
Package ‘haplo.stats’
April 1, 2005

Version 1.2.0

Date 2005-4

Title Statistical Analysis of Haplotypes with Traits and Covariates when Linkage Phase is Ambiguous

Author Jason P. Sinnwell and Daniel J. Schaid

Maintainer Jason P. Sinnwell <sinnwell.jason@mayo.edu>

Description Haplo Stats is a suite of S-PLUS/R routines for the analysis of indirectly measured
haplotypes. The statistical methods assume that all subjects are unrelated and that haplotypes are
ambiguous (due to unknown linkage phase of the genetic markers). The genetic markers are
assumed to be codominant (i.e., one-to-one correspondence between their genotypes and their
phenotypes), and so we refer to the measurements of genetic markers as genotypes. The main
functions in Haplo Stats are: haplo.em, haplo.glm and haplo.score.

License Copyright 2003 Mayo Foundation for Medical Education and Research. This program is free
software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA. For other licensing arrangements, please contact Daniel J. Schaid, Ph.D.,
Division of Biostatistics, Harwick Building Room 775, Mayo Clinic, 200 First St., SW,
Rochester, MN 55905. Phone: 507-284-0639, fax: 507-284-9542 email: schaid@mayo.edu

Depends R (>= 2.0.1)

SuggestsDesign, Hmisc

URL http://www.mayo.edu/hsr/people/schaid.html

R topics documented:

Ginv .3
allele.recode .4
dglm.fit .5
geno.count.pairs .6
geno.recode .7

1

2 R topics documented:

glm.fit.nowarn .8
haplo.cc .9
haplo.chistat .11
haplo.em .12
haplo.em.control .14
haplo.em.fitter .15
haplo.enum .17
haplo.glm .18
haplo.glm.control .22
haplo.group .24
haplo.hash .25
haplo.model.frame .26
haplo.scan .27
haplo.scan.obs .29
haplo.scan.sim .30
haplo.score .31
haplo.score.glm .34
haplo.score.merge .35
haplo.score.podds .36
haplo.score.slide .37
hla.demo .40
locator.haplo .40
loci .41
locus .43
louis.info .45
mf.gindx .46
na.geno.keep .47
plot.haplo.score .48
plot.haplo.score.slide .49
print.haplo.cc .50
print.haplo.em .51
print.haplo.glm .52
print.haplo.group .53
print.haplo.scan .54
print.haplo.score .55
print.haplo.score.merge .56
print.haplo.score.slide .57
printBanner .58
residScaledGlmFit .59
score.sim.control .60
setupData .61
setupGeno .62
summary.haplo.em .63
summaryGeno .64
varfunc.glm.fit .65

Index 66

Ginv 3

Ginv Compute Generalized Inverse of Input Matrix

Description

Singular value decomposition (svd) is used to compute a generalized inverse of input matrix.

Usage

Ginv(x)

Arguments

x A matrix.

Details

The svd function uses the LAPACK library standard to compute the singular values of the input
matrix, and the rank of the matrix is determined by the number of singular values that are at least
as large as max(svd)*eps, where eps is a small value (currently eps = .000001). For S-PLUS, the
Matrix library is required.

Value

List with components:

Ginv Generalized inverse of x.

rank Rank of matrix x.

Side Effects

References

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. The art of scientific
computing. 2nd ed. Cambridge University Press, Cambridge.1992. page 61.

Anderson, E., et al. (1994). LAPACK User’s Guide, 2nd edition, SIAM, Philadelphia.

See Also

svd

Examples

for matrix x, extract the generalized inverse and
rank of x as follows
> save <- Ginv(x)
> ginv.x <- save$Ginv
> rank.x <- save$rank

4 allele.recode

allele.recode Recode allele values to integer ranks

Description

Genotypes for subjects represented by a pair of vectors, with the vectors containing allele values
(either numeric, factor, or character), are recoded to the rank order of allele values.

Usage

allele.recode(a1, a2, miss.val=NA)

Arguments

a1 Vector of "first" alleles.

a2 Vector of "second" alleles.

miss.val Vector of missing value codes for alleles.

Details

If alleles are numeric, they are recoded to the rank order of the alleles. If the alleles are factor or
character, they are recoded to interger values that correspond to the indices of the sorted values of
the unique alleles, but sorted as character values.

Value

List with components:

a1 Vector of recoded "first" alleles.

a2 Recode of recoded "second" alleles.

allele.label Vector of labels for unique alleles.

Side Effects

References

See Also

geno.recode

Examples

dglm.fit 5

dglm.fit Density function for GLM fit

Description

For internal use within the haplo.stats library

Usage

dglm.fit(fit)

Arguments

fit

Details

For internal use within the haplo.stats library

Value

Side Effects

References

See Also

Examples

6 geno.count.pairs

geno.count.pairs Counts of Total Haplotype Pairs Produced by Genotypes

Description

Provide a count of all possible haplotype pairs for each subject, according to the phenotypes in the
rows of the geno matrix. The count for each row includes the count for complete phenotypes, as
well as possible haplotype pairs for phenotypes where there are missing alleles at any of the loci.

Usage

geno.count.pairs(geno)

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then geno has 2*K columns. Rows represent all observed
alleles for each subject, their phenotype.

Details

When a subject has no missing alleles, and has h heterozygous sites, there are 2**(h-1) haplotype
pairs that are possible (’**’=power). For loci with missing alleles, we consider all possible pairs of
alleles at those loci. Suppose that there are M loci with missing alleles, and let the vector V have
values 1 or 0 acccording to whether these loci are imputed to be heterozygous or homozygous, re-
spectively. The length of V is M. The total number of possible states of V is 2**M. Suppose that the
vector W, also of length M, provides a count of the number of possible heterozygous/homozygous
states at the loci with missing data. For example, if one allele is missing, and there are K possible
alleles at that locus, then there can be one homozygous and (K-1) heterozygous genotypes. If two
alleles are missing, there can be K homozygous and K(K-1)/2 heterozygous genotypes. Suppose
the function H(h+V) counts the total number of heterozygous sites among the loci without missing
data (of which h are heterozygous) and the imputed loci (represented by the vector V). Then, the
total number of possible pairs of haplotypes can be respresented as SUM(W*H(h+V)), where the
sum is over all possible values for the vector V.

Value

Vector where each element gives a count of the number haplotype pairs that are consistent with a
subject’s phenotype, where a phenotype may include 0, 1, or 2 missing alleles at any locus.

Side Effects

See Also

haplo.em , summaryGeno

geno.recode 7

Examples

setupData(hla.demo)
geno <- hla.demo[,c(17,18,21:24)]
geno <- geno.recode(geno)$grec
count.geno <- geno.count.pairs(geno)
print(count.geno)

geno.recode Recode Genotypes

Description

For all loci as pairs of columns in a matrix, recode alleles

Usage

geno.recode(geno, miss.val=0)

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

miss.val Vector of codes for missing values of alleles.

Details

Value

List with components:

grec Matrix of recoded alleles - see allele.recode

alist List of allele labels. For K loci, there are K components in the list, and the kth
component is a vector of sorted unique allele labels for the kth locus.

Side Effects

References

See Also

allele.recode

Examples

8 glm.fit.nowarn

glm.fit.nowarn Modified from glm.fit function to not warn users for binomial non-
integer weights.

Description

An internal function for the haplo.stats library

Usage

glm.fit.nowarn(x, y, weights = rep(1, nobs), start = NULL,
etastart = NULL, mustart = NULL, offset = rep(0,nobs),
family=gaussian(), control=glm.control(), intercept=TRUE)

Arguments

x x

y y

weights weights

start start

etastart etastart

mustart mustart

offset offset

family family

control control

intercept intercept

Details

Value

Note

Author(s)

Sinnwell JP

References

See Also

haplo.glm

haplo.cc 9

Examples

haplo.cc Haplotype Association Analysis in a Case-Control design

Description

Combine results from haplo.score, haplo.group, and haplo.glm for case-control study designs. An-
alyze the association between the binary (case-control) trait and the haplotypes relevant to the un-
related individuals’ genotypes.

Usage

haplo.cc(y, geno, haplo.min.count=5, locus.label=NA, ci.prob=0.95, miss.val=c(0,NA),
simulate=FALSE, sim.control=score.sim.control(),
control=haplo.glm.control())

Arguments

y Vector of trait values, must be 1 for cases and 0 for controls.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

haplo.min.count
The minimum number of expected counts for a haplotype in the sample based
on estimated frequencies.

ci.prob Probability level for confidence interval on the Odds Ratios of each haplotype
to span the true value.

locus.label Vector of labels for loci, of length K (see definition of geno matrix)

miss.val Vector of codes for missing values of alleles

simulate Logical: if [F]alse, no empirical p-values are computed; if [T]rue, simulations
are performed within haplo.score. Specific simulation parameters can be con-
trolled in the sim.control parameter list.

sim.control A list of control parameters to determine how simulations are performed for
simulated p-values. The list is created by the function score.sim.control and the
default values of this function can be changed as desired. See score.sim.control
for details.

control A list of control parameters for managing the execution of haplo.cc. The list is
created by the function haplo.glm.control, which also manages control parame-
ters for the execution of haplo.em.

Details

All function calls within haplo.cc are for the analysis of association between haplotypes and the
case-control status (binomial trait). No additional covariates may be modeled with this function.
Odd Ratios are in reference to the baseline haplotype. Odds Ratios will change if a different baseline
is chosen using haplo.glm.control.

10 haplo.cc

Value

A list including the haplo.score object (score.lst), vector of subject counts by case and control group
(group.count), haplo.glm object (fit.lst), confidence interval probability (ci.prob), and a data frame
(cc.df) with the following components:

haplotypes The first K columns contain the haplotypes used in the analysis.

Hap-Score Score statistic for association of haplotype with the binary trait.

p-val P-value for the haplotype score statistic, based on a chi-square distribution with
1 degree of freedom.

sim.p.val Vector of p-values for score.haplo, based on simulations in haplo.score (omitted
when simulations not performed). P-value of score.global based on simulations
(set equal to NA when simulate=F).

pool.hf Estimated haplotype frequency for cases and controls pooled together.

control.hf Estimated haplotype frequency for control group subjects.

case.hf Estimated haplotype frequency for case group subjects.

glm.eff The haplo.glm function modeled the haplotype effects as: baseline (Base), ad-
ditive haplotype effect (Eff), or rare haplotypes pooled into a single group (R).

OR.lower Lower limit of the Odds Ratio Confidence Interval.

OR Odds Ratio based on haplo.glm model estimated coefficient for the haplotype.

OR.upper Upper limit of the Odds Ratio Confidence Interval.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.em , haplo.score , haplo.group , haplo.score.merge , haplo.glm print.haplo.cc

Examples

For a genotype matrix geno.test, case/control vector y.test
The function call will be like this
cc.test <- haplo.cc(y.test, geno.test, locus.label=locus.label, haplo.min.count=3, ci.prob=0.95)
#

haplo.chistat 11

haplo.chistat Calculate a score test statistic for haplotypes

Description

Calculate a score test statistic for haplotypes, given case-control status. For use in haplo.scan

Usage

haplo.chistat(h1, h2, post, y, nrep)

Arguments

h1 Vector of codes for the first of a haplotype pair per subject

h2 Vector of codes for the second of a haplotype pair per subject

post Posterior probability of the haplotype pair

y The case-control status (1 for cases; 0 for controls)

nrep Number of haplotype pairs for each subject

Details

Value

The score test statistic for the set of haplotypes

Side Effects

References

See Also

Examples

12 haplo.em

haplo.em EM Computation of Haplotype Probabilities, with Progressive Inser-
tion of Loci

Description

For genetic marker phenotypes measured on unrelated subjects, with linkage phase unknown, com-
pute maximum likelihood estimates of haplotype probabilities. Because linkage phase is unknown,
there may be more than one pair of haplotypes that are consistent with the oberved marker pheno-
types, so posterior probabilities of pairs of haplotypes for each subject are also computed. Unlike
the usual EM which attempts to enumerate all possible pairs of haplotypes before iterating over
the EM steps, this "progressive insertion" algorithm progressively inserts batches of loci into hap-
lotypes of growing lengths, runs the EM steps, trims off pairs of haplotypes per subject when the
posterior probability of the pair is below a specified threshold, and then continues these insertion,
EM, and trimming steps until all loci are inserted into the haplotype. The user can choose the batch
size. If the batch size is chosen to be all loci, and the threshold for trimming is set to 0, then this
algorithm reduces to the usual EM algorithm.

Usage

haplo.em(geno, locus.label=NA, miss.val=c(0, NA), weight, control=
haplo.em.control())

Arguments

geno matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then ncol(geno) = 2*K. Rows represent the alleles for each
subject.

locus.label vector of labels for loci.

miss.val vector of values that represent missing alleles in geno.

weight weights for observations (rows of geno matrix).

control list of control parameters. The default is constructed by the function haplo.em.control.
The default behavior of this function results in the following parameter set-
tings: loci.insert.order=1:n.loci, insert.batch.size=min(4,n.loci), min.posterior=
0.0001, tol=0.00001, max.iter=500, random.start=0 (no random start), iseed=NULL
(no saved seed to start random start), verbose=0 (no printout during EM itera-
tions). See haplo.em.control for more details.

Details

Value

list with components:

converge indicator of convergence of the EM algorithm (1 = converge, 0 = failed).

lnlike value of lnlike at last EM iteration (maximum lnlike if converged).

haplo.em 13

lr likelihood ratio statistic to test the final lnlike against the lnlike that assumes
complete linkage equilibrium among all loci (i.e., haplotype frequencies are
products of allele frequencies).

df.lr degrees of freedom for likelihood ratio statistic. The df for the unconstrained
final model is the number of non-zero haplotype frequencies minus 1, and the df
for the null model of complete linkage equilibrium is the sum, over all loci, of
(number of alleles - 1). The df for the lr statistic is df[unconstrained] - df[null].
This can result in negative df, if many haplotypes are estimated to have zero
frequency, or if a large amount of trimming occurs, when using large values of
min.posterior in the list of control parameters.

hap.prob vector of mle’s of haplotype probabilities. The ith element of hap.prob corre-
sponds to the ith row of haplotype.

locus.label vector of labels for loci, of length K (see definition of input values).

subj.id vector of id’s for subjects used in the analysis, based on row number of input
geno matrix. If subjects are removed, then their id will be missing from subj.id.

rows.rem now defunct, but set equal to a vector of length 0, to be compatible with other
functions that check for rows.rem.

indx.subj vector for row index of subjects after expanding to all possible pairs of haplo-
types for each person. If indx.subj=i, then i is the ith row of geno. If the ith
subject has n possible pairs of haplotypes that correspond to their marker geno-
type, then i is repeated n times.

nreps vector for the count of haplotype pairs that map to each subject’s marker geno-
types.

max.pairs vector of maximum number of pairs of haplotypes per subject that are consistent
with their marker data in the matrix geno. The length of max.pairs = nrow(geno).
This vector is computed by geno.count.pairs.

hap1code vector of codes for each subject’s first haplotype. The values in hap1code are
the row numbers of the unique haplotypes in the returned matrix haplotype.

hap2code similar to hap1code, but for each subject’s second haplotype.

post vector of posterior probabilities of pairs of haplotypes for a person, given their
marker phenotypes.

haplotype matrix of unique haplotypes. Each row represents a unique haplotype, and the
number of columns is the number of loci.

control list of control parameters for algorithm. See haplo.em.control

Side Effects

References

The basis of this progressive insertion algorithm is from the sofware snphap by David Clayton.
Although some of the features and control parameters of this S-PLUS version are modeled after
snphap, there are substantial differences, such as extension to allow for more than two alleles per
locus, and some other nuances on how the alogrithm is implemented.

See Also

haplo.em.control

14 haplo.em.control

Examples

setupData(hla.demo)
attach(hla.demo)
geno <- hla.demo[,c(17,18,21:24)]
label <-c("DQB","DRB","B")
keep <- !apply(is.na(geno) | geno==0, 1, any)

save.em.keep <- haplo.em(geno=geno[keep,], locus.label=label)

warning: output will not exactly match

print.haplo.em(save.em.keep)

haplo.em.control Create the Control Parameters for the EM Computation of Haplotype
Probabilities, with Progressive Insertion of Loci

Description

Create a list of parameters that control the EM algorithm for estimating haplotype frequencies,
based on progressive insertion of loci. Non-default parameters for the EM algorithm can be set as
parameters passed to haplo.em.control.

Usage

haplo.em.control(loci.insert.order=NULL, insert.batch.size = 6,
min.posterior = 1e-07, tol = 1e-05,
max.iter=5000, random.start=0, n.try = 10,
iseed=NULL, max.haps.limit = 2e6, verbose=0)

Arguments

loci.insert.order
Numeric vector with specific order to insert the loci. If this value is NULL, the
insert oder will be in sequential order (1, 2, ..., No. Loci).

insert.batch.size
Number of loci to be inserted in a single batch.

min.posterior
Minimum posterior probability of a haplotype pair, conditional on observed
marker genotypes. Posteriors below this minimum value will have their pair
of haplotypes "trimmed" off the list of possible pairs.

tol If the change in log-likelihood value between EM steps is less than the tolerance
(tol), it has converged.

max.iter Maximum number of iterations allowed for the EM algorithm before it stops and
prints an error. If the error is printed, double max.iter.

random.start
If random.start = 0, then the inititial starting values of the posteriors for the first
EM attempt will be based on assuming equal posterior probabilities (conditional
on genotypes). If random.start = 1, then the initial starting values of the first EM
attempt will be based on assuming a uniform distribution for the initial posterior
probabilities.

haplo.em.fitter 15

n.try Number of times to try to maximize the lnlike by the EM algorithm. The first try
uses, as initial starting values for the posteriors, either equal values or uniform
random variables, as determined by random.start. All subsequent tries will use
random uniform values as initial starting values for the posterior probabilities.

iseed An integer or a saved copy of .Random.seed. This allows simulations to be
reproduced by using the same initial seed.

max.haps.limit
The maximum number of haplotypes for which memory is allocated.

verbose Logical, if [T]rue, print procedural messages to the screen. If [F]alse, do not
print any messages.

Details

The default is to use n.try = 10. If this takes too much time, it may be worthwhile to decrease n.try.
Other tips for computing haplotype frequencies for a large number of loci, particularly if some have
many alleles, is to decrease the batch size (insert.batch.size), increase the memory (max.haps.limit).

Value

A list of the parameters passed to the function.

Side Effects

References

See Also

haplo.em , haplo.score

Examples

This is how it is used within haplo.score
> score.gauss <- haplo.score(resp, geno, trait.type="gaussian",
> em.control=haplo.em.control(insert.batch.size = 2, n.try=1))

haplo.em.fitter Compute engine for haplotype EM algorithm

Description

For internal use within the haplo.stats library

Usage

haplo.em.fitter(n.loci, n.subject, weight, geno.vec, n.alleles,
max.haps, max.iter, loci.insert.order, min.posterior,
tol, insert.batch.size, random.start, iseed1, iseed2,
iseed3, verbose)

16 haplo.em.fitter

Arguments

n.loci

n.subject

weight

geno.vec

n.alleles

max.haps

max.iter
loci.insert.order

min.posterior

tol
insert.batch.size

random.start

iseed1

iseed2

iseed3

verbose

Details

For internal use within the haplo.stats library

Value

Side Effects

References

See Also

Examples

haplo.enum 17

haplo.enum Enumerate all possible pairs of haplotypes that are consistent with a
set of un-phased multilocus markers

Description

Given subject un-phased genotype hmat, enumerate all possible pairs of haplotypes, and return
enumerated pairs in matrices h1 and h2.

Usage

haplo.enum(hmat)

Arguments

hmat A genotype vector of length 2*K (K = number of loci). When used in haplo.em,
it is a single row of a genotype matrix.

Details

For a pair of haplotypes, if there are H sites that are heterozygous, then there are 2 raised to (H-1)
possible pairs to enumerate. To achieve this, the algorithm moves across the loci that are heterozy-
gous (after the 1st heterozygous locus), flipping alleles at heterozygous locations to enumerate all
possible pairs of haplotpes, and appending results as rows of the output matrices h1, and h2.

Value

List with components:

h1 A matrix of enumerated haplotypes. If there are N enumerations, h1 will have
dimension N x K.

h2 Similar to h1, a matrix of enumerated haplotypes for the second members of
the pairs of haplotypes. Haplotype pairs in h1 and h2 match by the same row
number.

Side Effects

References

See Also

haplo.em

Examples

18 haplo.glm

haplo.glm GLM Regression of Trait on Ambiguous Haplotypes

Description

Perform glm regression of a trait on haplotype effects, allowing for ambiguous haplotypes. This
method performs an iterative two-step EM, with the posterior probabilities of pairs of haplotypes
per subject used as weights to update the regression coefficients, and the regression coefficients
used to update the posterior probabilities.

Usage

haplo.glm(formula=formula(data), family=gaussian, data=sys.parent(),
weights, na.action="na.geno.keep", start=eta, miss.val=c(0,NA),
locus.label=NA, allele.lev=NULL, control=haplo.glm.control(),
method="glm.fit", model=FALSE, x=FALSE, y=TRUE,
contrasts=NULL, ...)

Arguments

formula a formula expression as for other regression models, of the form response pre-
dictors. For details, see the documentation for lm and formula.

family a family object. This is a list of expressions for defining the link, variance func-
tion, initialization values, and iterative weights for the generalized linear model.
Supported families are: gaussian, binomial, poisson. Currently, only the logit
link is implemented for binimial.

data a data frame in which to interpret the variables occurring in the formula. A
CRITICAL element of the data frame is the matrix of genotypes, denoted here
as "geno", although an informative name should be used in practice. This geno
matrix is actually a matrix of alleles, such that each locus has a pair of adjacent
columns of alleles, and the order of columns corresponds to the order of loci
on a chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
the alleles for each subject. It is also CRITICAL that this matrix is defined as
a model.matrix, in order to keep the columns of the matrix packaged together
into the single matrix object. If geno is a matrix of alleles, then before adding
it to the data frame, use the following command to convert it to a model.matrix:
oldClass(geno) <- "model.matrix". If geno is a data.frame of alleles, you must
first convert geno to a matrix, using geno <- as.matrix(geno), and then convert it
to a model.matrix.

weights the weights for observations (rows of the data frame). By default, all observa-
tions are weighted equally.

na.action a function to filter missing data. This is applied to the model.frame. The default
value of na.action=na.geno.keep will keep observations with missing alleles,
but exclude observations missing any other data (e.g., response variable, other
covariates, weight). The EM algorithm for ambiguous haplotypes accounts for
missing alleles. Similar to the usual glm, na.fail creates an error if any missing
values are found, and a third possible alternative is na.exclude, which deletes
observations that contain one or more missing values for any data, including
alleles.

haplo.glm 19

start a vector of initial values on the scale of the linear predictor.

miss.val vector of values that represent missing alleles in geno matrix.

locus.label vector of labels for loci.

allele.lev This argument is optional ONLY for S-PLUS, but is REQUIRED for R. This is
a list of vectors, each vector giving the labels of alleles for each locus. The list
is made an attribute of geno<-setupGeno(geno). This is required to account for
the differences in which S-PLUS and R handle character data (allele labels) in a
model.frame. See its use in the example below.

control list of control parameters. The default is constructed by the function haplo.glm.control.
The items in this list control the regression modeling of the haplotypes (e.g., ad-
ditive, dominant, recessive effects of haplotypes; which haplotype is chosen as
the baseline for regression; how to handle rare haplotypes; control of the glm
function - maximum number of iterations), and the EM algorithm for estimating
initial haplotype frequencies. See haplo.glm.control for details.

method currently, glm.fit is the only method allowed.

model if model=TRUE, the model.frame is returned.

x a logical flag. If x=TRUE, the model.matrix is returned. By default, x=FALSE.

y a logical flag. The default value of y=TRUE causes the response variable to be
returned.

contrasts currently, contrasts is ignnored (so NULL, the default value, is always used).

... potential other arguments that may be passed - currently ignored.

Details

Value

An object of class "haplo.glm" is returned. The output object from haplo.glm has all the components
of a glm object, with a few more. It is important to note that some of the returned components
correpond to the "expanded" version of the data. This means that each observation is expanded into
the number of terms in the observation’s posterior distribution of haplotype pairs, given the marker
data. For example, when fitting the response y on haplotype effects, the value of y[i], for the ith
observation, is replicated m[i] times, where m[i] is the number of pairs of haplotypes consistent
with the observed marker data. The returned components that are expanded are indicated below
by [expanded] in the definition of the component. These expanded components may need to be
collapsed, depending on the user’s objectives. For example, when considering the influence of an
observation, it may make sense to examine the expanded residuals for a single observation, perhaps
plotted against the haplotypes for that observation. In contrast, it would not be sensible to plot all
residuals against non-genetic covaraites, without first collapsing the expanded residuals for each
observation. To collapse, one can use the average residual per observation, weighted according to
the posterior probabilities. The appropriate weight can be computed as wt = fit$weight.expanded *
fit$haplo.post.info$post. Then, the weighted average can be calculated as tapply(fit$residuals * wt,
fit$haplo.post.info$indx, sum).

coefficients the coefficients of the linear.predictors, which multiply the columns of the model
matrix. The names of the coefficients are the names of the columns of the model
matrix. For haplotype coefficients, the names are the concatentation of name of
the geno matrix with a haplotype number. The haplotype number corresponds to

20 haplo.glm

the index of the haplotype. The default print will show the coefficients with hap-
lotype number, along with the alleles that define the haplotype, and the estimated
haplotype frequency. If the model is over-determined there will be missing val-
ues in the coefficients corresponding to inestimable coefficients.

residuals [expanded] residuals from the final weighted least squares fit; also known as
working residuals, these are typically not interpretable without rescaling by the
weights (see glm.object).

fitted.values
[expanded] fitted mean values, obtained by transforming linear.predictors using
the inverse link function (see glm.object).

effects [expaded] orthogonal, single-degree-of-freedom effects (see lm.object).

R the triangular factor of the decomposition (see lm.object).

rank the computed rank (number of linearly independent columns in the model ma-
trix), which is the model degrees of freedom - see lm.object.

assign the list of assignments of coefficients (and effects) to the terms in the model (see
lm.object).

df.residual [expanded] number of degrees of freedom for residuals, corresponding to the
expanded data.

weights.expanded
[expanded] input weights after expanding according to the number of pairs of
haplotypes consistent with an observation’s marker genotype data.

family a 3 element character vector giving the name of the family, the link and the
variance function; mainly for printing purposes.

linear.predictors
[expanded] linear fit, given by the product of the model matrix and the coeffi-
cients; also the fitted.values from the final weighted least squares fit.

deviance [expanded] up to a constant, minus twice the maximized log-likelihood. Similar
to the residual sum of squares.

null.deviance
the deviance corresponding to the model with no predictors.

call an image of the call that produced the object, but with the arguments all named
and with the actual formula included as the formula argument.

iter the number of IRLS iterations used to compute the estimates, for the last step of
the EM fit of coefficients.

y [expanded] response, if y=T.

contrasts a list containing sufficient information to construct the contrasts used to fit any
factors occurring in the model (see lm.object).

lnlike log-likelihood of the fitted model.

lnlike.null log-likelihood of the null model that has only an intercept.

lrt likelihood ratio test statistic to test whether all coefficients (excepet intercept)
are zero: 2*(lnlike - lnlike.null)

terms an object of mode expression and class term summarizing the formula, but not
complete for the final model. Because this does not represent expansion of the
design matrix for the haplotypes, it is typically not of direct relevance to users.

control list of all control parameters

haplo.unique the data.frame of unique haplotypes

haplo.glm 21

haplo.base the index of the haplotype used as the base-line for the regression model. To see
the actual haplotype definition, use the following: fit$haplo.unique[fit$haplo.base,],
where fit is the saved haplo.glm object (e.g., fit <- haplo.glm(y geno, ...)).

haplo.freq the final estimates of haplotype frequencies, after completing EM steps of updat-
ing haplotype frequencies and regression coefficients. The length of haplo.freq
is the number of rows of haplo.unique, and the order of haplo.freq is the same as
that for the rows of haplo.unique. So, the frequencies of the unique haplotypes
can be viewed as cbind(fit$haplo.unique, fit$haplo.freq).

haplo.freq.init
the initial estimates of haplotype frequencies, based on the EM algorithm for
estimating haplotype frequencies, ingnoring the trait. These can be compared
with haplo.freq, to see the impact of using the regression model to update the
haplotype frequencies.

converge.em T/F whether the initial EM algorithm for estimating haplo.freq.init converged.

haplo.common the indices of the haplotypes determined to be "common" enough to estimate
their corresponding regression coefficients.

haplo.rare the indices of all the haplotypes determined to be too rare to estimate their spe-
cific regression coefficients.

haplo.rare.term
T/F whether the "rare" term is included in the haplotype regression model.

haplo.names the names of the coefficients that represent haplotype effects.

haplo.post.info
a data.frame of information regarding the posterior probabilites. The columns of
this data.frame are: indx (the index of the input obsevation; if the ith observation
is repeated m times, then indx will show m replicates of i; hence, indx will
correspond to the "expanded" observations); hap1 and hap2 (the indices of the
haplotypes; if hap1=j and hap2=k, then the two haplotypes in terms of alleles
are fit$haplo.unique[j,] and fit$haplo.unique[k,]); post.init (the initial posterior
probability, based on haplo.freq.init); post (the final posterior probability, based
on haplo.freq).

x the model matrix, with [expanded] rows, if x=T.

info the observed information matrix, based on Louis’ formula. The upper left sub-
matrix is for the regression coefficient, the lower right submatrix for the haplo-
type frequencies, and the remaining is the information between regression coef-
ficients and haplotype frequencies.

var.mat the variance-covariance matrix of regression coefficients and haplotype frequen-
cies, based on the inverse of info. Upper left submatrix is for regression coeffi-
cients, lower right submatrix for haplotype frequencies.

haplo.elim the indices of the haplotypes eliminated from the info and var.mat matrices be-
cause their frequencies are less than haplo.min.info (the minimum haplotype fre-
quency required for computation of the information matrix - see haplo.glm.control)

rank.info rank of information (info) matrix.

References

Lake S, Lyon H, Silverman E, Weiss S, Laird N, Schaid D (2002) Estimation and tests of haplotype-
environment interaction when linkage phase is ambiguous. Human Heredity 55:56-65.

22 haplo.glm.control

See Also

haplo.glm.control, haplo.em, haplo.model.frame

Examples

FOR REGULAR USAGE, DO NOT DISCARD GENOTYPES WITH MISSING VALUES
WE ONLY SUBSET BY KEEP HERE SO THE EXAMPLES RUN FASTER

setupData(hla.demo)
geno <- as.matrix(hla.demo[,c(17,18,21:24)])
keep <- !apply(is.na(geno) | geno==0, 1, any) # SKIP THESE THREE LINES
hla.demo <- hla.demo[keep,] # IN AN ANALYSIS
geno <- geno[keep,] #
attach(hla.demo)
label <-c("DQB","DRB","B")
y <- hla.demo$resp
y.bin <- 1*(hla.demo$resp.cat=="low")

set up a genotype array as a model.matrix for inserting into data frame
Note that hla.demo is a data.frame, and we need to subset to columns
of interest. Also also need to convert to a matrix object, so that
setupGeno can code alleles and convert geno to 'model.matrix' class.

geno <- setupGeno(geno, miss.val=c(0,NA))

geno now has an attribute 'unique.alleles' which must be passed to
haplo.glm as allele.lev=attributes(geno)$unique.alleles, see below

my.data <- data.frame(geno=geno, age=hla.demo$age, male=hla.demo$male,
y=y, y.bin=y.bin)

fit.gaus <- haplo.glm(y ~ male + geno, family = gaussian, na.action=
"na.geno.keep",allele.lev=attributes(geno)$unique.alleles,
data=my.data, locus.label=label,
control = haplo.glm.control(haplo.freq.min=0.02))

fit.gaus

haplo.glm.control Create list of control parameters for haplo.glm

Description

Create a list of control pararameters for haplo.glm. If no parameters are passed to this function,
then all default values are used.

Usage

haplo.glm.control(haplo.effect="add", haplo.base=NULL,
haplo.min.count=NA, haplo.freq.min=NA,
sum.rare.min=0.001, haplo.min.info=0.001,
keep.rare.haplo=TRUE, glm.c=glm.control(maxit=500),

em.c=haplo.em.control())

haplo.glm.control 23

Arguments

haplo.effect
the "effect" of a haplotypes, which determines the covariate (x) coding of hap-
lotypes. Valid options are "additive" (causing x = 0, 1, or 2, the count of a
particular haplotype), "dominant" (causing x = 1 if heterozygous or homozy-
gous carrier of a particular haplotype; x = 0 otherwise), and "recessive" (causing
x = 1 if homozygous for a particular haplotype; x = 0 otherwise).

haplo.base the index for the haplotype to be used as the base-line for regression. By default,
haplo.base=NULL, so that the most frequent haplotype is chosen as the base-
line.

haplo.min.count
The minimum number of expected counts for a haplotype from the sample to be
included in the model. The count is based on estimated haplotype frequencies.
Suggested minimum is 5.

haplo.freq.min
the minimum haplotype frequency for a haplotype to be included in the regres-
sion model as its own effect. The haplotype frequency is based on the EM
algorithm that estimates haplotype frequencies independent of trait.

sum.rare.min
the sum of the "rare" haplotype frequencies must be larger than sum.rare.min in
order for the pool of rare haplotypes to be included in the regression model as a
separate term. If this condition is not met, then the rare haplotypes are pooled
with the base-line haplotype (see keep.rare.haplo below).

haplo.min.info
the minimum haplotype frequency for determining the contribution of a haplo-
type to the observed information matrix. Haplotypes with less frequency are
dropped from the observed information matrix. The haplotype frequency is that
from the final EM that iteratively updates haplotype frequencies and regression
coefficients.

keep.rare.haplo
TRUE/FALSE to determine if the pool of rare haplotype should be kept as a
separate term in the regression model (when keep.rare.haplo=TRUE), or pooled
with the base-line haplotype (when keep.rare.haplo=FALSE).

glm.c list of control parameters for the usual glm.control (see glm.control).

em.c list of control parameters for the EM algorithm to estimate haplotype frequen-
cies, independent of trait (see haplo.em.control).

Value

the list of above components

See Also

haplo.glm , haplo.em.control , glm.control

Examples

using the data set up in the example for haplo.glm,
the control function is used in haplo.glm as follows
> fit <- haplo.glm(y ~ male + geno, family = gaussian,
> na.action="na.geno.keep",
> data=my.data, locus.label=locus.label,

24 haplo.group

> control = haplo.glm.control(haplo.min.count=5,
> em.c=haplo.em.control(n.try=1)))

haplo.group Frequencies for Haplotypes by Grouping Variable

Description

Calculate maximum likelihood estimates of haplotype probabilities for the entire dataset and sepa-
rately for each subset defined by the levels of a group variable. Only autosomal loci are considered.

Usage

haplo.group(group, geno, locus.label=NA, miss.val=0,
control=haplo.em.control())

Arguments

group Group can be of logical, numeric, character, or factor class type.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then geno has 2*K columns. Rows represent all observed
alleles for each subject.

locus.label Vector of labels for loci, of length K (see definition of geno matrix).

miss.val Vector of codes for allele missing values.

control list of control parameters for haplo.em (see haplo.em.control).

Details

Haplo.em is used to compute the maximum likelihood estimates of the haplotype frequencies for
the total sample, then for each of the groups separately.

Value

A list as an object of the haplo.group class. The three elements of the list are
described below.

group.df A data frame with the columns described as follows. -haplotype: Names for the
K columns for the K alleles in the haplotypes. -total: Estimated frequencies for
haplotypes from the total sample. -group.name.i: Estimated haplotype frequen-
cies for the haplotype if it occurs in the group referenced by ’i’. Frequency is
NA if it doesn’t occur for the group. The column name is the actual variable
name joined with the ith level of that variable.

group.count Vector containing the number of subjects for each level of the grouping variable.

n.loci Number of loci occuring in the geno matrix.

Side Effects

haplo.hash 25

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

print.haplo.group, haplo.em

Examples

setupData(hla.demo)
geno <- as.matrix(hla.demo[,c(17,18,21:24)])

remove any subjects with missing alleles for faster examples,
but you may keep them in practice

keep <- !apply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]
geno <- geno[keep,]
attach(hla.demo)

y.ord <- as.numeric(resp.cat)
y.bin <-ifelse(y.ord==1,1,0)
group.bin <- haplo.group(y.bin, geno, miss.val=0)
print.haplo.group(group.bin)

haplo.hash Integer Rank Codes for Haplotypes

Description

Create a vector of integer codes for the input matrix of haplotypes. The haplotypes in the input
matrix are converted to character strings, and if there are C unique strings, the integer codes for the
haplotypes will be 1, 2, ..., C.

Usage

haplo.hash(hap)

Arguments

hap A matrix of haplotypes. If there are N haplotypes for K loci, hap have dimen-
sions N x K.

Details

The alleles that make up each row in hap are pasted together as character strings, and the unique
strings are sorted so that the rank order of the sorted strings is used as the integer code for the unique
haplotypes.

26 haplo.model.frame

Value

List with elements:

hash Vector of integer codes for the input data (hap). The value of hash is the row
number of the unique haplotypes given in the returned matrix hap.mtx.

hap.mtx Matrix of unique haplotypes.

Side Effects

References

See Also

haplo.em

Examples

haplo.model.frame Sets up a model frame for haplo.glm

Description

For internal use within the haplo.stats library

Usage

haplo.model.frame(m, locus.label=NA, allele.lev=NULL, miss.val=c(0,NA),
control=haplo.glm.control())

Arguments

m

locus.label

allele.lev

miss.val

control

Details

Value

haplo.scan 27

Side Effects

References

See Also

Examples

haplo.scan Search for a trait-locus by sliding a fixed-width window over each
marker locus and scanning all possible haplotype lengths within the
window

Description

Search for haplotypes that have the strongest association with a binary trait (typically case/control
status) by sliding a fixed-width window over each marker locus and scanning all possible haplotype
lengths within the window. For each haplotype length, a score statistic is computed to compare
the set of haplotypes with a given length between cases versus controls. The locus-specific score
statistic is the maximum score statistic calculated on loci containing that locus. The maximum
score statistic over all haplotype lengths within all possible windows is used for a global test for
association. Permutations of the trait are used to compute p-values.

Usage

haplo.scan(y, geno, width=4, miss.val=c(0, NA),
em.control=haplo.em.control(),
sim.control=score.sim.control())

Arguments

y Vector of binary trait values, must be 1 for cases and 0 for controls.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

width Width of sliding the window

miss.val Vector of codes for missing values of alleles

em.control A list of control parameters to determine how to perform the EM algorithm for
estimating haplotype frequencies when phase is unknown. The list is created by
the function haplo.em.control - see this function for more details.

sim.control A list of control parameters to determine how simulations are performed for
simulated p-values. The list is created by the function score.sim.control and the
default values of this function can be changed as desired. See score.sim.control
for details.

28 haplo.scan

Details

Search for a region for which the haplotypes have the strongest association with a binary trait by
sliding a window of fixed width over each marker locus, and considering all haplotype lengths
within each window. To acount for unknown linkage phase, the function haplo.em is called prior to
scanning, to create a list of haplotype pairs and posterior probabilities. To illustrate the scanning,
consider a 10-locus dataset. When placing a window of width 3 over locus 5, the possible haplotype
lengths that contain locus 5 are three (loci 3-4-5, 4-5-6, and 5-6-7), two (loci 4-5, and 5-6) and one
(locus 5). For each of these loci subsets a score statistic is computed, which is based on the differ-
ence between the mean vector of haplotype counts for cases and that for controls. The maximum of
these score statistics, over all possible haplotype lengths within a window, is the locus-specific test
statistic. The global test statistic is the maximum over all computed score statistics. To compute
p-values, the case/control status is randomly permuted. Simulations are performed until precision
criteria are met for all p-values; the criteria are controlled by score.sim.control.

Value

A list that has class haplo.scan, which contains the following items:

call The call to haplo.scan

scan.df A data frame containing the maximum test statistic for each window around
each locus, and its simulated p-value.

max.loc The loci (locus) which contain(s) the maximum observed test statistic over all
haplotype lengths and all windows.

globalp A p-value for the significance of the global maximum statistic.

nsim Number of simulations performed

Side Effects

For datasets with many estimated haplotypes, the run-time can be very long.

References

Cheng R, Ma JZ, Wright FA, Lin S, Gau X, Wang D, Elston RC, Li MD. "Nonparametric disequi-
librium mapping of functional sites using haplotypes of multiple tightly linked single-nucleotide
polymorphism markers". Genetics 164 (2003):1175-1187.

See Also

haplo.em , haplo.em.control , score.sim.control

Examples

create a random genotype matrix with 10 loci, 50 cases, 50 controls
set.seed(1)
tmp <- ifelse(runif(2000)>.3, 1, 2)
geno <- matrix(tmp, ncol=20)
y <- rep(c(0,1),c(50,50))

search 10-locus region, typically don't limit the number of
simulations, but run time can get long with many simulations

haplo.scan.obs 29

scan.obj <- haplo.scan(y, geno, width=3,
sim.control = score.sim.control(min.sim=10, max.sim=20))

print(scan.obj)

haplo.scan.obs For observed data, slide a fixed-width window over each marker locus
and scan all possible haplotypes within the window

Description

Slide a fixed-width window over each marker locus and scan all possible haplotypes within the
window. For all locus-subsets, calculate score test statistics on observed data, and save the necessary
information for calculating the test statistics in haplo.scan.sim.

Usage

haplo.scan.obs(y, em.obj, width)

Arguments

y Vector of trait values, must be 1 for cases and 0 for controls.

em.obj A haplo.em object containing necessary haplotype information

width Width of the slide window for scanning

Details

Value

svec Vector of locus-specific maximum test statistics

save.lst A list object containing haplotype information necessary for calculating score
test statistics on the simulated data sets in haplo.scan.sim

Side Effects

References

See Also

haplo.scan , haplo.scan.sim , haplo.chistat

Examples

30 haplo.scan.sim

haplo.scan.sim For simulated data, slide a fixed-width window over each marker locus
and scan all possible haplotypes within the window

Description

For simulated data, slide a fixed-width window over each marker locus and scan all possible haplo-
types within the window

Usage

haplo.scan.sim(y.reord, save.lst, nloci)

Arguments

y.reord Re-ordered vector of case/control status, must be 1 for cases and 0 for controls.

save.lst List of haplotype information saved from haplo.scan.obs

nloci Number of loci in the whole region

Details

Value

Vector of the locus-specific test statistics based on simulated case/control status

Side Effects

References

See Also

haplo.scan , haplo.scan.obs , haplo.chistat

Examples

haplo.score 31

haplo.score Score Statistics for Association of Traits with Haplotypes

Description

Compute score statistics to evaluate the association of a trait with haplotypes, when linkage phase
is unknown and diploid marker phenotypes are observed among unrelated subjects. For now, only
autosomal loci are considered.

Usage

haplo.score(y, geno, trait.type="gaussian", offset = NA,
x.adj = NA, skip.haplo=5/(2*nrow(geno)), locus.label=NA,
miss.val=c(0,NA), simulate=FALSE, sim.control=score.sim.control(),
em.control=haplo.em.control())

Arguments

y Vector of trait values. For trait.type = "binomial", y must have values of 1 for
event, 0 for no event.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

trait.type Character string defining type of trait, with values of "gaussian", "binomial",
"poisson", "ordinal".

offset Vector of offset when trait.type = "poisson"

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should not be included, as it will be added in this function.

skip.haplo Skip score statistics for haplotypes with frequencies < skip.haplo. The default is
for an expected count of 5 out of the 2*N haplotype occurrences.

locus.label Vector of labels for loci, of length K (see definition of geno matrix)

miss.val Vector of codes for missing values of alleles

simulate Logical: if [F]alse, no empirical p-values are computed; if [T]rue, simula-
tions are performed. Specific simulation parameters can be controlled in the
sim.control parameter list.

sim.control A list of control parameters to determine how simulations are performed for
simulated p-values. The list is created by the function score.sim.control and the
default values of this function can be changed as desired. See score.sim.control
for details.

em.control A list of control parameters to determine how to perform the EM algorithm for
estimating haplotype frequencies when phase is unknown. The list is created by
the function haplo.em.control - see this function for more details.

32 haplo.score

Details

Compute the maximum likelihood estimates of the haplotype frequencies and the posterior proba-
bilities of the pairs of haplotypes for each subject using an EM algorithm. The algorithm begins
with haplotypes from a subset of the loci and progressively discards those with low frequency be-
fore inserting more loci. The process is repeated until haplotypes for all loci are established. The
posterior probabilities are used to compute the score statistics for the association of (ambiguous)
haplotypes with traits. The glm function is used to compute residuals of the regression of the trait
on the non-genetic covariates.

Value

List with the following components:

score.global Global statistic to test association of trait with haplotypes that have frequencies
>= skip.haplo.

df Degrees of freedom for score.global.
score.global.p

P-value of score.global based on chi-square distribution, with degrees of free-
dom equal to df.

score.global.p.sim
P-value of score.global based on simulations (set equal to NA when simulate=F).

score.haplo Vector of score statistics for individual haplotypes that have frequencies >=
skip.haplo.

score.haplo.p
Vector of p-values for score.haplo, based on a chi-square distribution with 1 df.

score.haplo.p.sim
Vector of p-values for score.haplo, based on simulations (set equal to NA when
simulate=F).

score.max.p.sim
Simulated p-value indicating for simulations the number of times a maximum
score.haplo value exceeds the maximum score.haplo from the original data (equal
to NA when simulate=F).

haplotype Matrix of hapoltypes analyzed. The ith row of haplotype corresponds to the ith
item of score.haplo, score.haplo.p, and score.haplo.p.sim.

hap.prob Vector of haplotype probabilies, corresponding to the haplotypes in the matrix
haplotype.

locus.label Vector of labels for loci, of length K (same as input argument).

simulate Same as function input parameter. If [T]rue, simulation results are included in
the haplo.score object.

n.val.global Vector containing the number of valid simulations used in the global score statis-
tic simulation. The number of valid simulations can be less than the number of
simulations requested (by sim.control) if simulated data sets produce unstable
variances of the score statistics.

n.val.haplo Vector containing the number of valid simulations used in the p-value simula-
tions for maximum-score statistic and scores for the individual haplotypes.

Side Effects

haplo.score 33

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.em , plot.haplo.score , print.haplo.score , haplo.em.control , score.sim.control

Examples

establish all hla.demo data,
remove genotypes with missing alleles just so haplo.score runs faster
with missing values included, this example takes 2-4 minutes
FOR REGULAR USAGE, DO NOT DISCARD GENOTYPES WITH MISSING VALUES

setupData(hla.demo)
geno <- as.matrix(hla.demo[,c(17,18,21:24)])
keep <- !apply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]
geno <- geno[keep,]
attach(hla.demo)
label <- c("DQB","DRB","B")

For quantitative, normally distributed trait:

score.gaus <- haplo.score(resp, geno, locus.label=label,
trait.type = "gaussian")

print(score.gaus)

For ordinal trait:
y.ord <- as.numeric(resp.cat)
score.ord <- haplo.score(y.ord, geno, locus.label=label,

trait.type="ordinal")
print(score.ord)

For a binary trait and simulations,
limit simulations to 500 in score.sim.control, default is 20000

y.bin <-ifelse(y.ord==1,1,0)
score.bin.sim <- haplo.score(y.bin, geno, trait.type = "binomial",

locus.label=label, simulate=TRUE, sim.control=
score.sim.control(min.sim=200,max.sim=500))

print(score.bin.sim)

For a binary trait, adjusted for sex and age:

x <- cbind(male, age)
score.bin.adj <- haplo.score(y.bin, geno, trait.type = "binomial",

locus.label=label, x.adj=x)
print(score.bin.adj)

34 haplo.score.glm

haplo.score.glm Compute haplotype score statistics for GLM

Description

This function is used by haplo.score when analyzing traits by a GLM score.

Usage

haplo.score.glm(y, mu, a, v, x.adj, nreps, x.post, post, x)

Arguments

y Vector of trait values.

mu Expected value of y.

a scale parameter

v v= b”/a for a GLM.

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should be included in this matrix.

nreps Vector for the count of haplotype pairs that map to each subject’s marker geno-
types (see haplo.em).

x.post Matrix for posterior mean of x per subject.

post Vector of posterior probabilities of pairs of haplotypes for a person, given thier
marker phenotypes (see haplo.em).

x Matrix of scores for enumerated haplotypes for each subject, with elements 0,
1, 2 (counts of specific haplotypes).

None.

Details

Using posterior probabilities of pairs of haplotypes, the "design" matrix for the haplotype effects,
and the GLM residuals, compute the score vector and its variance matrix, adjusted for the non-
genetic covariates.

Value

List with components:

u.score Vector of scores for the chosen haplotypes

v.score Covariance matrix for u.score

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association of traits
with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum Genet.

haplo.score.merge 35

See Also

haplo.score

Examples

haplo.score.merge Merge haplo.score And haplo.group Objects

Description

Combine information from returned objects of haplo.score and haplo.group, ’score’ and ’group’ re-
spectively. ’score’ and ’group’ are sorted differently and ’score’ keeps a subset of all the haplotypes
while ’group’ has all of them. To combine results from the two objects, merge them by haplotype
and sort by score of the haplotype. The merged object includes all haplotypes; i.e. those appearing
in ’group’, but the print default only shows haplotypes which have a score.

Usage

haplo.score.merge(score, group)

Arguments

score Object returned from haplo.score of class "haplo.score".

group Object returned from haplo.group of class "haplo.group".

Details

Haplo.score returns score statistic and p-value for haplotypes with an overall frequency above
the user-specified threshold, skip.haplo. For haplotypes with frequencies below the threshold, the
score and p-value will be NA. Overall haplotype frequencies and for sub-groups are estimated by
haplo.group.

Value

Data frame including haplotypes, score-statistics, score p-value, estimated haplotype frequency for
all subjects, and haplotype frequency from group subsets.

Side Effects

Warning: The merge will not detect if the group and score objects resulted from different subject
phenotypes selected by memory-usage parameters, rm.geno.na and enum.limit. Users must use
the same values for these parameters in haplo.score and haplo.group so the merged objects are
consistent.

See Also

haplo.score , haplo.group

36 haplo.score.podds

Examples

setupData(hla.demo)
geno <- as.matrix(hla.demo[,c(17,18,21:24)])
keep <- !apply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]
geno <- geno[keep,]
attach(hla.demo)
y.ord <- as.numeric(resp.cat)
y.bin <-ifelse(y.ord==1,1,0)

group.bin <- haplo.group(y.bin, geno, miss.val=0)
score.bin <- haplo.score(y.bin, geno, trait.type="binomial")
score.merged <- haplo.score.merge(score.bin, group.bin)

print(score.merged)

haplo.score.podds Compute Haplotype Score Statistics for Ordinal Traits with Propor-
tional Odds Model

Description

This function is used by haplo.score when analyzing ordinal traits by a proportional odds model
score statistic.

Usage

haplo.score.podds(y, alpha, beta=NA, x.adj=NA, nreps, x.post, post, x)

Arguments

y Vector of ordinal trait values.

alpha Intercept parameters for ordinal logistic regression model.

beta Regression parameters for adjusted covariates (x.adj).

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should NOT be included in this matrix.

nreps Vector for the count of haplotype pairs that map to each subject’s marker geno-
types (see haplo.em).

x.post Matrix for posterior mean of x per subject.

post Vector of posterior probabilities of pairs of haplotypes for a person, given thier
marker phenotypes (see haplo.em).

x Matrix of scores for enumerated haplotypes for each subject, with elements 0,
1, 2 (counts of specific haplotypes).

None.

Details

Using posterior probabilities of pairs of haplotypes, the "design" matrix for the haplotype effects,
and the proportional odds model, compute the score vector and its variance matrix, adjusted for the
non-genetic covariates.

haplo.score.slide 37

Value

List with components:

u.score Vector of scores for the chosen haplotypes

v.score Covariance matrix for u.score

Side Effects

Warning

To analyze an ordinal trait with adjustment for x.adj covariates, the user will need to have Frank
Harrell’s librarys (Design and Hmisc). However, the unadjusted ordinal trait works fine without
these libraries.

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association of traits
with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum Genet.

See Also

haplo.score

Examples

haplo.score.slide Score Statistics for Association of Traits with Haplotypes

Description

Used to identify sub-haplotypes from a group of loci. Run haplo.score on all contiguous subsets
of size n.slide from the loci in a genotype matrix (geno). From each call to haplo.score, report
the global score statistic p-value. Can also report global and maximum score statistics simulated
p-values.

Usage

haplo.score.slide(y, geno, trait.type="gaussian", n.slide=2,
offset = NA, x.adj = NA, skip.haplo=5/(2*nrow(geno)),
locus.label=NA, miss.val=c(0,NA),
simulate=FALSE, sim.control=score.sim.control(),
em.control=haplo.em.control())

38 haplo.score.slide

Arguments

y Vector of trait values. For trait.type = "binomial", y must have values of 1 for
event, 0 for no event.

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

trait.type Character string defining type of trait, with values of "gaussian", "binomial",
"poisson", "ordinal".

n.slide Number of loci in each contiguous subset. The first subset is the ordered loci
numbered 1 to n.slide, the second subset is 2 through n.slide+1 and so on. If
the total number of loci in geno is n.loci, then there are n.loci - n.slide + 1 total
subsets.

offset Vector of offset when trait.type = "poisson"

x.adj Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should not be included, as it will be added in this function.

skip.haplo For haplotypes with frequencies < skip.haplo, categorize them into a common
group of rare haplotypes.

locus.label Vector of labels for loci, of length K (see definition of geno matrix).

miss.val Vector of codes for missing values of alleles.

simulate Logical, if [F]alse (default) no empirical p-values are computed. If [T]rue sim-
ulations are performed. Specific simulation parameters can be controlled in the
sim.control parameter list.

sim.control A list of control parameters used to perform simulations for simulated p-values
in haplo.score. The list is created by the function score.sim.control and the
default values of this function can be changed as desired.

em.control A list of control parameters used to perform the em algorithm for estimating
haplotype frequencies when phase is unknown. The list is created by the func-
tion haplo.em.control and the default values of this function can be changed as
desired.

Details

Haplo.score.slide is useful for a series of loci where little is known of the association between a
trait and haplotypes. Using a range of n.slide values, the region with the strongest association will
consistently have low p-values for locus subsets containing the associated haplotypes. The global p-
value measures significance of the entire set of haplotypes for the locus subset. Simulated maximum
score statistic p-values indicate when one or a few haplotypes are associated with the trait.

Value

List with the following components:

df Data frame with start locus, global p-value, simulated global p-value, and simu-
lated maximum-score p-value.

n.loci Number of loci given in the genotype matrix.

simulate Same as parameter description above.

n.slide Same as parameter description above.

locus.label Same as parameter description above.

haplo.score.slide 39

n.val.haplo Vector containing the number of valid simulations used in the maximum-score
statistic p-value simulation. The number of valid simulations can be less than the
number of simulations requested (by sim.control) if simulated data sets produce
unstable variables of the score statistics.

n.val.global Vector containing the number of valid simulations used in the global score statis-
tic p-value simulation.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.score , plot.haplo.score.slide , score.sim.control

Examples

setupData(hla.demo)

Continuous trait slide by 2 loci on all 11 loci, uncomment to run it.
Takes > 20 minutes to run
geno.11 <- hla.demo[,-c(1:4)]
label.11 <- c("DPB","DPA","DMA","DMB","TAP1","TAP2","DQB","DQA","DRB","B","A")
slide.gaus <- haplo.score.slide(resp, geno.11, trait.type = "gaussian",
locus.label=label.11, n.slide=2)

print(slide.gaus)
plot(slide.gaus)

Run shortened example on 9 loci
For an ordinal trait, slide by 3 loci, and simulate p-values:
geno.9 <- hla.demo[,-c(1:6,15,16)]
label.9 <- c("DPA","DMA","DMB","TAP1","DQB","DQA","DRB","B","A")

y.ord <- as.numeric(hla.demo$resp.cat)

data is set up, to run, run these lines of code on the data that was
set up in this example. It takes > 15 minutes to run
slide.ord.sim <- haplo.score.slide(y.ord, geno.9, trait.type = "ordinal",
n.slide=3, locus.label=label.9, simulate=TRUE,
sim.control=score.sim.control(min.sim=200, max.sim=500))

note, results will vary due to simulations
print(slide.ord.sim)
plot(slide.ord.sim)
plot(slide.ord.sim, pval="global.sim")
plot(slide.ord.sim, pval="max.sim")

40 locator.haplo

hla.demo HLA Loci and Serologic Response to Measles Vaccination.

Description

Eleven HLA-region loci genotyped for 220 subjects, phase not known. Contains measles vaccina-
tion response with covariate data.

Usage

data(hla.demo)

Format

Data Frame with the following columns:

resp Quantitative response to Measles Vaccination

resp.cat Category of response as low, normal, or high; based on ’resp’

male Binary indicator of gender, 1=male, 0=female

age Age of the subject

allele columns 5 - 26Pairs of columns represent the allele pairs for each subject at the locus.

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

Source

Data set kindly provided by Gregory A. Poland, M.D. and the Mayo Clinic Vaccine Research Group
for illustration only, and my not be used for publication.

locator.haplo Find Location from Mouse Clicks and Print Haplotypes on Plot

Description

Much like the R/Splus locator function is used to find x-y coordinates on a plot. Find all x-y
coordinates that are chosen by the user’s mouse clicks. Then print haplotype labels at the chosen
positions.

Usage

locator.haplo(obj)

loci 41

Arguments

obj An object (of class haplo.score) that is returned from haplo.score.

Details

After plotting the results in obj, as from plot(obj), the function locator.haplo is used to place on the
plot the text strings for haplotypes of interest. After the function call (e.g., locator.haplo(obj)), the
user can click, with the left mouse button, on as many points in the plot as desired. Then, clicking
with the middle mouse button will cause the haplotypes to be printed on the plot. The format of a
haplotype is "a:b:c", where a, b, and c are alleles, and the separator ":" is used to separate alleles on
a haplotype. The algorithm chooses the closest point that the user clicks on, and prints the haplotype
either above the point (for points on the lower-half of the plot) or below the point (for points in the
upper-half of the plot).

Value

List with the following components:

x.coord Vector of x-coordinates.

y.coord Vector of y-coordinates.

hap.txt Vector of character strings for haplotypes.

See Also

haplo.score

Examples

follow the pseudo-code
score.out <- haplo.score(y, geno, trait.type = "gaussian")

plot(score.out)

locator.haplo(score.out)

loci Create a group of locus objects from a genotype matrix, assign to
’model.matrix’ class.

Description

The function makes each pair of columns a locus object, which recodes alleles to numeric and saves
the original alleles as an attribute of the model.matrix.

Usage

loci(geno, locus.names, chrom.label=NULL, x.linked=FALSE, sex=NULL,
male.code="M", female.code="F", miss.val=NA, map=NA)

42 loci

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

locus.names A vector containing the locus name for each locus.

chrom.label Chromosome Label

x.linked A logical value denoting whether the chromosome is X-linked.

sex A vector containing the sex of each individual. If x.linked=F then argum ent sex
is not required and may be left as the default value of NULL.

male.code The code denoting a male in the sex vector.

female.code The code denoting a female in the sex vector.

miss.val A vector of codes denoting missing values for the allele labels. Note that NA will
always be treated as a missing value, and alleles matching miss.val are assigned
NA. Also note that the original missing value code for a specific individual can
not be retrieved from the returned object.

map An optional chromosome map of class "cmap"

Details

Value

An object of class "model.matrix", with all alleles recoded to a numeric value. It contains the
following attributes:

locus.names A vector of labels for the loci, of length nloci.

map Will be better defined later.

x.linked A logical value denoting whether the chromosome is X-linked.

unique.alleles
The original allele labels are stored in the ’unique.alleles’ attribute. The ith item
of the unique.alleles list is a vector of unique alleles for the ith locus.

male.code The code denoting a male in the sex vector.

female.code The code denoting a female in the sex vector.

chrom.label Chromosome Label

Side Effects

References

Note

A matrix that contains all elements of mode character will be sorted in alphabetic order.

locus 43

See Also

locus, setupGeno

Examples

Create some loci to work with
a1 <- 1:6
a2 <- 7:12

b1 <- c("A","A","B","C","E","D")
b2 <-c("A","A","C","E","F","G")

c1 <- c("101","10","115","132","21","112")
c2 <- c("100","101","0","100","21","110")

myloci <- data.frame(a1,a2,b1,b2,c1,c2)
myloci <- loci(myloci, locus.names=c("A","B","C"),miss.val=c(0,NA))
myloci

attributes(myloci)

locus Creates an object of class "locus"

Description

Creates an object containing genotypes for multiple individuals. The object can then use method
functions developed for objects of class "locus".

Usage

locus(allele1, allele2, chrom.label=NULL,locus.alias=NULL,
x.linked=FALSE, sex=NULL, male.code="M", female.code="F", miss.val=NA)

Arguments

allele1 A vector containing the labels for 1 allele for a set of individuals, or optionally
a matrix with 2 columns each containing an allele for each person.

allele2 A vector containing the labels for the second allele for a set of individuals. If
allele 1 is a matrix, allele 2 need not be specified.

chrom.label A label describing the chromosome the alleles belong to

locus.alias A vector containing one or more aliases describing the locus. The first alias in
the vector will be used as a label for printing in some functions such as multilo-
cus.print().

x.linked A logical value denoting whether the chromosome is x linked

sex A vector containing the gender of each individual (required if x.linked=T)

male.code The code denoting a male in the sex vector

female.code The code denoting a female in the sex vector

miss.val a vector of codes denoting missing values for allele1 and allele2. Note that NA
will always be treated as a missing value, even if not specified in miss.val. Also
note that if multiple missing value codes are specified, the original missing value
code for a specific individual can not be retrieved from the locus object.

44 locus

Details

Value

Returns an object of class locus which inherits from class model.matrix containing the following
elements:

geno a matrix with 2 columns where each row contains numeric codes for the 2 alleles
for an individual.

chrom.label a chromosome label

locus.alias a vector of aliases for the locus

x.linked a logical value specifying if the locus is x-linked or not

allele.labels
a vector of labels corresponding to the numeric codes in matrix geno (similar to
levels in a factor)

male.code a code to be used to identify males for an x.linked locus.

female.code a code to be used to identify females for an x.linked locus.

Side Effects

References

See Also

Examples

b1 <- c("A","A","B","C","E","D")
b2 <- c("A","A","C","E","F","G")
loc1 <- locus(b1,b2,chrom=4,locus.alias="D4S1111")

loc1

a second example which uses more parameters, some may not be supported.
c1 <- c("101","10","115","132","21","112")
c2 <- c("100","101","0","100","21","110")

gender <- rep(c("M","F"),3)
loc2 <- locus(c2,c2,chrom="X",locus.alias="DXS1234",x.linked=T,sex=gender)

louis.info 45

louis.info Louis Information for haplo.glm

Description

For internal use within the haplo.stats library

Usage

louis.info(fit)

Arguments

fit

Details

Value

Side Effects

References

See Also

Examples

46 mf.gindx

mf.gindx Model Frame Genotype Index to Account for Missing Data in
haplo.glm

Description

For internal use within the haplo.stats library

Usage

mf.gindx(m)

Arguments

m

Details

Value

Side Effects

References

See Also

Examples

na.geno.keep 47

na.geno.keep Remove rows with NA in covariates, but keep genotypes with NAs

Description

An internal function for the haplo.stats package

Usage

na.geno.keep(m)

Arguments

m

Details

Value

Side Effects

References

See Also

Examples

48 plot.haplo.score

plot.haplo.score Plot Haplotype Frequencies versus Haplotype Score Statistics

Description

Method function to plot a class of type haplo.score

Usage

plot.haplo.score(x, ...)

Arguments

x The object returned from haplo.score (which has class haplo.score).

... Dynamic parameter for the values of additional parameters for the plot method.

Details

This is a plot method function used to plot haplotype frequencies on the x-axis and haplotype-
specific scores on the y-axis. Because haplo.score is a class, the generic plot function can be used,
which in turn calls this plot.haplo.score function.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.score

Examples

setupData(hla.demo)
geno <- as.matrix(hla.demo[,c(17,18,21:24)])
keep <- !apply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]
geno <- geno[keep,]
attach(hla.demo)
label <- c("DQB","DRB","B")

For quantitative, normally distributed trait:

score.gaus <- haplo.score(resp, geno, locus.label=label,
trait.type = "gaussian")

plot.haplo.score.slide 49

plot.haplo.score(score.gaus)

plot.haplo.score.slide
Plot a haplo.score.slide Object

Description

Method function to plot an object of class haplo.score.slide. The p-values from haplo.score.slide
are for sub-haplotypes of a larger chromosomal region, and these are plotted to visualize the change
in p-values as the sub-haplotype "slides" over a chromosome. Plot -log10(p-value) on the y-axis vs.
the loci over which it was computed on the x-axis.

Usage

plot.haplo.score.slide(x, pval="global", dist.vec=1:x$n.loci,
cex=.8, srt=270, ...)

Arguments

x The object returned from haplo.score.slide

pval Character string for the choice of p-value to plot. Options are: "global" (the
global score statistic p-value based on an asymptotic chi-square distribution),
"global.sim" (the global score statistic simulated p-value), and "max.sim" (the
simulated p-value for the maximum score statistic).

dist.vec Numeric vector for position (i.e. in cM) of the loci along a chromosome. Dis-
tances on x-axis will correspond to these positions.

cex Character expansion size.

srt String rotation in degrees measured counterclockwise from horizontal. Applies
to x-axis (locus) labels.

... Dynamic parameter for the values of additional parameters for the plot method.

Details

The x-axis has tick marks for all loci. The y-axis is the -log10() of the selected p-value. For each
haplo.score result, plot a horizontal line at the height of -log10(p-value) drawn across the loci over
which it was calculated. Therefore a p-value of 0.001 for the first 3 loci will plot as a horizontal line
plotted at y=3 covering the first three tick marks.

Value

Nothing is returned.

Side Effects

50 print.haplo.cc

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.score.slide

Examples

This example has a long run time, therefore it is commented

setupData(hla.demo)
attach(hla.demo)
geno.11 <- hla.demo[,-c(1:4)]
label.11 <- c("DPB","DPA","DMA","DMB","TAP1","TAP2","DQB","DQA","DRB","B","A")

#For an ordinal trait, slide by 3 loci, and simulate p-values:
y.ord <- as.numeric(resp.cat)
slide.ord.sim <- haplo.score.slide(y.ord, geno.11, trait.type = "ordinal",
n.slide=3, locus.label=label.11, simulate=TRUE,
sim.control=score.sim.control(min.sim=500))

print(slide.ord.sim)
plot(slide.ord.sim)
plot(slide.ord.sim, pval="global.sim")
plot(slide.ord.sim, pval="max.sim")

print.haplo.cc Print a haplo.cc object

Description

Display results for a haplotype analysis on a case-control study.

Usage

print.haplo.cc(x, order.by="score", digits=max(options()$digits-2, 5),
nlines=NULL ...)

Arguments

x A haplo.cc object, made by the haplo.cc function.

order.by Order the printed data frame by haplotype score (score), haplotype alleles (hap-
lotype), or haplotype frequency (freq).

digits Number of digits to display for the numeric columns of the data frame.

nlines Print the first nlines of the cc.df data frame of the haplo.cc object, keeps output
short if desired.

Details

print.haplo.em 51

Value

Nothing is returned.

Side Effects

See Also

haplo.cc ,

Examples

for a haplo.cc object named cc.test,
order results by haplotype
print(cc.test, order.by="haplotype")

print.haplo.em Print contents of a haplo.em object

Description

Print a data frame with haplotypes and their frequencies. Also print likelihood information.

Usage

print.haplo.em(x, nlines=NULL, ...)

Arguments

x A haplo.em object

nlines To shorten output, print the first 1:nlines rows of the large data frame.

... optional arguments for print

Details

Value

Nothing is returned

Side Effects

References

52 print.haplo.glm

See Also

haplo.em

Examples

print.haplo.glm Print a contents of a haplo.glm object

Description

Print model information and then haplotype information.

Usage

print.haplo.glm(x, print.all.haplo=FALSE, digits =
max(options()$digits - 4, 3), ...)

Arguments

x A haplo.glm object
print.all.haplo

Logical. If TRUE, print all haplotypes considered in the model.

digits Number of numeric digits to print.

... Optional arguments for print method

Details

Value

Nothing is returned

Side Effects

References

See Also

haplo.glm

Examples

print.haplo.group 53

print.haplo.group Print a haplo.group object

Description

Method function to print a class of type haplo.group

Usage

print.haplo.group(x, digits=max(options()$digits-2, 5), nlines=NULL, ...)

Arguments

x The object returned from haplo.group (which has old class haplo.group).

digits Set the number of significant digits to print for haplotype probabilities.

nlines For shorter output, print first 1:nlines rows of the large data frame

... Optional arguments for the print method

Details

This is a print method function used to print information from the haplo.group class, with haplotype-
specific information given in a table. Because haplo.group is a class, the generic print function can
be used, which in turn calls this print.haplo.group function.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Expected haplotype frequencies for
association of traits with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum
Genet.

See Also

haplo.score, haplo.group, haplo.em

Examples

54 print.haplo.scan

print.haplo.scan Print a haplo.scan object

Description

Print a haplo.scan object

Usage

print.haplo.scan(x, digits=max(options()$digits - 2, 5), ...)

Arguments

x An object created by haplo.scan

digits Significant digits shown for numeric data

... Options parameters for the print function

Details

Value

NULL

Side Effects

References

See Also

haplo.scan

Examples

print.haplo.score 55

print.haplo.score Print a haplo.score object

Description

Method function to print a class of type haplo.score

Usage

print.haplo.score(x, digits, nlines=NULL, ...)

Arguments

x The object returned from haplo.score (which has class haplo.score).

digits Number of digits to round the numeric output.

nlines Print the first ’nlines’ rows of the large data frame for fast, short view of the
results.

... Dynamic parameter for the values of additional parameters for the print method.

Details

This is a print method function used to print information from haplo.score class, with haplotype-
specific information given in a table. Because haplo.score is a class, the generic print function can
be used, which in turn calls this print.haplo.score function.

Value

Nothing is returned.

Side Effects

See Also

haplo.score

Examples

56 print.haplo.score.merge

print.haplo.score.merge
Print a haplo.score.merge object

Description

Method function to print a class of type haplo.score.merge

Usage

print.haplo.score.merge(x, order.by="score", all.haps=FALSE,
digits=max(options()$digits-2, 5), nlines=NULL, ...)

Arguments

x The object returned from haplo.score.merge (which has old class {S} haplo.score.merge).

order.by Column of the haplo.score.merge object by which to order the results.

all.haps Logical, if (T)rue prints a row for all haplotypes. If (F)alse, the default, only
prints the haplotypes kept in haplo.score for modelling.

digits Set the number of significant digits to print for the numeric output.

nlines Print the first ’nlines’ rows of the large data frame for a short view of the results.

... Dynamic parameter for the values of additional parameters for the print method.

Details

This is a print method function used to print information from the haplo.score.merge class. Be-
cause haplo.score.merge is a class, the generic print function can be used, which in turn calls this
print.haplo.score.merge function.

Value

Nothing is returned.

Side Effects

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Expected haplotype frequencies for
association of traits with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum
Genet.

See Also

haplo.score.merge, haplo.score, haplo.group

Examples

#see example for haplo.score.merge

print.haplo.score.slide 57

print.haplo.score.slide
Print the contents of a haplo.score.slide object

Description

Print the data frame returned from haplo.score.slide

Usage

print.haplo.score.slide(x, digits=max(options()$digits - 2, 5), ...)

Arguments

x A haplo.score.slide object

digits Number of digits to print for numeric output

... Optional arguments for the print method

Details

Value

Side Effects

References

See Also

Examples

58 printBanner

printBanner Print a nice banner

Description

Usage

printBanner(str, banner.width=options()$width, char.perline=.75*banner.width, border="=")

Arguments

str character string - a title within the banner

banner.width
width of banner, the default is set to fit current options

char.perline
number of characters per line for the title, the default is 75% of the banner.width
parameter

border type of character for the border

Details

This function prints a nice banner in both R and S-PLUS

Value

Side Effects

References

See Also

options

Examples

printBanner("This is a pretty banner", banner.width=40, char.perline=30)

the output looks like this:
==
This is a pretty banner
==

residScaledGlmFit 59

residScaledGlmFit Scaled Residuals for GLM fit

Description

For internal use within the haplo.stats library

Usage

residScaledGlmFit(fit)

Arguments

fit

Details

Value

Side Effects

References

See Also

Examples

60 score.sim.control

score.sim.control Create the list of control parameters for simulations in haplo.score

Description

In the call to haplo.score, the sim.control parameter is a list of parameters that control the simula-
tions. This list is created by this function, score.sim.control, making it easy to change the default
values.

Usage

score.sim.control(p.threshold=0.25, min.sim=1000, max.sim=20000.,verbose=FALSE)

Arguments

p.threshold A paremeter used to determine p-value precision from Besag and Clifford (1991).
For a p-value calculated after min.sim simulations, continue doing simulations
until the p-value’s sample standard error is less than p.threshold * p-value. The
dafault value for p.threshold = 1/4 corresponds approximately to having a two-
sided 95% confidence interval for the p-value with a width as wide as the p-value
itself. Therefore, simulations are more precise for smaller p-values. Addition-
ally, since simulations are stopped as soon as this criteria is met, p-values may
be biased high.

min.sim The minimum number of simulations to run. To run exactly min.sim simula-
tions, set max.sim = min.sim. Also, if run-time is an issue, a lower minimum
(e.g. 500) may be useful, especially when doing simulations in haplo.score.slide.

max.sim The upper limit of simulations allowed. When the number of simulations reaches
max.sim, p-values are approximated based on simulation results at that time.

verbose Logical, if (T)rue, print updates from every simulation to the screen. If (F)alse,
do not print these details.

Details

In simulations for haplo.score, employ the simulation p-value precision criteria of Besag and Clif-
ford (1991). The criteria ensures both the global and the maximum score statistic simulated p-values
be precise for small p-values. First, perform min.sim simulations to guarantee sufficient precision
for the score statistics on individual haplotypes. Then continue simulations as needed until sim-
ulated p-values for both the global and max score statistics meet precision requirements set by
p.threshold.

Value

A list of the control parameters:

p.threshold As described above

min.sim As described above.

max.sim As described above

verbose As described above

setupData 61

Side Effects

References

Besag, J and Clifford, P. "Sequential Monte Carlo p-values." Biometrika. 78, no. 2 (1991): 301-304.

See Also

haplo.score

Examples

it would be used in haplo.score as appears below
#
score.sim.500 <- haplo.score(y, geno, trait.type="gaussian", simulate=T,
sim.control=score.sim.control(min.sim=500, max.sim=2000)

setupData Set up an example dataset provided within the library.

Description

This function defines an alias function to run exactly as data() in R and does nothing in Splus. R
keeps a data set within the working data frame, so we only want to load data it when calling an
example. Splus keeps it in the background, so it is already loaded upon library(mypkg).

Usage

setupData(...)

Arguments

... The name of a dataset provided within the Splus/R library.

Details

Value

Side Effects

References

62 setupGeno

See Also

Examples

for a data set named my.data load it by
setupData(my.data)

check the names of my.data to see if it is loaded
names(my.data)

setupGeno Create a group of locus objects from a genotype matrix, assign to
’model.matrix’ class.

Description

The function makes each pair of columns a locus object, which recodes alleles to numeric and saves
the original alleles as an attribute of the model.matrix.

Usage

setupGeno(geno, miss.val=c(0,NA))

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

miss.val A vector of codes denoting missing values for allele1 and allele2. Note that NA
will always be treated as a missing value, even if not specified in miss.val. Also
note that if multiple missing value codes are specified, the original missing value
code for a specific individual can not be retrieved from the loci object.

Details

Value

A ’model.matrix’ object with the alleles recoded to numeric values, and the original values are
stored in the ’unique.alleles’ attribute. The ith item of the unique.alleles list is a vector of unique
alleles for the ith locus.

Side Effects

References

summary.haplo.em 63

Note

A matrix that contains all elements of mode character will be sorted in alphabetic order.

See Also

locus, loci, haplo.glm

Examples

Create some loci to work with
a1 <- 1:6
a2 <- 7:12

b1 <- c("A","A","B","C","E","D")
b2 <-c("A","A","C","E","F","G")

c1 <- c("101","10","115","132","21","112")
c2 <- c("100","101","0","100","21","110")

myGeno <- data.frame(a1,a2,b1,b2,c1,c2)
myGeno <- setupGeno(myGeno)
myGeno

attributes(myGeno)$unique.alleles

summary.haplo.em Summarize contents of a haplo.em object

Description

Display haplotype pairs and their posterior probabilities by subject. Also display a table with num-
ber of max haplotype pairs for a subject versus how many were kept (max vs. used).

Usage

summary.haplo.em(object, show.haplo=FALSE, nlines=NULL, ...)

Arguments

object A haplo.em object

show.haplo Logical. If TRUE, show the alleles of the haplotype pairs, otherwise show only
the recoded values.

nlines To shorten output, print the first 1:nlines rows of the large data frame.

... Optional arguments for the summary method

Details

Value

64 summaryGeno

Side Effects

References

See Also

haplo.em

Examples

summaryGeno Summarize Full Haplotype Enumeration on Genotype Matrix

Description

Provide a summary of missing allele information for each individual in the genotype matrix. The
number of loci missing zero, one, or two alleles is computed, as well as the total number of haplo-
type pairs that could result from the observed phenotype.

Usage

summaryGeno(geno, miss.val=0)

Arguments

geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then geno has 2*K columns. Rows represent all observed
alleles for each subject.

miss.val Vector of codes for allele missing values.

Details

After getting information on the individual loci, this function makes a call to geno.count.pairs().
The E-M steps to estimate haplotype frequencies considers haplotypes that could result from a phe-
notype with a missing allele. It will not remove a subject’s phenotype, only the unlikely haplotypes
that result from it.

Value

Data frame with columns representing the number of loci with zero, one, and two missing alleles,
then the total haplotype pairs resulting from full enumeration of the phenotype.

Side Effects

varfunc.glm.fit 65

See Also

geno.count.pairs , haplo.em

Examples

varfunc.glm.fit Variance Function for GLM

Description

For internal use within the haplo.stats library

Usage

varfunc.glm.fit(fit)

Arguments

fit

Details

Value

Side Effects

References

See Also

Examples

Index

∗Topic classes
locus , 42

∗Topic datasets
hla.demo , 39

allele.recode , 3

dglm.fit , 4

geno.count.pairs , 5, 64
geno.recode , 6
Ginv , 2
glm.control , 22
glm.fit.nowarn , 7

haplo.cc , 8, 50
haplo.chistat , 10, 28, 29
haplo.em , 5, 9, 11, 14, 16, 27, 32, 51, 63, 64
haplo.em.control , 13, 22, 27, 32
haplo.em.fitter , 14
haplo.enum , 16
haplo.glm , 7, 9, 17, 22
haplo.glm.control , 21
haplo.group , 9, 23, 34
haplo.hash , 24
haplo.model.frame , 25
haplo.scan , 26, 28, 29, 53
haplo.scan.obs , 28, 29
haplo.scan.sim , 28, 29
haplo.score , 9, 14, 30, 34, 38, 40, 60
haplo.score.glm , 33
haplo.score.merge , 9, 34
haplo.score.podds , 35
haplo.score.slide , 36, 49
hla.demo , 39

locator.haplo , 39
loci , 40
locus , 42
louis.info , 44

mf.gindx , 45

na.geno.keep , 46

plot.haplo.score , 32, 47
plot.haplo.score.slide , 38, 48
print.haplo.cc , 9, 49
print.haplo.em , 50
print.haplo.glm , 51
print.haplo.group , 52
print.haplo.scan , 53
print.haplo.score , 32, 54
print.haplo.score.merge , 55
print.haplo.score.slide , 56
printBanner , 57

residScaledGlmFit , 58

score.sim.control , 27, 32, 38, 59
setupData , 60
setupGeno , 61
summary.haplo.em , 62
summaryGeno, 5, 63

varfunc.glm.fit , 64

66

	Ginv
	allele.recode
	dglm.fit
	geno.count.pairs
	geno.recode
	glm.fit.nowarn
	haplo.cc
	haplo.chistat
	haplo.em
	haplo.em.control
	haplo.em.fitter
	haplo.enum
	haplo.glm
	haplo.glm.control
	haplo.group
	haplo.hash
	haplo.model.frame
	haplo.scan
	haplo.scan.obs
	haplo.scan.sim
	haplo.score
	haplo.score.glm
	haplo.score.merge
	haplo.score.podds
	haplo.score.slide
	hla.demo
	locator.haplo
	loci
	locus
	louis.info
	mf.gindx
	na.geno.keep
	plot.haplo.score
	plot.haplo.score.slide
	print.haplo.cc
	print.haplo.em
	print.haplo.glm
	print.haplo.group
	print.haplo.scan
	print.haplo.score
	print.haplo.score.merge
	print.haplo.score.slide
	printBanner
	residScaledGlmFit
	score.sim.control
	setupData
	setupGeno
	summary.haplo.em
	summaryGeno
	varfunc.glm.fit
	Index

