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1 Overview
The harmonic mean p-value (HMP) is a method for performing a combined test of the null hypothesis that no p-
value is significant (Wilson, 2019). Unlike Fisher’s (1934) method, it is robust to dependence between the p-values,
making it much more broadly applicable. Like Bonferroni correction, the HMP controls the strong-sense family-wise
error rate (ssFWER), but it is potentially much more powerful. It is also more powerful than the BH procedure
(Benjamini and Hochberg, 1995) which controls both the weak-sense family-wise error rate (wsFWER) and the
false discovery rate (FDR), in the sense that whenever the BH procedure finds one or more p-values significant, the
HMP will find one or more p-values or groups of p-values significant.

Method
Robust to
dependence

Indicative power1 Controls
Significance
very rare

Significance
uncommon

Significance
common

FDR wsFWER ssFWER

Fisher × • •••• ••••• X X X

HMP X ••◦ ••• •••• X X X

BH X ••◦ ••◦ ••◦ X X ×
Bonferroni X ••◦ •• •• X X X

There are two components to the HMP method:

• The harmonic mean p-value itself, which acts as both a test statistic and, when small (e.g. below 0.05), an
approximate combined p-value. The harmonic mean of the p-values indexed by subset R is denoted

◦
pR. The

subscript is dropped when R includes all the p-values.

• A distribution for the HMP which produces a combined p-value that is exact asymptotically (i.e. as more and
more p-values are combined). This asymptotically exact p-value is denoted p◦

pR
where the subset R defines

the p-values it combines. The subscript R is dropped when R includes all the p-values.

The HMP equals
◦
pR =

(∑
i∈R wi

)
/
(∑

i∈R wi/pi
)
, where pi, i = 1 . . . L are the individual p-values and wi, i = 1 . . . L

are weights, which must sum to one, i.e.
∑L
i=1 wi = 1. The HMP is robust to the choice of weights, so it is reasonable

to start with equal weights (wi = 1/L). Optimal weights are considered in more detail later.
The method is used as follows:

• The “headline” HMP is deemed significant when p◦
p
≤ α, or (approximately equivalent when

◦
p is small), when

◦
p ≤ α, where α is the pre-specified ssFWER. Here significant means that we reject the null hypothesis that
none of the p-values are significant.

• If the headline HMP is not significant, neither is the HMP for any subset. If the headline HMP is significant,
subsets may also be significant. The significance thresholds are all pre-determined so the number of subsets
that are tested does not affect them.

• The HMP for a subset of p-values is deemed significant when p◦
pR
≤ αwR, or (approximately equivalent when

◦
pR is small), when

◦
pR ≤ αwR, where wR =

∑
i∈R wi is the sum of the weights for subset R. Here significant

means that we reject the null hypothesis that none of the p-values in subset R are significant.
1Wilson (2019) SI Appendix, Fig. S8. BH power has been equated with Simes’ (1986), on which BH is based.
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2 Quick-start guide

Example 1. Sliding Window Analysis
Once you have installed the package, load it in the usual way:

library(harmonicmeanp)

## Loading required package: FMStable

Download the 312457 p-values from chromosome 12 of the genome-wide association study (GWAS) for neu-
roticism (Okbay et al., 2016). This file is an excerpt of http://ssgac.org/documents/Neuroticism_Full.txt.gz. For
usage conditions see http://ssgac.org/documents/ReadMe_genetic_variants_associated_with_swb.txt. It took
me a few seconds to download the data excerpt. The 8 megabyte file contains rs identifiers and SNP positions as
per human genome build GRCh37/hg19 as well as the p-values.

system.time((gwas = read.delim("http://www.danielwilson.me.uk/files/Neuroticism_ch12.txt",
header=TRUE,as.is=TRUE)))

## user system elapsed
## 1.635 0.105 3.816

head(gwas)

## rs pos p
## 1 rs7959779 149478 0.3034
## 2 rs4980821 149884 0.5905
## 3 rs192950336 150256 0.1125
## 4 rs61907205 151213 0.4896
## 5 rs2368809 151236 0.7066
## 6 rs4018398 151469 0.9420

The harmonic mean p-value (HMP) is a statistic with which one can perform a combined test of the null
hypothesis that none of the p-values is significant even when the p-values are dependent. In GWAS, p-values will
often be dependent because of genetic linkage. The HMP can be used to test the null hypothesis that no SNPs on
chromosome 12 are significant. Let’s do it manually by first calculating the HMP, assuming equal weights. Note
that a total of L = 6524432 tests were performed genome-wide, so this number must be used to determine the
weights if we are to control the genome-wide ssFWER, even though we are only analysing the 312457 SNPs on
chromosome 12 in this example.

gwas$w = 1/6524432
R = 1:nrow(gwas)
(HMP.R = sum(gwas$w[R])/sum(gwas$w[R]/gwas$p[R]))

## [1] 0.0008734522

One of the remarkable properties of the HMP is that for small values (e.g. below 0.05), the HMP can be directly
interpreted as a p-value (Wilson, 2019). Since the HMP equals

◦
pR = 0.0008734522 it can be directly interpreted,

suggesting it is strongly significant (before multiple testing correction). However, the recommended approach is to
calculate an asymptotically exact p-value based on the HMP statistic.

# Use p.hmp instead to compute the HMP test statistic and
# calculate its asymptotically exact p-value in one step
pharmonicmeanp(HMP.R, L=length(R), lower.tail=TRUE)

## [1] 0.0008887255

As you can see, the asymptotically exact p-value of p◦
pR

= 0.0008887255 is very close to the HMP of
◦
pR =

0.0008734522 because the HMP is much smaller than one. Note however that direct interpretation of the HMP
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is anti-conservative compared to the asymptotically exact test, and this may be important when the HMP is not
small (e.g. when it is only marginally below 0.05). The asymptotically exact p-value can be computed in one step,
and this is the recommended usage:

R = 1:nrow(gwas)
p.hmp(gwas$p[R],gwas$w[R])

## p.hmp
## 0.0008887255

The threshold against which to evaluate the significance of the combined test is determined by the sum of the
weights for the p-values being combined. Suppose for example α = 0.05, then the Bonferroni-adjusted threshold
against which to compare the asymptotically exact HMP is

alpha = 0.05
w.R = sum(gwas$w[R])
alpha*w.R

## [1] 0.002394515

Therefore we can reject the null hypothesis of no association on chromosome 12 at level α = 0.05 because
p◦
pR

< αwR.
The combined p-value for chromosome 12 is useful because if the combined p-value is not significant,

neither is any constituent p-value, after multiple testing correction, as always. Conversely, if the combined
p-value is significant, there may be one or more subsets of constituent p-values that are also significant. These
subsets can be hunted down because another useful property of the HMP is that the significance thresholds of
these further tests are the same no matter how many combinations of subsets of the constituent p-values are tested.
Specifically, for any subset R of the L p-values, the HMP (or, as recommended, the asymptotically exact HMP) is
compared against a Bonferroni threshold αwR where wR =

∑
i∈R wi and the wis are the weights of the individual

p-values, constrained to sum to one. Assuming equal weights, wi = 1/L, meaning that wR = |R| /L equals the
fraction of all tests being combined.

For example, separately test the p-values occurring at even and odd positions on chromosome 12:

R = which(gwas$pos%%2==0)
p.hmp(gwas$p[R],gwas$w[R])

## p.hmp
## 0.0009159103

w.R = sum(gwas$w[R])
alpha*w.R

## [1] 0.001200587

R = which(gwas$pos%%2==1)
p.hmp(gwas$p[R],gwas$w[R])

## p.hmp
## 0.0008619354

w.R = sum(gwas$w[R])
alpha*w.R

## [1] 0.001193928

Unsurprisingly, in view of genetic linkage, the two tests are both significant: for even positions, the combined
p-value was p◦

pR
= 0.0009159103 which was less than the significance threshold of αwR = 0.001200587 and for

odd positions, the combined p-value was p◦
pR

= 0.0008619354 which was less than the significance threshold of
αwR = 0.001193928.
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Comparing p-values with different significance thresholds can be confusing. Instead, it is useful to calculate
adjusted p-values, which are compared directly to the nominal significance threshold α. An adjusted p-value is
simply divided by its weight w. For example:

R = which(gwas$pos%%2==0)
p.R = p.hmp(gwas$p[R],gwas$w[R])
w.R = sum(gwas$w[R])
(p.R.adjust = p.R/w.R)

## p.hmp
## 0.03814426

R = which(gwas$pos%%2==1)
p.R = p.hmp(gwas$p[R],gwas$w[R])
w.R = sum(gwas$w[R])
(p.R.adjust = p.R/w.R)

## p.hmp
## 0.03609663

Now it is easy to see that we can rule out the null hypotheses of no significant p-values for both even-numbered
and odd-numbered positions, assuming α = 0.05.

Of course it makes little sense to combine p-values according to whether their position is an even or odd number.
Instead we might wish to test the first 156229 SNPs on chromosome 12 separately from the second 156228 SNPs
to begin to narrow down regions of significance.

R = 1:156229
p.R = p.hmp(gwas$p[R],gwas$w[R])
w.R = sum(gwas$w[R])
(p.R.adjust = p.R/w.R)

## p.hmp
## 6.582738

R = 156230:312457
p.R = p.hmp(gwas$p[R],gwas$w[R])
w.R = sum(gwas$w[R])
(p.R.adjust = p.R/w.R)

## p.hmp
## 0.01855863

This is much clearer: only in the second half of the chromosome can we reject the null hypothesis of no significant
p-values at the α = 0.05 level. For the first half of the chromosome, the adjusted p-value was p◦

pR
/wR = 6.582738.

While p-values must be 1 or below, adjusted p-values need not be. For the second half of the chromosome, the
adjusted p-value was p◦

pR
/wR = 0.01855863 which is below the standard significance threshold of α = 0.05.

Note that it was completely irrelevant that we had already performed tests of even- and odd-positioned SNPs:
as mentioned above, the significance thresholds are pre-determined by the wR’s no matter how many subsets of
p-values are tested and no matter in what combinations. We can test any subset of the p-values without incurring
further multiple testing penalties. For example, let’s test 1 megabase windows overlaping at 0.2 megabase intervals.
Testing overlapping versus non-overlapping windows has no effect on the significance thresholds, but of course it
has an effect on the resolution of our conclusions and on the computational time.

# Define overlapping sliding windows of 1 megabase at 0.2 megabase intervals
win.1M.beg = outer(0:floor(max(gwas$pos/1e6)),(0:4)/5,"+")*1e6
# Calculate the combined p-values for each window
system.time({

p.1M = apply(win.1M.beg,c(1,2),function(beg) {
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R = which(gwas$pos>=beg & gwas$pos<(beg+1e6))
p.hmp(gwas$p[R],gwas$w[R])

})
})

## user system elapsed
## 15.887 0.784 16.679

# Calculate sums of weights for each combined test
system.time({

w.1M = apply(win.1M.beg,c(1,2),function(beg) {
R = which(gwas$pos>=beg & gwas$pos<(beg+1e6))
sum(gwas$w[R])

})
})

## user system elapsed
## 12.145 0.801 12.952

# Calculate adjusted p-value for each window
p.1M.adj = p.1M/w.1M

Now plot them

# Took a few seconds, plotting over 312k points
gwas$p.adj = gwas$p/gwas$w
plot(gwas$pos/1e6,-log10(gwas$p.adj),pch=".",xlab="Position on chromosome 12 (megabases)",

ylab="Adjusted significance (-log10 adjusted p-value)",
ylim=sort(-log10(range(gwas$p.adj,p.1M.adj,na.rm=TRUE))))

arrows(win.1M.beg/1e6,-log10(p.1M.adj),(win.1M.beg+1e6)/1e6,len=0,col="green2",lwd=2)
# Superimpose the significance threshold, alpha, e.g. alpha=0.05
abline(h=-log10(0.05),col="black",lty=2)
# For comparison, plot the conventional GWAS threshold of 5e-8. Need to convert
# this into the adjusted p-value scale. Instead of comparing each raw p-value
# against a Bonferonni threshold of alpha/L=0.05/6524432, we would be comparing each
# against 5e-8. So the adjusted p-values p/w=p*L would be compared against
# 5e-8*L = 5e-8 * 6524432 = 0.3262216
abline(h=-log10(0.3262216),col="grey",lty=3)
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The black dashed line shows the α = 0.05 significance threshold and the grey dotted line shows α = 0.326.
Evaluating the adjusted p-values against the latter threshold produces a procedure equivalent to applying a threshold
of 5× 10−8 to the raw p-values, which has been adopted as a convention in human GWAS.

No SNPs are individually significant by either threshold. However, the HMP detects several 1 megabase regions
of significance. List their positions

win.1M.beg[which(p.1M.adj<=0.05)]

## [1] 118000000 118200000 118400000 118600000

# Also list the position of the most significant individual (adjusted) p-value
(peakpos = gwas$pos[gwas$p.adj==min(gwas$p.adj)])

## [1] 118876918

As you can see, the genome-wide significant regions are consecutive windows spanning from megabases 118.0-
118.6 to 119.0-119.6 on chromosome 12. Not too surprisingly, the region encompasses the most significant individual
SNP at position 118876918.

A natural question is can we identify the smallest groups of significant p-values? As explained above,
there is no penalty for conducting the extra combined tests required to answer this question because the significance
thresholds are all predetermined. This is because conceptually the HMP is a multilevel test, meaning that when a
combined test is conducted, all subsets of combined tests are implicitly performed at the same time - although to
perform them explicitly requires additional computation.

Let’s test windows of varying lengths centred on the most significant individual SNP (which recall is not, by
itself, genome-wide significant).
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# Window of 100 base pairs
wlen = 100
R = which(abs(gwas$pos-peakpos)<wlen)
(p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R]))

## p.hmp
## 0.9396381

# Window of 1 kilobase
wlen = 1e3
R = which(abs(gwas$pos-peakpos)<wlen)
(p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R]))

## p.hmp
## 0.646783

# Window of 10 kilobases
wlen = 1e4
R = which(abs(gwas$pos-peakpos)<wlen)
(p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R]))

## p.hmp
## 0.2329343

# Window of 100 kilobases
wlen = 1e5
R = which(abs(gwas$pos-peakpos)<wlen)
(p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R]))

## p.hmp
## 0.08232894

# Window of 1 megabase
wlen = 1e6
R = which(abs(gwas$pos-peakpos)<wlen)
(p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R]))

## p.hmp
## 0.03382166

The 1 megabase window centred on position 118876918 is genome-wide significant at α = 0.05, but the 100
kilobase window is not. So this manual approach did not get us much closer. With the HMP, it is valid to use
optimization to find the smallest significant group of SNPs centred on position 118876918.

# Find the smallest window centred on position 118876918 significant at alpha=0.05
f = function(wlen) {

R = which(abs(gwas$pos-peakpos)<wlen)
p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R])
return(p.R.adjust - 0.05)

}
(wlen.opt = uniroot(f,c(1e5,1e6))$root)

## [1] 166197

# Show that the group of SNPs in this window is indeed significant
wlen = wlen.opt
R = which(abs(gwas$pos-peakpos)<wlen)
(p.R.adjust = p.hmp(gwas$p[R])/sum(gwas$w[R]))
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## p.hmp
## 0.04953369

# The number of individual SNPs included in this group
length(R)

## [1] 820

This shows that the smallest significant window occurs with window length 166197 base pairs and encompasses
820 SNPs. In this example, we have optimized in a highly constrained way, only testing combinations of p-values
that correspond to consecutive SNPs centred on position 118876918. However, it would be conceptually valid, if
computationally challenging, to test all combinations of p-values and report the smallest groups that are significant,
after correcting for multiple testing, as always, by using the threshold p◦

pR
≤ αwR.

It turns out that the SNPs in this window, spanning chromosome 12 positions 118710721-119042500, overlap
the genes TAOK3 and SUDS3. Searching the GWAS database reveals that SNPs in TAOK3 are associated with
the following traits (https://www.ebi.ac.uk/gwas/genes/TAOK3):

• Blood protein levels

• Glucose homeostasis traits

• Morphine dose requirement in tonsillectomy and adenoidectomy surgery

• Neuroticism

• Post bronchodilator FEV1 in COPD

• Red cell distribution width

• Systemic lupus erythematosus

Likewise, SNPs in SUDS3 are associated with the following traits (https://www.ebi.ac.uk/gwas/genes/SUDS3):

• Depression (broad)

• Hippocampal sclerosis

The association between TAOK3 and neuroticism was reported in a meta-analysis involving 449,484 individuals
(Nagel et al., 2018), 2.6 times as many as Okbay et al. (2016), on whose data alone the HMP reveals a genome-wide
significant association overlapping this gene, albeit not at the individual SNP level.

2.1 Example 2. Model-averaging in Regression
The aim of this example is to use linear regression to test whether a response variable is associated with a regressor
of interest, controlling for potential confounding regressors. The problems are that one does not know which of
the potential confounders to include (none, some, or all), the confounders are correlated, and power is limited.
These complexities are common in the application of linear models, they exemplify a wider class of model selection
problems, and they can be addressed by model averaging using the HMP to combine tests.

The specific example comes from the field of comparative phylogenetics, in which a common question is whether
two traits are non-randomly associated across different species (Symonds and Blomberg, 2014). Fiddler crabs
(genus Uca) have enlarged claws which are used in male-to-male competition. Species differ in claw size and the
question is whether bigger claws are associated with bigger crabs. However, phylogeny can confound the analysis
because species that share common ancestors are likely to have more similar traits including body size and claw
size, regardless of other forces driving any association such as developmental constraints or natural selection. (The
use of linear regression in this example is for demonstrating the use of the HMP, and is not meant to imply this
is the recommended method. Phylogenetic regression (Grafen, 1989) or linear mixed models would normally be
preferred).

The phylogeny below shows the relationship between the five species of Fiddler crabs under consideration. The
tips of the tree are labelled by the species names and the internal nodes of the tree (the common ancestors) of
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interest2 are labelled A and B. A scatterplot of claw size (quantified as log propodus length) versus body size (log
carapace breadth) is shown. The example data come from Symonds and Blomberg (2014):

# Load the ape package for reading and plotting the tree
library(ape)

## Warning: package ’ape’ was built under R version 3.2.3

tree = read.tree((PIPE=pipe(
'echo "(((chlorophthalmus:1,crassipes:1)A:1,(inversa:1,sindensis:1)B:1):1,argillicola:3);"'
))); close(PIPE)
plot(tree, show.node.label=TRUE)

chlorophthalmus

crassipes

inversa

sindensis

argillicola

A

B

log.carapace.breadth = c("chlorophthalmus"=1.02,"crassipes"=1.06,"inversa"=0.96,
"sindensis"=0.92,"argillicola"=0.89)
log.propodus.length = c("chlorophthalmus"=1.38,"crassipes"=1.41,"inversa"=1.36,
"sindensis"=1.22,"argillicola"=1.13)

plot(log.propodus.length ~ log.carapace.breadth)

2Here, ancestral changes in a trait are estimable only for common ancestors of between 2 and n − 2 species, which is why they are
deemed of interest.
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The following code defines the data frame for further analysis

# Convert branches in the tree into informative 'partitions'
informative.partitions = function(tree) {

n = length(tree$tip.label)
m = sapply(n+1:tree$Nnode,function(node) {

1*is.na(match(tree$tip.label,extract.clade(tree,node)$tip.label))
})
rownames(m) = tree$tip.label
colnames(m) = paste0("node.",tree$node.label)
cs = colSums(m)
is.informative = pmin(cs,n-cs)>1
m[,is.informative]

}
# Extract phylogenetically informative partitions from the tree
partition = informative.partitions(tree)

# Create a data frame combining all the information
Uca = data.frame(log.propodus.length,log.carapace.breadth,partition)

The essence of the model selection problem is that we wish to test for a direct association between claw size and
body size but we do not know which confounders to include in the analysis. I.e. there is uncertainty in the model.
The principal concerns with the model uncertainty are:

• Which confounders do I need to include?

• How do I avoid unnecessary loss of power?

• How do I control the false positive rate for multiple tests?

Power is lost in a number of ways:

• Fitting too many regressors, which uses up degrees of freedom.

• Fitting mutually correlated regressors, whose effects are difficult to disentangle.
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• Applying punitive multiple testing correction.

The counterpoint to the last difficulty is that failing to apply proper multiple testing correction risks inflating the
false positive rate. The HMP helps address these problems.

The models can be fully enumerated (in this simple example) as follows:

# Claw size does not vary by species
m0 = formula(log.propodus.length ~ 1) # grand null
# Claw size is associated with body size and there is no phylogenetic correlation
m1 = formula(log.propodus.length ~ log.carapace.breadth)
# Claw size isn't associated with body size but it is different in the descendents of ancestor A
m2 = formula(log.propodus.length ~ node.A)
# Claw size isn't associated with body size but it is different in the descendents of ancestor B
m3 = formula(log.propodus.length ~ node.B)
# Claw size is associated with body size and it is different in the descendants of ancestor A
m4 = formula(log.propodus.length ~ log.carapace.breadth + node.A)
# Claw size is associated with body size and it is different in the descendants of ancestor B
m5 = formula(log.propodus.length ~ log.carapace.breadth + node.B)
# Claw size isn't associated with body size but is different in descendents of ancestors A & B
m6 = formula(log.propodus.length ~ node.A + node.B)
# Claw size is associated with body size and is different in descendants of ancestors A & B
m7 = formula(log.propodus.length ~ log.carapace.breadth + node.A + node.B) # grand alternative
# List the alternatives together
mA = list(m1,m2,m3,m4,m5,m6,m7)

(More generally, the models can be exhaustively enumerated with the function in Appendix 3.1.) The key point
is that for each model that includes body size as a regressor, there is a complementary model that excludes it. Each
of these pairs of nested models constitutes a candidate test for the association between claw size and body size:

• ModelM1 versusM0.

• ModelM4 versusM2.

• ModelM5 versusM3.

• ModelM7 versusM6.

The problems are that the p-values from these four tests may produce different answers, the tests may differ in
power, the scenarios may differ in plausibility, and the p-values will not be independent. So how will the results
be interpreted? The HMP helps because it allows non-independent tests to be combined. The HMP is not overly
sensitive to the weights, so initially I will assume equal weights, but later I will optimize the power of the HMP by
accounting for the power of the constituent tests, and their prior plausibility, in the weights.

Before proceeding, it is worth taking a step back, because after using the HMP to perform a model-averaged test
for a significant effect of body size on claw size, one might wish to perform analogous tests for the other regressors.
I.e. one might wish to test whether the descendants of ancestor A (or B, or both) differ systematically in claw size
from the other species. In total we have s = 3 regressors for selection in the model (log.carapace.breadth, node.A,
node.B), excluding regressors that will be included in every model (in this case, an intercept term). Therefore there
are 2s possible models to fit. For each of the s regressors, there are 2s−1 possible tests of significance, because
there are 2s−1 combinations of the other s regressors. In total, that makes 2s−1s possible tests. Clarifying the total
number of possible tests is important for setting the weights and, through the weights, the significance thresholds.

• It is the responsibility of the user to correctly specify the total number of tests if the false
positive rate is to be controlled using the HMP.

• Do not count combined tests performed using the HMP in this total, only the number of tests that produced
the input p-values. Count tests you have not even done yet if you intend to do them.

Assuming equal weights,

wi =
1

2s−1s
=

1

12
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for every test. Each individual test has significance threshold αwi, as usual - this is equivalent to the Bonferroni
threshold. The power of the HMP stems from the ability to (i) combine test outcomes and (ii) evaluate them against
less stringent thresholds.

To test for a direct association between claw size and body size, we are going to calculate a HMP test statistic

◦
pbody size =

w1:0 + w4:2 + w5:3 + w7:6

w1:0/p1:0 + w4:2/p4:2 + w5:3/p5:3 + w7:6/p7:6

where the notation pA:0 and wA:0 indicates the p-value and weight from the test of modelMA versusM0. From
the HMP test statistic we calculate an asymptotically exact combined p-value p◦

pbody size
which we then evaluate

against significance threshold α wbody size where

wbody size = w1:0 + w4:2 + w5:3 + w7:6.

[Recall that p◦
pbody size

≈ ◦pbody size when
◦
pbody size � 1. Note also that the calculation of p◦

pbody size
via

◦
pbody size will

be performed in a single R command (p.hmp).]
The first step is to calculate the p-values that are to be combined. Since the total number of tests is large, we

will calculate them in batches immediately before combining them. There is one p-value for each possible pair of
models that include and do not include body size (log carapace breadth).

# Output p-values from all tests for the inclusion of the primary regressor
pairwise.p = function(response,primary,data) {

# Define a model space including the grand null
rid = which(colnames(data)==response)
if(length(rid)!=1) stop("Could not find response variable")
# Define the 'primary' regressor
pid = which(colnames(data)==primary)
if(length(pid)!=1) stop("Could not find primary regressor")
# Define the 'secondary' regressors, excluding the response and 'primary' regressor
xid = (1:ncol(data))[-c(rid,pid)]
if(length(xid)<1) stop("Could find only the primary regressor")
# Create a table of every unique combination of models involving the secondary regressors
delta = expand.grid(lapply(xid,function(j) 0:1))
colnames(delta) = colnames(data)[xid]
# Sort them by the number of regressors included, from fewest to most
delta = delta[order(rowSums(delta)),]
# Enumerate the models, adding the primary regressor to every one
mpairs = apply(delta,1,function(x) {

if(all(x==0)) {
formula(paste0(colnames(data)[rid],"~",colnames(data)[pid]))

} else {
formula(paste0(colnames(data)[rid],"~",colnames(data)[pid],"+",

paste(colnames(data)[xid][x==1],collapse="+")))
}

})
names(mpairs) = gsub(colnames(data)[pid],paste0("[",colnames(data)[pid],"]"),

as.character(mpairs),perl=TRUE)
# Calculate a p-value for the inclusion of the primary regressor in each model
lapply(mpairs,function(m) {

fit = lm(m, data=data)
drop1(fit,colnames(data)[pid],test="Chisq")[colnames(data)[pid],"Pr(>Chi)"]

})
}
# Calculate the p-values from all tests for the inclusion of log.carapace.breadth
(p = pairwise.p(response="log.propodus.length",primary="log.carapace.breadth",data=Uca))

## $`log.propodus.length ~ [log.carapace.breadth]`
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## [1] 0.002120586
##
## $`log.propodus.length ~ [log.carapace.breadth] + node.A`
## [1] 0.001897942
##
## $`log.propodus.length ~ [log.carapace.breadth] + node.B`
## [1] 0.0001486883
##
## $`log.propodus.length ~ [log.carapace.breadth] + node.A + node.B`
## [1] 0.01350417

Next one performs the combined test for an association between claw size (the response) and body size (the
regressor of interest). It is essential to get the weights right. Although we are only combining four p-values right
now, there are 2s−1s = 12 tests in total:

# Specify the weight of each test, assuming equal weights
ntotaltests = 12
(w = rep(1/ntotaltests,length(p)))

## [1] 0.08333333 0.08333333 0.08333333 0.08333333

# Calculate the model-averaged (asymptotically exact) HMP
(p.comb = p.hmp(p,w))

## p.hmp
## 0.0005153205

# Sum the weights of the constituent tests
(w.comb = sum(w))

## [1] 0.3333333

# Calculate an adjusted model-averaged p-value for comparison to the ssFWER alpha
(p.comb.adj = p.comb/w.comb)

## p.hmp
## 0.001545961

So we find that, after multiple testing correction, there is a significant association between claw size and body
size (p = 0.0015) at the α = 0.05 level. How does this compare to the individual tests (after multiple testing
correction) and Bonferroni correction? [Note that Bonferroni correction is frequently used in both senses - to adjust
individual p-values for multiple testing and to perform a combined test by taking the minimum of the adjusted
p-values. Recall that HMP and Bonferroni produce the same adjusted p-values for individual tests.]

(p.adj = unlist(p)/w)

## log.propodus.length ~ [log.carapace.breadth]
## 0.02544703
## log.propodus.length ~ [log.carapace.breadth] + node.A
## 0.02277530
## log.propodus.length ~ [log.carapace.breadth] + node.B
## 0.00178426
## log.propodus.length ~ [log.carapace.breadth] + node.A + node.B
## 0.16205008

(p.Bonf = min(p.adj))

## [1] 0.00178426
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We find that the Bonferroni method produces a combined p-value that is also significant (p = 0.0017), but less
significant than the HMP. The difference is small in this example because one adjusted p-value dominated, in the
sense of being much smaller than the others.

Repeat the above for the other two regressors:

# Is there a significant difference in claw size between the descendants of ancestor A
# and other species?
p = pairwise.p(response="log.propodus.length",primary="node.A",data=Uca)
w = rep(1/ntotaltests,length(p))
p.hmp(p,w)/sum(w)

## p.hmp
## 0.03830541

# Individual tests and Bonferroni
(p.adj = unlist(p)/w)

## log.propodus.length ~ [node.A]
## 0.64798554
## log.propodus.length ~ [node.A] + log.carapace.breadth
## 0.57382974
## log.propodus.length ~ [node.A] + node.B
## 0.04067963
## log.propodus.length ~ [node.A] + log.carapace.breadth + node.B
## 7.02317893

(p.Bonf = min(p.adj))

## [1] 0.04067963

# Is there a significant difference in claw size between the descendants of ancestor B
# and other species?
p = pairwise.p(response="log.propodus.length",primary="node.B",data=Uca)
w = rep(1/ntotaltests,length(p))
p.hmp(p,w)/sum(w)

## p.hmp
## 0.183788

# Individual tests and Bonferroni
(p.adj = unlist(p)/w)

## log.propodus.length ~ [node.B]
## 10.3740094
## log.propodus.length ~ [node.B] + log.carapace.breadth
## 0.3084609
## log.propodus.length ~ [node.B] + node.A
## 0.3220758
## log.propodus.length ~ [node.B] + log.carapace.breadth + node.A
## 2.9282418

(p.Bonf = min(p.adj))

## [1] 0.3084609

We find that the descendants of ancestor A do have significantly different claw sizes from other species, taking
into account uncertainty in the model, but the descendants of ancestor B do not.
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2.2 Optimizing the Weights in the Comparative Phylogenetics Example
So far equal weights have been used in the calculation of the HMP. Equal weights are defensible because theory and
simulations show that the HMP is robust to the choice of weights (e.g. Wilson (2019) SI Figure S3). Nevertheless,
the power of the HMP can be optimized by specifying weights that are informative about (i) the prior probability
that the alternative hypothesis associated with each p-value is true and (ii) the power of the test associated with
each p-value. The optimal significance threshold for p-value i is approximately

αwi =

(
µiξi
λ

) 1
1−ξi

(1)

(Wilson (2019) SI Equation 62, after rescaling λ by 1/α). In this equation:

• µi is the prior probability that the alternative hypothesis associated with pi is true, normalized so that∑L
i=1 µi = 1.

• ξi is a parameter describing the distribution of pi under the alternative hypothesis, assuming it can be
approximated by a Beta (ξi, 1) distribution. This is an L-shaped distribution representing the enrichment of
p-values near zero under the alternative hypothesis. The parameter ranges from ξi = 0 (optimally informative
test) to ξi = 1 (completely uninformative test).

• λ is a normalizing constant that is chosen to impose the constraint that
∑L
i=1 wi = 1.

The optimal weights (or, equivalently, the optimal thresholds) are therefore a non-linear function of the µis and
ξis except when all the ξis are much less than one, in which case 1/(1− ξi) ≈ 1. To illustrate how the weights are
optimized by specifying these variables, I will use an the Fiddler crabs example.

2.2.1 Prior specification

Specifying the relative probability that alternative hypothesis Mi is true requires some thought. In some cases
it might be reasonable to assume all alternatives are equally likely, for example if every model contains the same
number of regressors. However, in model selection problems, the number of possible models increases as the number
of regressors included in the model increases, so a uniform prior on the alternative hypotheses has a built-in
preference for more complex models, which may not be desired.

A simple prior for model selection might be based around a single probability, m, that any regressor is included
in the model, which is the same for every regressor. Then the prior probability of alternative hypothesisMi is

µi = Pr (Mi) = mτi (1−m)
s−τi

where τi is the number of regressors, out of s, included in alternative hypothesisMi, excluding terms included in
every model (such as an intercept) and L = 2s − 1 is the total number of alternative hypotheses. Smaller values of
m will favour less complex models.

In the Fiddler crab example there are 2s−1s tests, around a factor s/2 more than the number of models, because
some models, such as the grand alternative, are compared to several different nested null hypotheses. Each test is
assigned the prior probability of its alternative hypothesis; in general these probabilities may not sum to one, but
this is unimportant for Equation 1 because the normalizing constant will be absorbed by λ.

In what follows, I will assume a priori that m = 1/s so the expected number of regressors averaged over all
models (the alternatives and the grand null) is one. I will begin by performing all tests so I have them in one place:

p = c(
unlist(pairwise.p(response="log.propodus.length",primary="log.carapace.breadth",data=Uca)),
unlist(pairwise.p(response="log.propodus.length",primary="node.A",data=Uca)),
unlist(pairwise.p(response="log.propodus.length",primary="node.B",data=Uca)))

I will count the number of terms in each alternative hypothesis and calculate an (unnormalized) prior probability

terms = lapply(names(p),function(s) labels(terms(as.formula(gsub("\\[|\\]","",s,perl=TRUE)))))
(nterms = unlist(lapply(terms,length)))

## [1] 1 2 2 3 1 2 2 3 1 2 2 3
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(s = ncol(Uca)-1)

## [1] 3

(m = 1/s)

## [1] 0.3333333

(mu = m^nterms * (1-m)^(s-nterms))

## [1] 0.14814815 0.07407407 0.07407407 0.03703704 0.14814815 0.07407407
## [7] 0.07407407 0.03703704 0.14814815 0.07407407 0.07407407 0.03703704

2.2.2 Power specification

The power of the test associated with an individual p-value, defined as the probability of significance given the
alternative hypothesis is true, might appear more objective than specifying a prior probability, and it would be but
for the problem that power can only be calculated with respect to specific values (or distributions of values) of the
parameters under the alternative hypothesis. Wilson (2019) Equation 58 shows that the power of the Wald test for
the inclusion of a single regressor in a linear model is

Pr (pi < α) ≈ Pr

χ2
1 >

Qχ2
1
(1− α)

1 +
σ2
β

σ2
ε

{
(X ′X)

−1
}−1
cc


where χ2

1 is a chi-squared random variable with 1 degree of freedom, Qχ2
1
(1− α) is the critical value of χ2

1 for
significance at level α, X is the matrix of regressors, including intercepts, of which column c corresponds to the
regressor whose inclusion is being tested, and σ2

β/σ
2
ε is the relative magnitude of the variance of a Normal prior on

the effect size of the regressor-of-interest, compared to the error variance. This last term must be chosen carefully
for every regressor.

In what follows, I will assume σ2
β/σ

2
ε = 2/V (Xc), i.e. the expected magnitude of the effect size of regressor c is

twice the expected magnitude of the error term, after standardizing the variances of all the regressors to equal one.

test.term = sapply(names(p),function(s)
gsub("\\[|\\]","",regmatches(s,regexpr("\\[.*?\\]",s,perl=TRUE)),perl=TRUE)

)
Uca.var = apply(Uca,2,var)
ssqb.over.ssqe = 2/Uca.var[test.term]
names(ssqb.over.ssqe) = names(p)
Var.beta.over.ssqe = sapply(names(p),function(s) {

test.term = gsub("\\[|\\]","",
regmatches(s,regexpr("\\[.*?\\]",s,perl=TRUE)),perl=TRUE)

X = model.matrix(as.formula(gsub("\\[|\\]","",s,perl=TRUE)), data=Uca)
solve(crossprod(X))[test.term,test.term]

})

# When the beta approximation performs poorly, best to evaluate
# near the likely value of the final threshold
smallp = 0.05/length(p)
# These are the test powers assuming threshold smallp
(smallp.pow = pchisq(qchisq(smallp,1,lower.tail=FALSE)/

(1+ssqb.over.ssqe/Var.beta.over.ssqe),1,lower.tail=FALSE))

## log.propodus.length ~ [log.carapace.breadth]
## 0.33953383
## log.propodus.length ~ [log.carapace.breadth] + node.A
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## 0.06068919
## log.propodus.length ~ [log.carapace.breadth] + node.B
## 0.30416527
## log.propodus.length ~ [log.carapace.breadth] + node.A + node.B
## 0.02584481
## log.propodus.length ~ [node.A]
## 0.33953383
## log.propodus.length ~ [node.A] + log.carapace.breadth
## 0.06068919
## log.propodus.length ~ [node.A] + node.B
## 0.21945873
## log.propodus.length ~ [node.A] + log.carapace.breadth + node.B
## 0.01651147
## log.propodus.length ~ [node.B]
## 0.33953383
## log.propodus.length ~ [node.B] + log.carapace.breadth
## 0.30416527
## log.propodus.length ~ [node.B] + node.A
## 0.21945873
## log.propodus.length ~ [node.B] + log.carapace.breadth + node.A
## 0.10793392

# Sanity checks
if(any(smallp.pow==1))

warning("Perfect power test detected, check this is plausible")
if(any(smallp.pow<smallp))

stop("Tests with worse power than smallp violate assumptions")
if(any(!is.finite(smallp.pow)) | any(smallp.pow<0) | any(smallp.pow>1))

stop("Power cannot be outside range 0-1")
# Convert them into the parameter of the Beta(xi,1) distribution
xi = log(smallp.pow)/log(smallp)
if(any(!is.finite(xi)) | any(xi<0) | any(xi>1))

stop("Beta(xi,1): xi cannot be outside range 0-1")

# Optimize the weights
wfunc = function(mu,xi,lambda,alpha) (mu*xi/lambda)^(1/(1-xi))/alpha
lambdafunc = function(lambda,alpha) sum(wfunc(mu,xi,lambda,alpha))-1
lambda = uniroot(lambdafunc,c(1e-6,1e6),0.05)$root
lambda = uniroot(lambdafunc,lambda*c(0.1,1.1),0.05)$root
(w = wfunc(mu,xi,lambda,0.05))

## log.propodus.length ~ [log.carapace.breadth]
## 2.074948e-01
## log.propodus.length ~ [log.carapace.breadth] + node.A
## 1.874035e-02
## log.propodus.length ~ [log.carapace.breadth] + node.B
## 8.617939e-02
## log.propodus.length ~ [log.carapace.breadth] + node.A + node.B
## 1.991202e-04
## log.propodus.length ~ [node.A]
## 2.074948e-01
## log.propodus.length ~ [node.A] + log.carapace.breadth
## 1.874035e-02
## log.propodus.length ~ [node.A] + node.B
## 7.693724e-02
## log.propodus.length ~ [node.A] + log.carapace.breadth + node.B
## 7.436276e-06
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## log.propodus.length ~ [node.B]
## 2.074948e-01
## log.propodus.length ~ [node.B] + log.carapace.breadth
## 8.617939e-02
## log.propodus.length ~ [node.B] + node.A
## 7.693724e-02
## log.propodus.length ~ [node.B] + log.carapace.breadth + node.A
## 1.359365e-02

# Check the weights sum to one
sum(w)

## [1] 0.9999987

if(abs(1-sum(w))>1e-4) stop("weights do not sum to one, check")

Now repeat the previous analyses using the new weights

# Compare the weighted and unweighted results
wequal = rep(1/length(w),length(w))
# For log.carapace.breadth
incl = which(test.term == "log.carapace.breadth")
c("weighted"=p.hmp(p[incl],w[incl])/sum(w[incl]),

"unweighted"=p.hmp(p[incl],wequal[incl])/sum(wequal[incl]))

## weighted.p.hmp unweighted.p.hmp
## 0.001460927 0.001545961

# For node.A
incl = which(test.term == "node.A")
c("weighted"=p.hmp(p[incl],w[incl])/sum(w[incl]),

"unweighted"=p.hmp(p[incl],wequal[incl])/sum(wequal[incl]))

## weighted.p.hmp unweighted.p.hmp
## 0.03971510 0.03830541

# For node.B
incl = which(test.term == "node.B")
c("weighted"=p.hmp(p[incl],w[incl])/sum(w[incl]),

"unweighted"=p.hmp(p[incl],wequal[incl])/sum(wequal[incl]))

## weighted.p.hmp unweighted.p.hmp
## 0.1975921 0.1837880

# Headline
incl = 1:length(p)
c("weighted"=p.hmp(p[incl],w[incl])/sum(w[incl]),

"unweighted"=p.hmp(p[incl],wequal[incl])/sum(wequal[incl]))

## weighted.p.hmp unweighted.p.hmp
## 0.001405027 0.001480099

The weighted HMP produces a (slightly) more significant association between claw size and body size, and a
(slightly) more significant headline p-value (rejecting the null that none of the alternatives are true). The weighted
HMP produces (slightly) less significant associations between claw size and descent from ancestors A and B. The
small magnitude of the differences support the claim that the HMP is relatively insensitive to weights. While the
power of the weighted HMP is expected to be better on average (if the prior probabilities and powers are calculated
correctly), it does not follow that the result of any particular test will necessarily be more significant.
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3 Appendices

3.1 Appendix I. Function to enumerate all possible models

enumerate.models = function(response,data) {
# Define the response variable
rid = which(colnames(data)==response)
if(length(rid)!=1) stop("Could not find the response variable")
# Define the regressors
xid = (1:ncol(data))[-rid]
# Create a table defining every unique combination of alternative hypotheses
delta = expand.grid(lapply(xid,function(j) 0:1))
colnames(delta) = colnames(data)[xid]
# Sort them from fewest to most terms
delta = delta[order(rowSums(delta)),]
# Remove the grand null model
delta = delta[rowSums(delta)>0,]
# Define the grand null model separately
m0 = formula(paste0(colnames(data)[rid],"~1"))
# Define the alternative models
mA = apply(delta,1,function(x) formula(paste0(colnames(data)[rid],"~",

paste(colnames(data)[xid][x==1],collapse="+"))))
names(mA) = as.character(mA)
return(list("m0"=m0,"mA"=mA))

}
# E.g. on the Uca data
enumerate.models("log.propodus.length",Uca)

## $m0
## log.propodus.length ~ 1
## <environment: 0x7fd7e62d2a38>
##
## $mA
## $mA$`log.propodus.length ~ log.carapace.breadth`
## log.propodus.length ~ log.carapace.breadth
## <environment: 0x7fd7e63e4aa0>
##
## $mA$`log.propodus.length ~ node.A`
## log.propodus.length ~ node.A
## <environment: 0x7fd7e63e0498>
##
## $mA$`log.propodus.length ~ node.B`
## log.propodus.length ~ node.B
## <environment: 0x7fd7e63dc478>
##
## $mA$`log.propodus.length ~ log.carapace.breadth + node.A`
## log.propodus.length ~ log.carapace.breadth + node.A
## <environment: 0x7fd7e6025b08>
##
## $mA$`log.propodus.length ~ log.carapace.breadth + node.B`
## log.propodus.length ~ log.carapace.breadth + node.B
## <environment: 0x7fd7e631bea8>
##
## $mA$`log.propodus.length ~ node.A + node.B`
## log.propodus.length ~ node.A + node.B
## <environment: 0x7fd7e63a23c0>
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##
## $mA$`log.propodus.length ~ log.carapace.breadth + node.A + node.B`
## log.propodus.length ~ log.carapace.breadth + node.A + node.B
## <environment: 0x7fd7e639cb48>
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