysis combines maximizing the correlations between variables of a
multivariate data set with that of optimal scaling. In this article we present methodological
and practical issues of the R package homals which performs homogeneity analysis and
various extensions. By setting rank constraints nonlinear principal component analysis can
be performed. The variables can be partitioned into sets such that homogeneity analysis is
extended to nonlinear canonical correlation analysis or to predictive models which emulate
discriminant analysis and regression models. For each model the scale level of the variables
can be taken into account by setting level constraints. All algorithms allow for missing
values.

Keywords: Gifi methods, optimal scaling, homogeneity analysis, correspondence analysis, non-
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1. Introduction

During the last years correspondence analysis (CA) has become a popular descriptive statisti-
cal method to analyze categorical data (Benzecri 1973; Greenacre 1984; Gifi 1990; Greenacre
and Blasius 2006). Due to the fact that the visualization capabilities of statistical software
have increased during this time, researchers of many areas apply CA and map objects and
variables (and their respective categories) onto a common metric plane.

Currently, R (R Development Core Team 2008) offers a variety of routines to compute CA
and related models. An overview of corresponding functions and packages is given in Mair
and Hatzinger (2007). The package ca (Nenadic and Greenacre 2006) is a comprehensive
tool to perform simple and multiple CA. Various two- and three-dimensional plot options are
provided.

In this paper we present the R package homals, starting from the simple homogeneity analysis,
which corresponds to a multiple CA, and providing several extensions. Gifi (1990) points
out that homogeneity analysis can be used in a strict and a broad sense. In a strict sense
homogeneity analysis is used for the analysis of strictly categorical data, with a particular
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loss function and a particular algorithm for finding the optimal solution. In a broad sense
homogeneity analysis refers to a class of criteria for analyzing multivariate data in general,
sharing the characteristic aim of optimizing the homogeneity of variables under various forms
of manipulation and simplification (Gifi 1990, p. 81). This view of homogeneity analysis will
be used in this article since homals allows for such general computations. Furthermore, the
two-dimensional as well as three-dimensional plotting devices offered by R are used to develop
a variety of customizable visualization techniques. More detailed methodological descriptions
can be found in Gifi (1990) and some of them are revisited in Michailidis and de Leeuw (1998).

2. Homogeneity Analysis

In this section we will focus on the underlying methodological aspects of homals. Starting
with the formulation of the loss function, the classical alternating least squares algorithm is
presented in brief and the relation to CA is shown. Starting from basic homogeneity analysis
we elaborate various extensions such as nonlinear canonical analysis and nonlinear principal
component analysis. A less formal introduction to Gifi methods can be found in Mair and de
Leeuw (2008).

2.1. Establishing the loss function

Homogeneity analysis is based on the criterion of minimizing the departure from homogeneity.
Homogeneity is measured by a loss function. To write the corresponding basic equations the
following definitions are needed. For i = 1, . . . , n objects, data on m (categorical) variables
are collected where each of the j = 1, . . . ,m variable takes on kj different values (their levels
or categories). We code them using n×kj binary indicator matrices Gj , i.e., a dummy matrix
for each variable. The whole set of indicator matrices can be collected in a block matrix

G
∆=

[
G1

... G2
... · · ·

... Gm

]
. (1)

In this paper we derive the loss function including the option for missing values. For a simpler
(i.e. no missings) introduction the reader is referred to Michailidis and de Leeuw (1998, p.
307–314). In the indicator matrix missing observations are coded as complete zero rows; if
object i is missing on variable j, then row i of Gj is 0, otherwise row sum becomes 1 since
the category entries are disjoint. This corresponds to the first missing option presented in
Gifi (1990, p. 74). Other possibilities would be to add an additional column to the indicator
matrix for each variable with missing data or to add as many additional columns as there are
missing data for the j-th variable. However, our approach is to define the binary diagonal
matrix Mj if dimension n × n for each variable j. The diagonal element (i, i) is equal to 0
if object i has a missing value on variable j and equal to 1 otherwise. Based on Mj we can
define M? as the sum of the Mj ’s and M• as their average.

For convenience we introduce

Dj
∆=G′jMjGj = G′jGj , (2)

as the kj×kj diagonal matrix with the (marginal) frequencies of variable j in its main diagonal.

Now let X be the unknown n × p matrix containing the coordinates (object scores) of the
object projections into Rp. Furthermore, let Yj be the unknown kj × p matrix containing the
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coordinates of the category projections into the same p-dimensional space (category quantifi-
cations). The problem of finding these solutions can be formulated by means of the following
loss function to be minimized:

σ(X;Y1, . . . , Ym) ∆=
m∑

j=1

tr(X −GjYj)′Mj(X −GjYj) (3)

We use the normalization u′M•X = 0 and X ′M•X = I in order to avoid the trivial solution
X = 0 and Yj = 0. The first restriction centers the graph plot (see Section 4) around the
origin whereas the second restriction makes the columns of the object score matrix orthogonal.
Multiplying the scores by

√
n/m gives a mean of 0 and a variance of 1 (i.e., they are z-scores).

Note that from an analytical point of view the loss function represents the sum-of-squares of
(X−GjYj) which obviously involves the object scores and the category quantifications. Thus,
the aim is to minimize simultaneously over X and Yj . We give a graphical interpretation of
the loss function in the following section.

2.2. Geometry of the loss function

In the homals package we use homogeneity analysis as a graphical method to explore mul-
tivariate data sets. The joint plot where the object scores and the category quantifications
are mapped in a joint space, can be considered as the classical or standard homals plot. The
category points are the centers of gravity of the object points that share the same category.
The larger the spread between category points the better a variable discriminates and thus
the smaller the contribution to the loss. The closeness of two objects in the plot is related
to the similarity of their response patterns. A “perfect” solution, i.e., without any loss at all,
would imply that all object points coincide with their category points.

Moreover, we can think of G as the adjacency matrix of a bipartite graph in which the n
objects and the kj categories (j = 1, . . . ,m) are the vertices. In the corresponding graph
plot an object and a category are connected by an edge if the object is in the corresponding
category. The loss in (3) pertains to the sum of squares of the line lengths in the graph plot.
Producing a star plot, i.e., connecting the object scores with their category centroid, the loss
corresponds to the sum over variables of the sum of squared line lengths. More detailed plot
descriptions are given in Section 4.

2.3. Minimizing the loss function

Typically, the minimization problem is solved by the iterative alternating least squares algo-
rithm (ALS; sometimes quoted as reciprocal averaging algorithm). At iteration t = 0 we start
with arbitrary object scores X(0). Each iteration t consists of three steps:

1. Update category quantifications: Y (t)
j = D−1

j G′jX
(t) for j = 1, . . . ,m

2. Update object scores: X̃(t) = M−1
?

∑m
j=1GjY

(t)
j

3. Normalization: X(t+1) = M
− 1

2
? orth(M

− 1
2

? X̃(t))

Note that matrix multiplications using indicator matrices can be implemented efficiently as
cumulating the sums of rows over X and Y .
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Here orth is some technique which computes an orthonormal basis for the column space
of a matrix. We can use QR decomposition, modified Gram-Schmidt, or the singular value
decomposition (SVD). In homals the left singular vectors of X̃(t), here denoted as lsvec, are
used.

To simplify, let Pj denote the orthogonal projector on the subspace spanned by the columns
of Gj , i.e., Pj = GjD

−1
j G′j . Correspondingly, the sum over the m projectors is

P? =
m∑

j=1

Pj =
m∑

j=1

GjD
−1
j G′j . (4)

Again, P• denotes the average. By means of the lsvec notation and including P• we can
describe a complete iteration step as

X(t+1) = lsvec(X̃(t)) = lsvec(M−1
• P•X

(t)). (5)

In each iteration t we compute the value of the loss function to monitor convergence. Note
that Formula (5) is not suitable for computation, because it replaces computation with sparse
indicator matrices by computations with a dense average projector.

Computing the homals solution in this way is the same as performing a CA on G. Usually,
multiple CA solves the generalized eigenproblem for the Burt matrix C = G′G and its diagonal
D (Greenacre 1984; Greenacre and Blasius 2006). Thus, we can put the problem in Equation
3 into a SVD context (de Leeuw, Michailidis, and Wang 1999). Using the block matrix
notation, we have to solve the generalized singular value problem of the form

GY = M?XΛ, (6)
G′X = DY Λ, (7)

or equivalently one of the two generalized eigenvalue problems

GD−1G′X = M?XΛ2, (8)
G′M−1

? GY = DY Λ2. (9)

Here the eigenvalues Λ2 are the ratios along each dimension of the average between-category
variance and the average total variance. Also X ′PjX is the between-category dispersion for
variable j. Further elaborations can be found in Michailidis and de Leeuw (1998).

Compared to the classical SVD approach, the ALS algorithm only computes the first p di-
mensions of the solution. This leads to an increase in computational efficiency. Moreover, by
capitalizing on sparseness of G, homals is able to handle large data sets.

The goodness-of-fit of a solution can be examined by means of a screeplot of the eigenvalues.
The contribution of each variable to the final solution can be examined by means of discrim-
ination measures defined by ||GjYj ||2 /n (see Meulman 1996). A plot of the discrimination
measures will be shown in the examples section.

3. Extensions of homogeneity analysis

Gifi (1990) provides various extensions of homogeneity analysis and elaborates connections
to other multivariate methods. The package homals allows for imposing restrictions on the
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variable ranks and levels as well as defining sets of variables. These options offer a wide spec-
trum of additional possibilities for multivariate data analysis beyond classical homogeneity
analysis (cf. broad sense view in the Introduction).

3.1. Nonlinear principal component analysis

Having a n×m data matrix with metric variables, principal components analysis (PCA) is a
common technique to reduce the dimensionality of the data set, i.e., to project the variables
into a subspace Rp where p � m. The Eckart-Young theorem states that this classical form
of linear PCA can be formulated by means of a loss function. Its minimization leads to a
n× p matrix of component scores and an m× p matrix of component loadings.

However, having nonmetric variables, nonlinear PCA (NLPCA) can be used. The term “non-
linear” pertains to nonlinear transformations of the observed variables (de Leeuw 2006). In
Gifi terminology, NLPCA can be defined as homogeneity analysis with restrictions on the
quantification matrix Yj . Let us denote rj ≤ p as the parameter for the imposed restriction
on variable j. If no restrictions are imposed, as e.g. for a simple homals solution, rj = kj − 1
iff kj ≤ p, and rj = p otherwise.

We start our explanations with the simple case for rj = 1 for all j. In this case we say that
all variables are single and the rank restrictions are imposed by

Yj = zja′j , (10)

where zj is a vector of length kj with category quantifications and aj a vector of length p
with weights. Thus, each quantification matrix is restricted to rank 1, which allows for the
existence of object scores with a single category quantification.

3.2. Multiple Quantifications

It is not necessarily needed that we restrict the rank of the score matrix to 1. Our homals
implementation allows for multiple rank restrictions. We can simply extend Equation 10 to
the general case

Yj = ZjA
′
j (11)

where again 1 ≤ rj ≤ min (kj − 1, p), Zj is kj × rj and Aj is p× rj . We require, without loss
of generality, that Z ′jDjZj = I. Thus, we have the situation of multiple quantifications which
implies imposing an additional constraint each time PCA is carried out.

To establish the loss function for the rank constrained version we write r? for the sum of the
rj and r• for their average. The block matrix G of dummies now becomes

Q
∆=

[
G1Z1

... G2Z2
... · · ·

... GmZm

]
. (12)

Gathering the Aj ’s in a block matrix as well, the p× r? matrix

A
∆=

[
A1

... A2
... · · ·

... Am

]
(13)
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results. Then, Equation 3 becomes

σ(X;Z;A) =
m∑

j=1

tr (X −GjZjA
′
j)
′Mj(X −GjZjA

′
j) =

= mtr X ′M?X − 2tr X ′QA+ tr A′A =
= mp+ tr (Q−XA)′(Q−XA)− tr Q′Q =

= tr(Q−XA)′(Q−XA) +m(p− r•) (14)

This shows that σ(X;Y1, · · · , Ym) ≥ m(p− r•) and the loss is equal to this lower bound if we
can choose the Zj such that Q is of rank p. In fact, by minimizing (14) over X and A we see
that

σ(Z) ∆= min
X,A

σ(X;Z;A) =
r?∑

s=p+1

λ2
s(Z) +m(p− r•), (15)

where the λs are the ordered singular values. A corresponding example in terms of a lossplot
is given in Section 4.

3.3. Level Constraints: Optimal Scaling

From a general point of view, optimal scaling attempts to do two things simultaneously:
The transformation of the data by a transformation appropriate for the scale level (i.e. level
constraints), and the fit of a model to the transformed data to account for the data. Thus
it is a simultaneous process of data transformation and data representation (Takane 2005).
In this paper we will take into account the scale level of the variables in terms of restrictions
within Zj . To do this, the starting point is to split up Equation 14 into two separate terms.
Using Ŷj = D−1

j G′jX this leads to∑m
j=1 tr(X −GjYj)′Mj(X −GjYj)

=
∑m

j=1 tr(X −Gj(Ŷj + (Yj − Ŷj)))′Mj(X −Gj(Ŷj + (Yj − Ŷj)))

=
∑m

j=1 tr(X −Gj Ŷj)′Mj(X −Gj Ŷj) +
∑m

j=1 tr(Yj − Ŷj)′Dj(Yj − Ŷj). (16)

Obviously, the rank restrictions Yj = ZjA
′
j affect only the second term and hence, we will

proceed on our explanations by regarding this particular term only, i.e.,

σ(Z;A) =
m∑

j=1

tr(ZjA
′
j − Ŷj)′Dj(ZjA

′
j − Ŷj). (17)

Now, level constraints for nominal, ordinal, polynomial, and numerical variables can be im-
posed on Zj in the following manner. For nominal variables, all columns in Zj are unrestricted.
Equation 17 is minimized under the conditions u′DjZj = 0 and Z ′jDjZj = I. The stationary
equations are

Aj = Y ′jDjZj , (18a)

YjAj = ZjW + uh′, (18b)

with W as a symmetric matrix of Langrange multipliers. Solving, we find

h =
1

u′Dju
A′jY

′
jDju = 0, (19)
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and thus, letting Zj
∆=D

1/2
j Zj and Y j

∆=D
1/2
j Yj , it follows that

Y jY
′
jZj = ZjW. (20)

If Y j = KΛL′ is the SVD of Y j , then we see that Zj = KrO with O as an arbitrary rotation
matrix and Kr as the singular vectors corresponding with the r largest singular values. Thus,
Zj = D

−1/2
j KrO, and Aj = Y

′
jZj = LrΛrO. Moreover, ZjA

′
j = D

−1/2
j KrΛrL

′
r.

Having ordinal variables, the first column of Zj is constrained to be either increasing or
decreasing, the rest is free. Again (17) has to be minimized under the condition Z ′jDjZj = I
(and optionally additional conditions on Zj). If we minimize over Aj , we can also solve the
problem tr(Z ′jDjYjY

′
jDjZj) with Z ′jDjZj = I.

For polynomial constraints the matrix Zj are the first rj orthogonal polynomials. Thus all
p columns of Yj are polynomials of degree rj . In the case of numerical variables, the first
column in Zj denoted by zj0 is fixed and linear with the category numbers, the rest is free.
Hence, the loss function in (17) changes to

σ(Z,A) =
m∑

j=1

tr(ZjA
′
j + zj0a′j0 − Ŷj)′Dj(ZjA

′
j + zj0a′j0 − Ŷj). (21)

Since column zj0 is fixed, Zj is a kj × (rj − 1) matrix and Aj , with aj0 as the first column, is
p× (rj − 1). In order to minimize (21), z′j0DjZj = 0 is required as minimization condition.

Note that level constraints can be imposed additionally to rank constraints. If the data set has
variables with different scale levels, homals allows for setting level constraints for each variable
j separately. Unlike in Gifi (1990) and Michailidis and de Leeuw (1998) it is not necessary
to have rank 1 restrictions in order to allow for different scaling levels. Our implementation
allows for multiple ordinal, multiple numerical etc. level constraints.

3.4. Nonlinear canonical correlation analysis

In Gifi terminology, nonlinear canonical correlation analysis (NLCCA) is called “OVERALS”
(van der Burg, de Leeuw, and Verdegaal 1988; van der Burg, de Leeuw, and Dijksterhuis
1994). This is due to the fact that it has most of the other Gifi-models as special cases. In
this section the relation to homogeneity analysis is shown. The homals package allows for the
definition of sets of variables and thus, for the computation NLCCA between g = 1, . . . ,K
sets of variables.

Recall that the aim of homogeneity analysis is to find p orthogonal vectors in m indicator
matrices Gj . This approach can be extended in order to compute p orthogonal vectors in
K general matrices Gv, each of dimension n × mv where mv is the number of variables
(j = 1, . . . ,mv) in set v. Thus,

Gv
∆=

[
Gv1

... Gv2

... · · ·
... Gvmv

]
. (22)

The loss function can be stated as

σ(X;Y1, . . . , YK) ∆=
1
K

K∑
v=1

tr

X − mv∑
j=1

GvjYvj

′Mv

X − mv∑
j=1

GvjYvj

 . (23)
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X is the n×p matrix with object scores, Gvj is n×kj , and Yvj is the kj×p matrix containing
the coordinates. Missing values are taken into account in Mv which is the element-wise
minimum of the Mj in set v. The normalization conditions are XM•X = I and u′M•X = 0
where M• is the average of Mv.
Since NLPCA can be considered as special case of NLCCA, i.e., for K = m, all the additional
restrictions for different scaling levels can straightforwardly be applied for NLCCA. Unlike
classical canonical correlation analysis, NLCCA is not restricted to two sets of variables but
allows for the definition of an arbitrary number of sets. Furthermore, if the sets are treated
in an asymmetric manner predictive models such as regression analysis and discriminant
analysis can be emulated. For v = 1, 2 sets this implies that G1 is n× 1 and G2 is n×m− 1.
Corresponding examples will be given in Section 4.2.

3.5. Cone restricted SVD

In this final methodological section we show how the loss functions of these models can be
solved in terms of cone restricted SVD. All the transformations discussed above are projections
on some convex cone Kj . For the sake of simplicity we drop the j and v indexes and we look
only at the second term of the partitioned loss function (see Equation 17), i.e.,

σ(Z,A) = tr(ZA′ − Ŷ )′D(ZA′ − Ŷ ), (24)

over Z and A, where Ŷ is k × p, Z is k × r, and A is p × r. Moreover the first column z0

of Z is restricted by z0 ∈ K, with K as a convex cone. Z should also satisfy the common
normalization conditions u′DZ = 0 and Z ′DZ = I.
The basic idea of the algorithm is to apply alternating least squares with rescaling. Thus
we alternate minimizing over Z for fixed A and over A for fixed Z. The “non-standard”
part of the algorithm is that we do not impose the normalization conditions if we minimize
over Z. We show below that we can still produce a sequence of normalized solutions with a
non-increasing sequence of loss function values.
Suppose (Ẑ, Â) is our current best solution. To improve it we first minimize over the non-
normalized Z, satisfying the cone constraint, and keeping A fixed at Â. This gives Z̃ and a
corresponding loss function value σ(Z̃, Â). Clearly,

σ(Z̃, Â) ≤ σ(Ẑ, Â), (25)

but Z̃ is not normalized. Now update Z to Z+ using the weighted Gram-Schmidt solution
Z̃ = Z+S for Z where S is the Gram-Schmidt triangular matrix. The first column z̃0 of Z̃
satisfies the cone constraint, and because of the nature of Gram-Schmidt, so does the first
column of Z+. Observe that it is quite possible that

σ(Z+, Â) > σ(Ẑ, Â). (26)

This seems to invalidate the usual convergence proof, which is based on a non-increasing
sequence of loss function values. But now also adjust Â to A = Â(S−1)′. Then Z̃Â′ = Z+A

′,
and thus

σ(Z̃, Â) = σ(Z+, A). (27)

Finally compute A+ by minimizing σ(Z+, A) over A. Since σ(Z+, A+) ≤ σ(Z+, A) we have
the chain

σ(Z+, A+) ≤ σ(Z+, A) = σ(Z̃, Â) ≤ σ(Ẑ, Â). (28)
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In any iteration the loss function does not increase. In actual computation, it is not necessary
to compute A, and thus it also is not necessary to compute the Gram-Schmidt triangular
matrix S.

4. The R package homals

At this point we show how the models described in the sections above can be computed using
the package homals in R (R Development Core Team 2008) available on CRAN.

The core function of the package for the computation of the methodology above is homals().
The extended models can be computed by setting corresponding arguments: The rank argu-
ment (integer value) allows for the calculation of rank-restricted nonlinear PCA. The level
argument (strings) allows to set different scale levels. By default the level is set to nominal.
Finally, the sets argument allows for partitioning the variables into two or more sets in order
to perform nonlinear CCA. Examples can be found in the corresponding help files.

As a result, an object of class "homals" is created and the following methods are provided:
print, summary, plot, plot3d, scatterplot3d and predict. The predict method works as
follows. Given a homals solution we can reconstruct the indicator matrix by assigning each
object to the closest category point of the variable. We can then find out how well we have
reconstructed the original data. For variables with rank restrictions we first have to project
the objects on the hyperplane spanned by the category quantifications, and then compute
distances in that plane. In any case we can make a square table of observed versus predicted
for each variable, showing misclassification.

The package offers a wide variety of plots; some of them are discussed in Michailidis and
de Leeuw (1998) and Michailidis and de Leeuw (2001). In the plot method the user can specify
the type of plot through the argument plot.type. For some plot types three-dimensional
versions are provided in plot3d (dynamic) and plot3dstatic:

• Object plot ("objplot"): Plots the scores of the objects (rows in data set) on two or
three dimensions.

• Category plot ("catplot"): Plots the rank-restricted category quantifications for each
variable separately. Three-dimensional plots are available.

• Voronoi plot ("vorplot"): Produces a category plot with Voronoi regions.

• Joint plot ("jointplot"): The object scores and category quantifications are mapped
in the same (two- or three-dimensional) device.

• Graph plot ("graphplot"): Basically, a joint plot is produced with additional connec-
tions between the objects and the corresponding response categories.

• Hull plot ("hullplot"): For a particular variable the object scores are mapped onto
two dimensions. The convex hulls around the object scores are drawn with respect to
each response category of this variable.

• Label plot ("labplot"): Similar to object plot, the object scores are plotted but for
each variable separately with the corresponding category labels. A three-dimensional
version is provided.

http://cran.r-project.org
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• Span plot ("spanplot"): Like label plot, it maps the object scores for each variable and
it connects them by the shortest path within each response category.

• Star plot ("starplot"): Again, the object scores are mapped on two or three dimen-
sions. In addition, these points are connected with the category centroid.

• Loss plot ("lossplot"): Plots the rank-restricted category quantifications against the
unrestricted for each variable separately.

• Projection plot ("prjplot"): For variables of rank 1 the object scores (two-dimensional)
are projected onto the orthogonal lines determined by the rank restricted category
quantifications.

• Vector plot ("vecplot"): For variables of rank 1 the object scores (two-dimensional) are
projected onto a straight line determined by the rank restricted category quantifications.

• Transformation plot ("trfplot"): Plots variable-wise the original (categorical) scale
against the transformed (metric) scale Zj for each solution.

• Loadings plot ("loadplot"): Plots the loadings aj and connects them with the origin.
Note that if rj > 1 only the first solution is taken.

• Scree plot ("screeplot"): Produces a scree plot based on the eigenvalues.

• Discrimination measures ("dmplot"): Plots the discrimination measures for each vari-
able.

4.1. Simple Homogeneity Analysis

The first example is a simple (i.e., no level or rank restrictions, no sets defined) three-
dimensional homogeneity analysis for the senate data set (ADA 2002). The data consists of
2001 senate votes on 20 issues selected by Americans for Democratic Action. The votes se-
lected cover a full spectrum of domestic, foreign, economic, military, environmental and social
issues. We tried to select votes which display sharp liberal/conservative contrasts. As a con-
sequence, Democrat candidates have many more “yes” responses than Republican candidates.
Due to non-responses we have several missings which are coded as NA. A full description of
the items can be found in the corresponding package help file. The first column of the data
set (i.e., 50 Republicans vs. 49 Democrats and 1 Independent) is inactive and will be used
for validation.

> library("homals")

> data(senate)

> res <- homals(senate, active = c(FALSE, rep(TRUE, 20)), ndim = 3)

> plot3d(res, plot.type = "objplot", sphere = FALSE, bgpng = NULL)

> plot(res, plot.type = "spanplot", plot.dim = c(1, 2), var.subset = 1,

+ xlim = c(-2, 3), ylim = c(-2, 3))

> plot(res, plot.type = "spanplot", plot.dim = c(1, 3), var.subset = 1,

+ xlim = c(-2, 3), ylim = c(-2, 3))



Journal of Statistical Software 11

> plot(res, plot.type = "spanplot", plot.dim = c(2, 3), var.subset = 1,

+ xlim = c(-2, 3), ylim = c(-2, 3))

> plot3dstatic(res, plot.type = "loadplot")
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Figure 1: 3D Object Plot and Span Plots for Senate Dataset

Figure 1 shows four branches (or clusters) of senators which we will denote by north, south,
west and east. The west and the north branches are composed by Republicans, the east and
south branches by Democrats. Note that the 3D-plot is rotated in a way that Dimension 3 is
horizontally aligned, Dimension 2 is vertically aligned, and Dimension 1 is the one aligned from
front to back. The two-dimensional slices show that Dimension 1 vs. 2 does not distinguish
between Democrats and Republicans. If Dimension 3 is involved, as in the two bottom plots
in Figure 1, the separation between Democrats and Republicans is obvious. To distinguish
within north-west and south-east, respectively, Item 19 has to be taken into account:

V19: S 1438. Military Base Closures. Warner (R-VA) motion to authorize an additional
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round of U.S. military base realignment and closures in 2003. A “yes” vote is a +.
Republicans belonging to the north branch as well as Democrats belonging to the east branch
gave a “yes” vote. South-Wing Democrats and West-Wing Republicans voted with “no”. It
is well known that the response on this item mainly depends on whether there is a military
base in the senator’s district or not; those senators who have a military base in their district
do not want to close it since such a base provides working places and is an important income
source for the district. Hence, this is the determining factor and not the party affiliation of
the senator. This result is underpinned by Figure 2 where Item 19 is clearly separated from
the remaining items.

Loadings plot

−4 −2  0  2  4  6  8

−
10

 −
5

  0
  5

 1
0

−8

−6

−4

−2

 0

 2

 4

 6

Dimension 1

D
im

en
si

on
 2

D
im

en
si

on
 3

●

●●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

● Party

V19

Figure 2: Loadings Plot for Senate Dataset

Given a (multiple) homals solution, we can reconstruct the indicator matrix by assigning each
object to the closest points of the variable.

> p.res <- predict(res)

> p.res$cl.table$Party

pre
obs (D) (I) (R)
(D) 49 1 0
(I) 0 1 0
(R) 0 9 40

From the classification table we see that 91% of the party affiliations are correctly classified.
Note that in the case of such a simple homals solution it can happen that a lower dimensional
solution results in a better classification rate than a higher dimensional. The reason is that
in simple homals the classification rate is not the criterion to be optimized.
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4.2. Predictive Models and Canonical Correlation

The sets argument allows for partitioning the variables into sets in order to emulate canonical
correlation analysis and predictive models. As outlined above, if the variables are partitioned
into asymmetric sets of one variable vs. the others, we can put this type of homals model into
a predictive modeling context. If not, the interpretation in terms of canonical correlation is
more appropriate.
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Figure 3: Voronoi Plot and Label Plot for Galo Data

To demonstrate this, we use the galo dataset (Peschar 1975) where data of 1290 school
children in the sixth grade of an elementary school in the city of Groningen (Netherlands)
were collected. The variables are Gender, IQ (categorized into 9 ordered categories), Advice
(teacher categorized the children into 7 possible forms of secondary education, i.e., Agr =
agricultural; Ext = extended primary education; Gen = general; Grls = secondary school
for girls; Man = manual, including housekeeping; None = no further education; Uni = pre-
University) and SES (parent’s profession in 6 categories). In this example it could be of
interest to predict Advice from Gender, IQ, and SES.

> data(galo)

> res <- homals(galo, active = c(rep(TRUE, 4), FALSE), sets = list(c(1,

+ 2, 4), 3, 5))

> plot(res, plot.type = "vorplot", var.subset = 3)

> plot(res, plot.type = "labplot", var.subset = 2)

> predict(res)

Classification rate:
Variable Cl. Rate %Cl. Rate

1 gender 0.6318 63.18
2 IQ 0.6054 60.54
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3 advice 0.7969 79.69
4 SES 0.3705 37.05
5 School 0.0171 1.71

A rate of .6318 correctly classified teacher advice results. The Voronoi plot in Figure 3 shows
the Voronoi regions for the same variable. A labeled plot is given for the IQs which shows
that on the upper half of the horseshoe there are mainly children with IQ-categories 7-9.
Distinctions between these levels of intelligence are mainly reflected by Dimension 1. For
the lower horseshoe half it can be stated that both dimensions reflect differences in lower
IQ-categories.

Using the classical iris dataset, the aim is to predict Species from Petal/Sepal Length/Width.
The polynomial level constraint is posed on the predictors and the response is treated as
nominal. A hull plot for the response, a label plot Petal Length and loss plots for all predictors
are produced.

> data(iris)

> res <- homals(iris, sets = list(1:4, 5), level = c(rep("polynomial",

+ 4), "nominal"), rank = 2, itermax = 2000)

> plot(res, plot.type = "hullplot", var.subset = 5, cex = 0.7,

+ xlim = c(-3, 3), ylim = c(-3, 3))

> plot(res, plot.type = "labplot", var.subset = 3, cex = 0.7, xlim = c(-3,

+ 3), ylim = c(-3, 3))

> plot(res, plot.type = "lossplot", var.subset = 1:4, cex = 0.7,

+ xlim = c(-3, 4), ylim = c(-3, 4))
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Figure 4: Hullplot and Label Plot for Iris Data

For this two-dimensional homals solution, 100% of the iris species are correctly classified.
The hullplot in Figure 4 shows that the species are clearly separated on the two-dimensional
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plane. In the label plot the object scores are labeled with the response on Petal Length and
it becomes obvious that small lengths form the setosa “cluster”, whereas iris virginica are
composed by obervations with large petal lengths. Iris versicolor have medium lengths.

The loss plots in Figure 5 show the fitted rank-2 solution (red lines) against the unrestricted
solution. The implication of the polynomial level restriction for the fitted model is obvious.
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Figure 5: Loss plots for Iris Predictors

To show another homals application of predictive (in this case regression) modeling we use the
Neumann dataset (Wilson 1926): Willard Gibbs discovered a theoretical formula connecting
the density, the pressure, and the absolute temperature of a mixture of gases with convertible
components. He applied this formula and the estimated constants to 65 experiments carried
out by Neumann, and he discusses the systematic and accidental divergences (residuals).
In homals such a linear regression problem can be emulated by setting numerical levels.
Constraining the levels to be ordinal, we get a monotone regression (Gifi 1990).
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> data(neumann)

> res.lin <- homals(neumann, sets = list(3, 1:2), level = "numerical",

+ rank = 1)

> res.mon <- homals(neumann, sets = list(3, 1:2), level = "ordinal",

+ rank = 1)

> plot(res.lin, plot.type = "loadplot", main = "Loadings Plot Linear Regression",

+ xlim = c(-10, 10), ylim = c(-10, 10))

> plot(res.mon, plot.type = "loadplot", main = "Loadings Plot Monotone Regression",

+ xlim = c(-10, 10), ylim = c(-10, 10))

The points in the loadings plot in Figure 6 correspond to regression coefficients.
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Figure 6: Loading Plots for Neumann Regression

The impact of the level restrictions on the scaling is visualized in the transformation plots in
Figure 7. Numerical level restrictions lead to linear transformations of the original scale with
respect to the homals scaling (i.e. linear regression). Pertaining to ordinal levels, monotone
transformations are carried out (i.e. monotone regression).

4.3. NLPCA on Roskam data

Roskam (1968) collected preference data where 39 psychologists ranked all nine areas (see
Table 1) of the Psychology Department at the University of Nijmengen.

Using this data set we will perform two-dimensional NLPCA by restricting the rank to be 1.
Note that the objects are the areas and the variables are the psychologists. Thus, the input
data structure is a 9× 39 data frame. Note that the scale level is set to “ordinal”.

> data(roskam)

> res <- homals(roskam, rank = 1, level = "ordinal")

> plot(res, plot.type = "objplot", xlim = c(-2.5, 2.5), ylim = c(-2.5,

+ 2.5))
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Figure 7: Transformation Plots for Neumann Regression

> plot(res, plot.type = "vecplot", var.subset = 2, main = "Vector Plot Rater 2",

+ xlim = c(-2.5, 2.5), ylim = c(-2.5, 2.5))

The object plot in Figure 8 shows interesting rating “twins” of departmental areas: mathe-
matical and experimental psychology, industrial psychology and test construction (both are
close to the former two areas), educational and social psychology, clinical and cultural psy-
chology. Physiological and animal psychology are somewhat separated from the other areas.
Obviously this rater is attracted to areas like social, cultural and clinical psychology rather
than to methodological fields. The vector plot on the right hand side projects the category
scores onto a straight line determined by rank restricted category quantifications. Similarly,
a projection plot could be created. Further analyses of this dataset within a PCA context
can be found in de Leeuw (2006).

5. Discussion

In this paper theoretical foundations of the methodology used in homals are elaborated and
package application and visualization issues are presented. Basically, homals covers the tech-



18 Homals in R

SOC Social Psychology
EDU Educational and Developmental Psychology
CLI Clinical Psychology

MAT Mathematical Psychology and Psychological Statistics
EXP Experimental Psychology
CUL Cultural Psychology and Psychology of Religion
IND Industrial Psychology
TST Test Construction and Validation
PHY Physiological and Animal Psychology

Table 1: Psychology Areas in Roskam Data.
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Figure 8: Plots for Roskam data

niques described in Gifi (1990): Homogeneity analysis, NLCCA, predictive models, and
NLPCA. It can handle missing data and the scale level of the variables can be taken into
account. The package offers a broad variety of real-life datasets and furthermore provides nu-
merous methods of visualization, either in a two-dimensional or in a three-dimensional way.
Future enhancements will be to replace indicator matrices by more general B-spline bases
and to incorporate weights for observations. To conclude, homals provides flexible, easy-to-
use routines which allow researchers from different areas to compute, interpret, and visualize
methods belonging to the Gifi-family.
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