Heterogeneity & Demographic Analysis

2016-10-17

Introduction

Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.

In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting differents characteristics found in the target population), and demographic analysis combines the results.

For this example we will use the result from the assessment of a new total hip replacement previously described in vignette("d-non-homogeneous", "heemod").

Population characteristics

The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.

For this example we will use the characteristics of 100 individuals, with varying sex and age:

tab_indiv
## # A tibble: 100 × 2
##      age   sex
##    <dbl> <int>
## 1     57     0
## 2     64     0
## 3     60     1
## 4     67     0
## 5     60     1
## 6     59     1
## 7     72     1
## 8     67     1
## 9     53     1
## 10    40     0
## # ... with 90 more rows
library(ggplot2)
ggplot(tab_indiv, aes(x = age)) +
  geom_histogram(binwidth = 2)

Running the analysis

res_mod, the result we obtained from run_model() in the Time-varying Markov models vignette, can be passed to update() to update the model with the new data and perform the heterogeneity analysis.

res_h <- update(res_mod, newdata = tab_indiv)
## No weights specified in model update, using equal weights.
## Updating model 'standard'...
## Updating model 'np1'...

Interpreting results

The summary() method reports summary statistics for cost, effect and ICER, as well as the result from the combined model.

summary(res_h)
## An analysis re-run on 100 parameter sets.
## 
## * Unweighted analysis.
## 
## * Values distribution:
## 
##                              Min.      1st Qu.       Median         Mean
## standard - Cost      530945.90166  605006.2810 629931.67506 697311.53897
## standard - Effect      9322.87610   24875.4832  27376.91420  25884.63272
## standard - Δ Cost               -            -            -            -
## standard - Δ Effect             -            -            -            -
## standard - Icer                 -            -            -            -
## np1 - Cost           615483.40627  635550.9751 642889.29978 661844.51663
## np1 - Effect           9380.64927   25143.6592  27765.69106  26149.47135
## np1 - Δ Cost        -164881.37326 -129482.9089  12917.01934 -35467.02234
## np1 - Δ Effect           57.77317     194.8185    221.44419    264.83863
## np1 - Icer             -354.32431    -333.0520     58.98272    -14.04167
##                         3rd Qu.        Max.
## standard - Cost     828543.4528 878043.3890
## standard - Effect    29074.9005  31598.6556
## standard - Δ Cost             -           -
## standard - Δ Effect           -           -
## standard - Icer               -           -
## np1 - Cost          699060.5439 713162.0157
## np1 - Effect         29500.8365  31835.3665
## np1 - Δ Cost         30544.6941  84537.5046
## np1 - Δ Effect         388.7769    465.3403
## np1 - Icer             156.7854   1275.2350
## 
## * Combined result:
## 
## 2 strategies run for 60 cycles.
## 
## Initial state counts:
## 
##                N
## PrimaryTHR  1000
## SuccessP       0
## RevisionTHR    0
## SuccessR       0
## Death          0
## 
## Counting method: 'end'.
## 
##           utility     cost
## standard 25884.63 697311.5
## np1      26149.47 661844.5
## 
## Efficiency frontier:
## 
## standard -> np1
## 
## Model difference:
## 
##          Cost    Effect      ICER
## np1 -35.46702 0.2648386 -133.9194

The variation of the incremental differences in cost, effect or ICER can then be plotted.

plot(res_h, type = "icer", model = "np1", binwidth = 500)

plot(res_h, type = "effect", model = "np1", binwidth = 50)

plot(res_h, type = "cost", model = "np1", binwidth = 25000)

The results from the combined model can be plotted similarly to the results from run_model().

plot(res_h, type = "counts", model = "np1")

Weighted results

Weights can be used in the analysis by including an optional column .weights in the new data to specify the respective weights of each strata in the target population.

tab_indiv_w
## # A tibble: 100 × 3
##      age   sex   .weights
##    <dbl> <int>      <dbl>
## 1     63     1 0.26106990
## 2     63     0 0.02011410
## 3     64     0 0.65787614
## 4     81     0 0.65259655
## 5     73     1 0.51075826
## 6     50     1 0.63915094
## 7     60     0 0.38027776
## 8     38     0 0.38838420
## 9     58     1 0.21805770
## 10    85     1 0.02083434
## # ... with 90 more rows
res_w <- update(res_mod, newdata = tab_indiv_w)
## Updating model 'standard'...
## Updating model 'np1'...
res_w
## An analysis re-run on 100 parameter sets.
## 
## * Weigths distribution:
## 
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## 0.004782 0.246200 0.457500 0.479000 0.720600 0.986400 
## 
## Total weight: 47.89952
## 
## * Values distribution:
## 
##                              Min.      1st Qu.       Median        Mean
## standard - Cost      485852.97365  605006.2810 629931.67506 689962.2074
## standard - Effect     11784.33667   22793.0050  27376.91420  25471.6095
## standard - Δ Cost               -            -            -           -
## standard - Δ Effect             -            -            -           -
## standard - Icer                 -            -            -           -
## np1 - Cost           603342.63272  635550.9751 642874.99205 659797.9678
## np1 - Effect          11828.39436   23084.8338  27765.69106  25728.8255
## np1 - Δ Cost        -146895.67206 -110728.6273  13752.59815 -30164.2396
## np1 - Δ Effect           44.05769     194.8185    221.44419    257.2160
## np1 - Icer             -344.87737    -316.4395     71.81771    490.1787
##                         3rd Qu.        Max.
## standard - Cost     806918.3855 875515.5476
## standard - Effect    29074.9005  31532.9044
## standard - Δ Cost             -           -
## standard - Δ Effect           -           -
## standard - Icer               -           -
## np1 - Cost          692914.5073 712441.3735
## np1 - Effect         29500.8365  31782.8994
## np1 - Δ Cost         30544.6941 161822.7443
## np1 - Δ Effect         356.7063    461.3809
## np1 - Icer             156.7854  25562.3627
## 
## * Combined result:
## 
## 2 strategies run for 60 cycles.
## 
## Initial state counts:
## 
##                N
## PrimaryTHR  1000
## SuccessP       0
## RevisionTHR    0
## SuccessR       0
## Death          0
## 
## Counting method: 'end'.
## 
##           utility     cost
## standard 25471.61 689962.2
## np1      25728.83 659798.0
## 
## Efficiency frontier:
## 
## standard -> np1
## 
## Model difference:
## 
##          Cost   Effect     ICER
## np1 -30.16424 0.257216 -117.272