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1 Introduction

Hamlet is an R package intended for the statistical analysis of pre-clinical stud-
ies. This document is a basic introduction to the functionality of hamlet and a
general overview to the analysis workflow of preclinical studies.

This document is structured as follows: First, a general overview to inputting
and processing the raw data is presented. Second, functionality is presented for
the processing of pre-intervention data. Finally, functionality is presented for the
post-intervention period, along with brief discussion on the differences between
non-matched and matched statistical approaches. Each section comes with a
list of useful functions specific for the subtask.

Latest version of hamlet is available in the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org/). CRAN mirrors are by default avail-
able in the installation of R, and the hamlet package is installable using the
R terminal command: install.packages("hamlet"). This should prompt
the user to select a nearby CRAN mirror, after which the installation of ham-

let is automatically performed. After the install.packages-call, the ham-

let package can be loaded with either command library("hamlet") or re-

quire("hamlet").
The following notation is used in the document: R commands, package

names and function names are written in typewriter font. The notation of
format pckgName::funcName indicates that the function funcName is called from
the package pckgName. If only the function name is given, this indicates that it
is located in the base package in R and is thus always available.

1.1 Analysis workflow

Two different types of case-control setups for the analysis of pre-clinical are
presented in Fig. 1.

The type A experiment design in Fig. 1 is preferred, as matching is per-
formed before allocation to the experiment groups, and therefore improves the
balance and power of the experiment. The alternate experiment type B requires
the bipartite matching task, where suitable pairs of individuals are identified
over two or more groups that existed prior to matching. This document focuses
on experiment design of type A, where similarity information is utilized readily
before interventions.

2 Pre-intervention analyses

2.1 Loading data into R

The hamlet package comes pre-installed with the VCaP dataset, which is used
here to illustrate the workflow. Two different formats of the data are provided.
First one is available in data(vcapwide), which includes the data in the so-
called wide format. In this data format the columns are indicators for different
variables available for the experimental unit (here animal). For example, the
two first rows of observations are extracted with:

> require(hamlet)

> data(vcapwide)
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Figure 1: Analysis workflow for pre-clinical experiments

> vcapwide[1:2,]

CastrationDate CageAtAllocation Group TreatmentInitiationWeek Submatch

ID003 100413 13489 Vehicle Week10 Submatch_1

ID007 170413 13810 MDV Week10 Submatch_10

ID PSAWeek2 PSAWeek3 PSAWeek4 PSAWeek5 PSAWeek6 PSAWeek7 PSAWeek8 PSAWeek9

ID003 ID003 7.67 14.76 24.78 2.03 5.97 8.16 13.72 16.57

ID007 ID007 2.01 5.17 8.59 14.62 1.99 2.81 4.23 5.38

PSAWeek10 PSAWeek11 PSAWeek12 PSAWeek13 PSAWeek14 BWWeek0 BWWeek1 BWWeek2

ID003 21.30 45.69 54.50 53.55 27.64 30.5 31.7 32.6

ID007 7.55 9.70 17.45 22.79 21.88 28.8 30.0 30.6

BWWeek3 BWWeek4 BWWeek5 BWWeek6 BWWeek7 BWWeek8 BWWeek9 BWWeek10 BWWeek11

ID003 33.8 33.9 32.2 32.6 32.6 33.2 34.2 35.0 36.1

ID007 31.6 32.9 32.4 32.0 31.1 30.3 30.5 31.6 31.7

BWWeek12 BWWeek13 BWWeek14

ID003 37.9 37.5 39.7

ID007 32.4 33.5 33.3

An another format of the same dataset is provided in data(vcaplong). This
is the data from the same experiment in the so-called long format, where only
few column variables are available (here PSA or body weight), and the different
observations belonging to a single experimental unit (here animal) are distin-
guished using the measurement time (variable Week or DrugWeek). Again, first
few rows of the dataset:

> data(vcaplong)

> vcaplong[1:3,]

3



Figure 2: Example Excel-format data, where rows correspond to individuals
and columns to different characteristics at baseline. The single sheet data can
be easily exported in a text-based format such as CSV.

PSA log2PSA BW Submatch ID Week DrugWeek Group Vehicle ARN MDV

11 21.30 4.412782 35.0 Submatch_1 ID003 10 0 Vehicle 1 0 0

12 45.69 5.513807 36.1 Submatch_1 ID003 11 1 Vehicle 1 0 0

13 54.50 5.768184 37.9 Submatch_1 ID003 12 2 Vehicle 1 0 0

The former wide format is useful for summarizing multiple variables when
constructing distance matrices for the data. The latter long format is typically
used for longitudinal mixed-effects modeling where observations are correlated
through time.

2.2 Excel format data

An example view of a pre-clinical dataset is given in Fig. 2. Such a dataset can
be saved in an R-friendly format by selecting option File > Save As and CSV

(Comma delimited) as the save format in MS Excel.

2.2.1 CSV-files

CSV (Comma Delimited Values) is a suitable text-based format for the data to
be read into R using either the function read.table or read.csv. The above
presented example CSV file can be opened with the following command:

> ex <- read.table(file="example.csv", sep=";", dec=",", stringsAsFactors=F, header=T)

> ex

Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g.

1 ID003 21.30 16.57 35.0
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2 ID007 7.55 5.38 31.6

3 ID008 23.58 17.40 33.6

4 ID009 13.17 11.14 31.7

5 ID010 9.90 9.33 34.1

6 ID016 15.05 15.29 39.6

7 ID018 13.53 12.14 34.0

8 ID025 13.13 10.91 33.3

9 ID027 9.59 8.79 32.0

10 ID031 7.04 6.95 36.6

11 ID032 8.49 8.02 34.9

12 ID037 13.74 13.38 32.4

13 ID040 23.62 19.15 35.9

14 ID045 14.27 9.80 34.8

15 ID047 6.57 6.28 31.9

16 ID054 34.72 27.14 32.1

17 ID056 28.15 22.05 32.2

18 ID058 9.74 7.68 34.0

The above presented CSV file was read into R using read.table with the
following parameters: file="example.csv" is the first parameter and indicates
the input file from our current working directory. The working directory may be
changed using the command setwd or by including its path in the file parameter,
i.e. file="D://my//current//windows//working//directory//example.csv".
sep=";" indicates that the values on each line are separated with the symbol
’;’, as is the format defined for the CSV delimited files with ”,”-decimals. This
could also be a value such as \tab or " " (space). dec="," indicates that the
”,” symbol is used for decimals. The default value for indicating decimals is ”.”
otherwise. stringsAsFactors=F indicates that strings should not be handled
as factors. Factors are an R class, where a character string may only take in-
stances of a predetermined set of strings. As each of our animal IDs - which
are read as strings - are unique, it is generally more flexible to conserve them
as character strings. Lastly, header=T indicates that the text CSV file has a
header row as the first row, which includes names for each column. If this value
is set to header=F or header=FALSE, the first row of the text file is read as the
first observation and the columns are left unnamed.

Depending on the country of origin, the CSV files may use ”.” decimals and
”,” separator, or alternatively (as assumed here) ”,” decimals” and ”;” separators.

List of useful functions:

• read.table, read.csv

• data: data(vcaplong), data(vcapwide)

2.3 Distance and dissimilarity functions

A distance or dissimilarity function is used to describe the amount of dissimilar-
ity between two experimental units. Common choices for computing the amount
of similarity between two vectors x and y include:

• Euclidean distance: d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 =√∑n
i=1(xi − yi)2.
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• Standardized Euclidean distance:
√∑P

i=1
(xi−yi)2

s2i

• Mahalanobis distance:
√

(x− y)TS−1(x− y)

Here, x and y are expected to be observation vectors of length P , where each
dimension describes the measured value for a particular covariate. S describes
the covariance-variance matrix between covariates, and therefore incorporates
inter-correlations between variables. The standard deviation s may be used to
standardize differences in variation over the dimensions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.00 18.05 2.80 10.32 13.53 7.87 9.00 10.08 14.38 17.28 15.40 8.61 3.58 9.76 18.23 17.33 9.21 14.62
2 18.05 0.00 20.14 8.05 5.23 14.78 9.34 8.04 3.99 5.27 4.33 10.15 21.60 8.66 1.36 34.81 26.51 3.98
3 2.80 20.14 0.00 12.29 15.89 10.64 11.35 12.30 16.50 19.79 17.82 10.70 2.89 12.08 20.39 14.87 6.67 16.92
4 10.32 8.05 12.29 0.00 4.44 9.12 2.53 1.62 4.29 8.90 6.47 2.42 13.82 3.55 8.20 26.84 18.54 5.39
5 13.53 5.23 15.89 4.44 0.00 9.61 4.59 3.68 2.19 4.48 2.08 5.83 16.97 4.45 5.02 30.61 22.33 1.66
6 7.87 14.78 10.64 9.12 9.61 0.00 6.60 7.91 11.39 11.95 10.86 7.56 10.10 7.33 14.57 24.16 16.49 10.84
7 9.00 9.34 11.35 2.53 4.59 6.60 0.00 1.47 5.54 8.71 6.57 2.04 12.43 2.58 9.34 26.03 17.75 5.85
8 10.08 8.04 12.30 1.62 3.68 7.91 1.47 0.00 4.33 7.98 5.70 2.70 13.59 2.19 8.15 27.04 18.73 4.73
9 14.38 3.99 16.50 4.29 2.19 11.39 5.54 4.33 0.00 5.57 3.20 6.20 17.87 5.55 3.93 31.12 22.81 2.29

10 17.28 5.27 19.79 8.90 4.48 11.95 8.71 7.98 5.57 0.00 2.48 10.19 20.60 7.98 4.77 34.56 26.32 3.82
11 15.40 4.33 17.82 6.47 2.08 10.86 6.57 5.70 3.20 2.48 0.00 7.91 18.81 6.05 3.96 32.58 24.30 1.58
12 8.61 10.15 10.70 2.42 5.83 7.56 2.04 2.70 6.20 10.19 7.91 0.00 11.96 4.34 10.10 25.09 16.82 7.14
13 3.58 21.60 2.89 13.82 16.97 10.10 12.43 13.59 17.87 20.60 18.81 11.96 0.00 13.27 21.73 14.19 6.53 18.11
14 9.76 8.66 12.08 3.55 4.45 7.33 2.58 2.19 5.55 7.98 6.05 4.34 13.27 0.00 8.95 26.95 18.69 5.07
15 18.23 1.36 20.39 8.20 5.02 14.57 9.34 8.15 3.93 4.77 3.96 10.10 21.73 8.95 0.00 35.04 26.73 4.05
16 17.33 34.81 14.87 26.84 30.61 24.16 26.03 27.04 31.12 34.56 32.58 25.09 14.19 26.95 35.04 0.00 8.31 31.72
17 9.21 26.51 6.67 18.54 22.33 16.49 17.75 18.73 22.81 26.32 24.30 16.82 6.53 18.69 26.73 8.31 0.00 23.42
18 14.62 3.98 16.92 5.39 1.66 10.84 5.85 4.73 2.29 3.82 1.58 7.14 18.11 5.07 4.05 31.72 23.42 0.00

Table 1: Euclidean distance matrix D for 18 animals

Table 1 shows the Euclidean distance matrix for the 18 animals presented in
Figure 2.

List of useful functions:

• dist includes many common distance and dissimilarity functions (Eu-
clidean by default, others: method="manhattan", method="maximum", method="minkowski"

• cluster::daisy, daisy includes Gower’s dissimilarity for mixed data (pa-
rameter metric="gower")

2.4 Non-bipartite optimal matching of animals at baseline
(BB)

The non-bipartite optimal matching problem may be solved using the provided
branch and bound algorithm:

> sol.bb <- match.bb(d, g=3)

[1] "Performing initial sorting for a good initial guess"

[1] "Computing boundaries for minimum distances in possible combinations..."

[1] "Starting branch and bound"

[1] "Branches: 272"

[1] "Bounds: 7140"

[1] "Ends visited: 25"
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[1] "Solution cost 169.62"

[1] "Solution: 5,3,5,6,4,5,6,4,3,2,2,6,1,4,3,1,1,2"

> submatches <- paste("Submatch_", LETTERS[1:6][sol.bb$solution], sep="")

> names(submatches) <- names(sol.bb$solution)

> submatches

1 2 3 4 5 6

"Submatch_E" "Submatch_C" "Submatch_E" "Submatch_F" "Submatch_D" "Submatch_E"

7 8 9 10 11 12

"Submatch_F" "Submatch_D" "Submatch_C" "Submatch_B" "Submatch_B" "Submatch_F"

13 14 15 16 17 18

"Submatch_A" "Submatch_D" "Submatch_C" "Submatch_A" "Submatch_A" "Submatch_B"

The match.bb function returns the solution to the optimal matching task. It
takes as input a distance matrix d, as is indicated in the function call match.bb(d,
g=3) (notice that d was defined before). Furthermore, the size of the submatches
is defined using the parameter g=3. This value indicates that the optimal match-
ing algorithm minimizes edges within triplets. Each observation has to belong
to a triplet called a submatch.

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb

• Paired non-bipartite matching: hamlet::match.bb, nbpMatching::nonbimatch

• Paired bipartite matching: optmatch::fullmatch

2.5 Non-bipartite optimal matching of animals at baseline
(GA)

While the above described Branch and Bound algorithm is guaranteed to identify
the global optimum, in some cases it is not feasible due to size of the search tree.
In such cases, a feasible optimum is easily detected using a Genetic Algorithm
implemention provided in hamlet::match.ga.

The Genetic Algorithm (GA) commonly includes many parameters, as it
aims to mimic evolutionary processes in solving a problem, here a non-bipartite
multigroup matching problem. The basic parameters that should be considered
include generations, which indicates for how many generations the simulation
is run for and thus increases run time approximately linearly, and the parameter
popsize, which indicates how many solutions should be ”living” inside the whole
population at a given generation. A thumb rule is that many solutions are easily
solvable by the 1,000th generation, if the population size is at least 100, but the
user may want to use the visualizations and diagnostic plots to see how well the
GA has managed to solve the optimization problem. The convergence happens
over the generations similarly as presented in Figure 3.

> sol.bb[["cost"]] # Guaranteed global optimum

[1] 169.62

> sol.ga[[3]] # Identified solution by GA
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> set.seed(1) # GA is a stochastic algorithm, fixing the seed for reproducibility

> sol.ga <- match.ga(d, g=3, generations=100, popsize=100)

[1] "Best found solution vector:"

[1] 5 6 5 3 1 5 1 3 6 2 2 3 4 1 6 4 4 2

[1] "Best found solution cost:"

[1] 171.72
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Figure 3: Convergence of the GA in the given optimization problem. The
minimum shows the best identified optimization solution, while the quantiles
give insight to the solution heterogeneity living in the solution space.
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[1] 171.72

The GA algorithm, with a linear run time, has resulted in a very close
optimum to the guaranteed global optimum identified using BB, which may in
return have some cases lead to drastic increases in run times. Both algorithms
may thus be applicable where appropriate.

2.6 Randomization based on matched individuals

The submatches identified in the above section should not be mistaken for the
randomly allocated intervention groups. The final intervention groups are ob-
tained by dividing members of each submatch in the found solution to a separate
treatment arm. Since the within-submatch distances are minimized, this guar-
antees that comparable individuals are randomly divided to separate arms:

> ex[,"Submatch"] <- submatches

> set.seed(1) # for reproducibility

> ex[,"AllocatedGroups"] <- match.allocate(ex[,"Submatch"])

> ex <- ex[order(ex[,"Submatch"]),] # Sort for submatches

Animal PSA.week.10..ug.l. PSA.week.9..ug.l. Body.weight.week.10..g. Submatch AllocatedGroups
13 ID040 23.62 19.15 35.90 Submatch A Group B
16 ID054 34.72 27.14 32.10 Submatch A Group C
17 ID056 28.15 22.05 32.20 Submatch A Group A
10 ID031 7.04 6.95 36.60 Submatch B Group C
11 ID032 8.49 8.02 34.90 Submatch B Group A
18 ID058 9.74 7.68 34.00 Submatch B Group B
2 ID007 7.55 5.38 31.60 Submatch C Group C
9 ID027 9.59 8.79 32.00 Submatch C Group A

15 ID047 6.57 6.28 31.90 Submatch C Group B
5 ID010 9.90 9.33 34.10 Submatch D Group A
8 ID025 13.13 10.91 33.30 Submatch D Group C

14 ID045 14.27 9.80 34.80 Submatch D Group B
1 ID003 21.30 16.57 35.00 Submatch E Group A
3 ID008 23.58 17.40 33.60 Submatch E Group C
6 ID016 15.05 15.29 39.60 Submatch E Group B
4 ID009 13.17 11.14 31.70 Submatch F Group C
7 ID018 13.53 12.14 34.00 Submatch F Group B

12 ID037 13.74 13.38 32.40 Submatch F Group A

Table 2: The result table in variable ex after performing the optimal matching
and allocation.

As is seen Table 2, each submatch (column Submatch) consists of similar
experimental units in terms of the baseline characteristics (i.e. PSA and body
weight). Furthermore, the baseline data has now been allocated in such a man-
ner, that each submatch evenly distributes to the proposed intervention groups
(column AllocatedGroup), resulting in balanced baseline intervention groups.
These artificial labels A, B, and C may then be given to an external experimenter
in a blinded manner, and allocated to the true labels in any fashion without
any pre-fixed control group, as all pairwise contrasts have been considered in
the submatching procedure.

List of useful functions:

• Multigroup non-bipartite matching: hamlet::match.bb, hamlet::match.ga
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> boxplot(PSA.week.10..ug.l. ~ AllocatedGroups, data = ex, range=0,

+ xlab="Group", ylab="PSA week 10 ul/g")
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Figure 4: Boxplots for the week 10 PSA in the example allocation

• Paired non-bipartite matching: hamlet::match.bb, hamlet::match.ga,
nbpMatching::nonbimatch

• Paired bipartite matching: optmatch::fullmatch

2.7 Visualizations for pre-clinical data

Various visualization functions are available to illustrate baseline balance. For
example, the boxplots in respect to allocation groups can be plotted using a
command such as boxplot, which is illustrated in Figure 4.

Mixed variable scatterplots with annotations for the submatches or alloca-
tion groups are plotted using the function hamlet::mixplot, which can be seen
in Figures 5 or 6 respectively.

List of useful functions:

• Scatterplots etc: hamlet::mixplot, plot, boxplot

• Heatmaps: hamlet::hmap, heatmap, gplots::heatmap.2
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> mixplot(ex[,2:5], pch=16)
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Figure 5: Test mixplot with submatch labels
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> mixplot(ex[,c(2:4,6)], pch=16)
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Figure 6: Test mixplot with allocation group labels
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3 Power analysis

The power simulations provided by the hamlet-package are conducted through
bootstrap (sampling with replacement) simulations using a pre-fitted mixed-
effects model. For this purpose, it is essential that the user pre-defines a suitable
mixed-effects model in the lmer-function of the lme4-package, as this will be
used in the sampling process. The function mem.powersimu is the main hamlet

function that performs this sampling, and it automatically identifies the suitable
experimental unit from the lme4-object, and then re-fits the model structure a
pre-defined amount of times at given N values.

3.1 An artificial example

In a situation where the user wishes to generate artificial data, it is important
for the experimenter to evaluate such factors as:

• How many measurement points time will be available

• What is the expected effect size

• Will right-censoring (death or sacrifice) occur and what are the risk criteria

• Are there baseline differences or is there a correlation between the initial
baselinse response level and intervention efficacy

The user is encouraged to creatively produce such expert curated data either
by hand, or through a tailored simulation function. As a practical example, an
example function will be constructed below (mainly utilizing normal distribu-
tions). In order for the artificial data to be modeled using lme4-package, it
should follow the long format.

As an example, data with an initial baseline level of response values with
µ = 5 and σ = 2 will be generated from the normal distribution. 4 follow-up time
points will be available after the initial baseline, and the expected control growth
will be 2 per time point and in turn the intervention effect to have an effect of
-1 to growth per time point. Furthermore, we simulate a right-censoring that
has 20% chance to occur for individuals reaching above response values > 10.
In this artificial example, 5 individuals will be available for both the control and
the intervention group. Each measurement will have measurement error with
no bias (µ = 0) and σ = 2.

> # Baseline characteristics and time follow-up

> basemu <- 5

> basesigma <- 2

> ttime <- 4

> # Growth characteristics and group size

> growth <- 2

> interv <- -1

> ngroup <- 5

> # Measurement error and right-censoring

> measerror <- 2

> censthreshold <- 10

> censchance <- 0.2
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> # Artificial data simulation with a set seed

> set.seed(1)

> # 2 experiment groups

> artdat <- do.call("rbind", lapply(c("Control", "Intervention"), FUN=function(group){

+ # Simulated individuals

+ do.call("rbind", lapply(1:ngroup, FUN=function(i){

+ # Baseline time = 0 and 5 follow up points

+ y <- rnorm(n = 1, mean=basemu, sd = basesigma)

+ # Growth as a function of time, with a possible intervention effect

+ measurements <- unlist(lapply(0:ttime, FUN=function(t){

+ y + growth*t + ifelse(group=="Intervention", interv*t, 0)

+ }))

+ # Random chance of censoring for response above >10,

+ # 20\% chance per time point to right-censor

+ for(index in 1:length(measurements)){

+ if(!is.na(measurements[index]) & measurements[index]>censthreshold)

+ if(rbinom(n=1, size=1, prob=censchance))

+ measurements[index:(length(measurements))] <- NA

+ }

+ # Add random measurement error

+ measurements <- measurements +

+ rnorm(n=length(measurements), mean=0, sd=measerror)

+ # Collect all data to a long format data.frame

+ data.frame(

+ Response = measurements,

+ ID = paste(group, i, sep="_"),

+ Group = ifelse(group=="Intervention", 1, 0),

+ Time = 0:ttime)

+ }))

+ }))

The above generated simulation script captures some key elements in a pre-
clinical longitudinal intervention study, but should be naturally refined more
precisely if more complex interactions are to be incorporated. To give insight
into the overall structure of the long-format data, here are the so-called head

and tail of the artificially generated data.frame:

> head(artdat)

Response ID Group Time

1 6.406691 Control_1 0 0

2 8.291951 Control_1 0 1

3 8.576375 Control_1 0 2

4 6.667192 Control_1 0 3

5 9.889958 Control_1 0 4

6 9.219866 Control_2 0 0

> tail(artdat)

Response ID Group Time

45 7.593970 Intervention_4 1 4
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46 6.856897 Intervention_5 1 0

47 7.117348 Intervention_5 1 1

48 6.258141 Intervention_5 1 2

49 8.907789 Intervention_5 1 3

50 8.509502 Intervention_5 1 4

After a suitable long-format data.frame has been generated (variable artdat
here), one has to specify and fit a preliminary mixed-effects model that will be
used as a base for power simulations. The generated artificial data is presented
in Figure 7.

3.1.1 Structure of a mixed-effects model

A standard mixed-effects model would, for example, include the following coeffi-
cients, given the input data artdat (the formula coefficients need to corresponds
to column names in the input data.frame):

> f1a <- as.formula(Response ~ 1 + Time + Time:Group + (1 + Time|ID))

> f1b <- as.formula(Response ~ 1 + Time + Time:Group + (1|ID) + (0 + Time|ID))

This formula is structured as follows:

• The left hand side Response is our response vector y.

• The non-parenthesis coefficients following the tilde are the so called fixed
effects, which are here population-wise parameters

• The first right hand side coefficient 1 stands for standard model intercept,
i.e. y level when x = 0

• Coefficient Time captures natural growth of the tumors as a function of
time

• Coefficient Time:Group introduces grouping information as an interaction
with the growth coefficient, and thus tests whether the intervention gives
a growth inhibition advantage.

• The terms in parenthesis are random effects with analogous counterparts
to their fixed effects. The difference is that the grouping variable, indicated
here with |ID, is gives flexibility for the each experimental unit to have
deviating intercepts and growth slopes. Separate value from a normal dis-
tribution with mean 0 and an estimated standard deviation are identified
when fitting the mixed-effects model. The random effects allow individu-
alized response curves, while controlling that multiple observations belong
to a single individual (ID).

• An alternate non-correlated random-effects structure is given in f1b, indi-
cated by separating the two random effects terms without a cross-correlation.

Fixed effects are typically utilized in inference of possible intervention effects,
and here the term Time:Group will estimate possible intervention effects. A
linear mixed-effects model of the above structure can be fitted using:
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> # Plot the artificial data

> plot.new()

> plot.window(xlim=range(artdat[,"Time"]),

+ ylim=c(0,max(artdat[,"Response"], na.rm=T)))

> axis(1); axis(2); box()

> title(xlab="t", ylab="y", main="Artificially generated data")

> # Plot each individual as its own curve

> invisible(by(artdat, INDICES=artdat[,"ID"], FUN=function(z){

+ points(z[,"Time"], z[,"Response"], type="l", col=1+z[1,"Group"])

+ points(z[,"Time"], z[,"Response"], pch=16, col=1+z[1,"Group"])

+ }))

> legend("bottomright", col=1:2, pch=16, lwd=1, legend=c("Control", "Intervention"))
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Figure 7: Visualization of the artificially generated data, with two experimental
groups.
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> library(lme4)

> # We defined formulae already before

> fit1 <- lmer(f1b, data = artdat)

> library(lmerTest)

> summary(fit1)

Linear mixed model fit by REML ['lmerMod']
Formula: Response ~ 1 + Time + Time:Group + (1 | ID) + (0 + Time | ID)

Data: artdat

REML criterion at convergence: 204.8

Scaled residuals:

Min 1Q Median 3Q Max

-1.6891 -0.6997 0.1232 0.5499 2.3074

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 1.207 1.099

ID.1 Time 0.000 0.000

Residual 2.830 1.682

Number of obs: 50, groups: ID, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 5.6894 0.5390 10.556

Time 1.2732 0.2135 5.964

Time:Group -0.5251 0.2629 -1.998

Correlation of Fixed Effects:

(Intr) Time

Time -0.492

Time:Group 0.000 -0.616

3.1.2 Bootstrap simulations

The package lmerTest is used to provide Satterthwaite approximation for the
p-values for fixed effects in the linear mixed-effects model. Albeit the p-values
are provided here for the model coefficients, we are interested in how power in
such a study would develop as a function of animal numbers N . For this purpose
we can perform power simulations, which bootstraps the pre-fitted mixed-effects
model on our artificial data:

Notice that the artificial data simulations were run with a very limited boot-
strap sample size, in order to save time in generation of this vignette. A better
estimate for the power as well as more exact N would be given e.g. by setting
boot=1000 and N=3:20. Furthermore, we indicated with level that our ex-
perimental unit is defined by the individual indicator ID, and that we want to
subsample evenly over the intervention groups through strata. The resulting
power curve is shown in Figure 8, suggesting that in order to achieve sufficient
statistical power, our experiment should include at least Narm = 9 individuals
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> set.seed(1)

> pow <- mem.powersimu(fit1,

+ N=c(3, 5, 7, 9, 11, 13, 15), boot=20,

+ level="ID", strata="Group")

> abline(h=0.8, col="grey")

> pow

(Intercept) Time Time:Group

GroupN_3_TotalN_6 1 1 0.35

GroupN_5_TotalN_10 1 1 0.25

GroupN_7_TotalN_14 1 1 0.70

GroupN_9_TotalN_18 1 1 0.80

GroupN_11_TotalN_22 1 1 0.80

GroupN_13_TotalN_26 1 1 1.00

GroupN_15_TotalN_30 1 1 0.95
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Figure 8: Preliminary power curve for all the fixed effects, with a limited number
of bootstrapped datasets (20).
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in both intervention arms, and total experiment size consisting of Ntotal = 18
individuals.

3.2 An ARN-509 example

The longitudinal intervention observations of the ARN-509 / MDV3100 -study
and ORX / ORX+Tx -study are provided inside the hamlet-package with the
commands data(vcaplong) and data(orxlong), respectively. Here we will
provide a model fit to the ARN-509 -study, as well as show how its power curve
behaves in respect to different fixed effects. Load the ARN-509 / MDV3100
-study and constraint to ARN-509 by:

> data(vcaplong)

> arndat <- vcaplong[

+ # Select observations only from the vehicle or ARN-509 groups

+ vcaplong[,"Group"] %in% c("Vehicle", "ARN"),

+ # Select columns (=features) that are required for the conventional MEM

+ c("PSA", "DrugWeek", "ARN", "ID")]

> head(arndat)

PSA DrugWeek ARN ID

11 21.30 0 0 ID003

12 45.69 1 0 ID003

13 54.50 2 0 ID003

14 53.55 3 0 ID003

15 27.64 4 0 ID003

71 13.17 0 0 ID009

Similarly as for the artificial data example, this study could be be represen-
tative for estimating power for interventions with similar effect sizes, censoring,
follow-up periods etc. The conventional non-matched modeling process and
corresponding preliminary power curve would be computed using:

> arnfit <- lmer(PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1|ID) + (0 + DrugWeek|ID),

+ data = arndat)

> summary(arnfit)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees

of freedom [lmerMod]

Formula: PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 | ID) + (0 + DrugWeek | ID)

Data: arndat

REML criterion at convergence: 1082.6

Scaled residuals:

Min 1Q Median 3Q Max

-3.4768 -0.3911 -0.0044 0.3425 3.1437

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 67.80 8.234
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ID.1 DrugWeek 26.65 5.163

Residual 33.05 5.749

Number of obs: 150, groups: ID, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 14.311 1.709 29.587 8.374 2.68e-09 ***

DrugWeek 10.062 1.407 28.206 7.150 8.47e-08 ***

DrugWeek:ARN -7.627 1.982 27.792 -3.849 0.000636 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Correlation of Fixed Effects:

(Intr) DrugWk

DrugWeek -0.092

DrugWek:ARN 0.000 -0.704

As is seen in Figure 9, the power curves become smoother with higher boot-
strap rates. Here a highly narrowed N vector was tested (values 5 to 9), due to
a priori knowledge that the power 0.8 would be achieved at N = 7.
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> set.seed(123)

> arnpow <- mem.powersimu(arnfit,

+ level = "ID", strata = "ARN",

+ N = c(5,6,7,8,9), boot = 100)

> abline(h=0.8, col="grey")

> arnpow

(Intercept) DrugWeek DrugWeek:ARN

GroupN_5_TotalN_10 1 0.98 0.68

GroupN_6_TotalN_12 1 1.00 0.75

GroupN_7_TotalN_14 1 1.00 0.90

GroupN_8_TotalN_16 1 1.00 0.83

GroupN_9_TotalN_18 1 1.00 0.93
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Figure 9: ARN-509 fixed effects power curves, estimated using the conventional
model with 100 bootstrapped data sets.

21



4 Post-intervention analyses

The presented pre-intervention submatching procedure provides a unique op-
portunity to utilize this predictive power to improve accuracy in the post-
intervention inference. We here provide the datasets from both the ARN-509 /
MDV3100 -study and the ORX / ORX+Tx -study, by typing data(vcaplong)

and data(orxlong), respectively. Alternatively, the pre-intervention data is
also available in data(vcapwide) and data(orxwide), respectively.

4.1 Long format and the presented datasets

As out-lined before, in order to perform regression modeling, R requires the
observations to be in the so-called long format, where each row in a data.frame
corresponds to a single measurement. These measurements are then usually
uniquely defined using individual identification codes as well as time points.
The presented datasets:

> data(vcaplong)

> data(orxlong)

> head(vcaplong)

PSA log2PSA BW Submatch ID Week DrugWeek Group Vehicle ARN MDV

11 21.30 4.412782 35.0 Submatch_1 ID003 10 0 Vehicle 1 0 0

12 45.69 5.513807 36.1 Submatch_1 ID003 11 1 Vehicle 1 0 0

13 54.50 5.768184 37.9 Submatch_1 ID003 12 2 Vehicle 1 0 0

14 53.55 5.742815 37.5 Submatch_1 ID003 13 3 Vehicle 1 0 0

15 27.64 4.788686 39.7 Submatch_1 ID003 14 4 Vehicle 1 0 0

41 7.55 2.916477 31.6 Submatch_10 ID007 10 0 MDV 0 0 1

> head(orxlong)

ID PSA log2PSA Day TrDay Date Group Submatch ORXTx ORX Intact

1 ID1 0.368 -1.4422223 0 -10 2015-01-12 ORX+Tx Submatch_11 1 0 0

2 ID1 1.524 0.6078629 10 0 2015-01-22 ORX+Tx Submatch_11 1 0 0

3 ID1 0.034 -4.8783214 25 15 2015-02-06 ORX+Tx Submatch_11 1 0 0

4 ID1 0.100 -3.3219281 35 25 2015-02-16 ORX+Tx Submatch_11 1 0 0

5 ID1 0.203 -2.3004484 45 35 2015-02-26 ORX+Tx Submatch_11 1 0 0

6 ID1 0.357 -1.4860040 56 46 2015-03-09 ORX+Tx Submatch_11 1 0 0

Typically, an experimenter may model a single interesting contrast with a
single model, thus we will split the vcaplong and orxlong into two separate
data sets.

> # Interesting fields in the orthotopic VCaP study

> fields <- c('PSA', 'DrugWeek', 'ID', 'Submatch', 'Group', 'ARN', 'MDV')
> # ARN-509 vs Vehicle

> arndat <- vcaplong[vcaplong[,'Group'] %in% c('ARN', 'Vehicle'),fields]
> # MDV3100 vs Vehicle

> mdvdat <- vcaplong[vcaplong[,'Group'] %in% c('MDV', 'Vehicle'),fields]
> # Interesting fields in the subcutaneous VCaP study

> fields <- c('PSA', 'TrDay', 'ID', 'Submatch', 'Group', 'ORXTx', 'ORX')
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> # ORX vs Intact

> orxdat <- orxlong[orxlong[,'Group'] %in% c('ORX', 'Intact'), fields]

> # ORX+Tx vs ORX

> xtxdat <- orxlong[orxlong[,'Group'] %in% c('ORX+Tx', 'ORX'), fields]

4.2 Collating to pairwise submatched observations

In order to fit pairwise matched mixed-effects models, the experimenter should
utilize the baseline submatch information to subtract corresponding control
growth from its intervened counterpart. For this, a field indicating Submatch
should be available in the data frame, and subtraction in a pairwise manner per
each time point Time. For example:

> arndat <- arndat[order(arndat[,'Submatch']),]
> arnpair <- do.call('rbind', by(arndat, INDICES=arndat[,'Submatch'], FUN=function(z){

+ # Within each Submatch, subtract Vehicle from the Case

+ z[,'PairPSA'] <- z[,'PSA'] - z[z[,'Group']=='Vehicle','PSA']
+ z

+ }))

> arnpair[1:10,]

PSA DrugWeek ID Submatch Group ARN MDV PairPSA

Submatch_1.11 21.30 0 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.12 45.69 1 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.13 54.50 2 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.14 53.55 3 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.15 27.64 4 ID003 Submatch_1 Vehicle 0 0 0.00

Submatch_1.266 23.62 0 ID040 Submatch_1 ARN 1 0 2.32

Submatch_1.267 22.09 1 ID040 Submatch_1 ARN 1 0 -23.60

Submatch_1.268 30.95 2 ID040 Submatch_1 ARN 1 0 -23.55

Submatch_1.269 31.98 3 ID040 Submatch_1 ARN 1 0 -21.57

Submatch_1.270 41.54 4 ID040 Submatch_1 ARN 1 0 13.90

> # The vehicle observations are redundant (subtracted from themselves)

> arnpair <- arnpair[arnpair[,'Group']=='ARN',]

In the above example, first pairwise computed PSA results in 23.62−21.30 =
2.32 at time point DrugWeek = 0 (baseline). The following time points, i.e.
DrugWeek = 1 result in turn a much more drastic growth in control tumor, i.e.
22.09 − 45.69 = −23.60. In this particular example, the treated tumor seems
to grow much slower for 3 weeks subsequently to the baseline, until it bounces
back in the final time point.

4.3 Fitting conventional and pairwise matched mixed-effects
models

Linear mixed-effects models compose of two main components:

• Fixed effects; Population effects, usually considered to cover either whole
range of experimental units or a subpopulation such as an intervention
group
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• Random effects; Individual effects, that allows flexible model fits. Typ-
ical random effects include a random intercept (variation at baseline) and
a random slope (individual variation in the growth coefficient).

The formula interface in R for fitting linear mixed-effects models in lme4-
package consists of three parts:

LFS ∼ Xb + Zu + ε (1)

where the LFS refers to left-hand side, i.e. the response vector y which is
usually a tumor growth feature such as serum PSA or tumor volume. The right
hand side from ∼ holds the fixed effects part (here Xb), random effects part
(here Zu) and the normally distributed error term ε.

Fixed effects are separated using the + sign. A typical longitudinal preclin-
ical model could be built on three fixed effects terms:

1 + Time+ Time : Group (2)

where 1 refers to a common intercept, which could be alternatively omitted
using either a 0 or a −1 sign instead of 1. Time typically is a running time
point indicator, that starts from 0 at baseline and ranges to certain time units
such as weeks or days, and tumor growth is computed a slope coefficient as a
function of time. Furthermore, the term Time : Group adds a binary indicator
Group that may be used to compare a subpopulation in comparison to control
tumor growth.

Furthermore, random effects follow a notation:{
+(1 + Time|GroupingFactor)
+(1|GroupingFactor) + (0 + Time|GroupingFactor)

(3)

where the notation indicates that each unique factor value within variable
GroupingFactor is treated as an instance of the experimental unit. The upper
notation indicates that both an individual-specific intercept as well as an in-
dividualized time-dependent slope are estimated along with a cross-covariance
between the two normally distributed random effects. The lower notation in
turn estimates these two effects, an individual-specific intercept and an indi-
vidualized time-dependent slope, separately from each other. By default we
utilized the lower notation approach, though the upper notation may offer an
interesting alternative. The error term does not need to explicitly included in
the model formula. In the ARN-509 -study, the presented mixed-effects models
were fitted using:

> fit_arn_unmatched <- lmer(PSA ~ 1 + DrugWeek + DrugWeek:ARN

+ + (1|ID) + (0 + DrugWeek|ID), data = arndat)

> fit_arn_matched <- lmer(PairPSA ~ 0 + DrugWeek

+ + (1|ID) + (0 + DrugWeek|ID), data = arnpair)

> summary(fit_arn_unmatched)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees

of freedom [lmerMod]

Formula: PSA ~ 1 + DrugWeek + DrugWeek:ARN + (1 | ID) + (0 + DrugWeek | ID)

Data: arndat
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REML criterion at convergence: 1082.6

Scaled residuals:

Min 1Q Median 3Q Max

-3.4768 -0.3911 -0.0044 0.3425 3.1437

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 67.80 8.234

ID.1 DrugWeek 26.65 5.163

Residual 33.05 5.749

Number of obs: 150, groups: ID, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 14.311 1.709 29.587 8.374 2.68e-09 ***

DrugWeek 10.062 1.407 28.206 7.150 8.47e-08 ***

DrugWeek:ARN -7.627 1.982 27.792 -3.849 0.000636 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Correlation of Fixed Effects:

(Intr) DrugWk

DrugWeek -0.092

DrugWek:ARN 0.000 -0.704

> summary(fit_arn_matched)

Linear mixed model fit by REML t-tests use Satterthwaite approximations to degrees

of freedom [lmerMod]

Formula: PairPSA ~ 0 + DrugWeek + (1 | ID) + (0 + DrugWeek | ID)

Data: arnpair

REML criterion at convergence: 592.8

Scaled residuals:

Min 1Q Median 3Q Max

-2.36132 -0.53405 -0.04075 0.34125 2.72586

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 49.74 7.053

ID.1 DrugWeek 79.11 8.894

Residual 70.55 8.399

Number of obs: 75, groups: ID, 15

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

DrugWeek -7.962 2.366 13.770 -3.365 0.00472 **
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---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Alternate pairwise-matched longitudinal model formulations could include
for example:

> # Paired model with correlated random effects

> fit_arn_matched2 <- lmer(PairPSA ~ 0 + DrugWeek

+ + (1 + DrugWeek|ID), data = arnpair)

> # Paired model with an intercept fixed effect

> fit_arn_matched3 <- lmer(PairPSA ~ 1 + DrugWeek

+ + (1|ID) + (0 + DrugWeek|ID), data = arnpair)

> # Paired model with an intercept fixed effect

> # and correlated random effects

> fit_arn_matched4 <- lmer(PairPSA ~ 1 + DrugWeek

+ + (1 + DrugWeek|ID), data = arnpair)

> # Only fixed effects shown here to save space

> summary(fit_arn_matched2)$coefficients

Estimate Std. Error df t value Pr(>|t|)

DrugWeek -5.840363 2.122596 14 -2.751519 0.01559838

> summary(fit_arn_matched3)$coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -4.305333 2.295298 14.28259 -1.875719 0.081283732

DrugWeek -7.302533 2.423880 14.28259 -3.012745 0.009142255

> summary(fit_arn_matched4)$coefficients

Estimate Std. Error df t value Pr(>|t|)

(Intercept) -4.305333 2.122769 13.99982 -2.028169 0.062013340

DrugWeek -7.302533 2.241686 13.99999 -3.257608 0.005725389

For fitted models, further functions are provided inside hamlet, both for
visualization as well as diagnostics purposes. Examples:

• hamlet::mem.plotresid for plotting residuals along with trend lines

• hamlet::mem.getcomp for extracting a data.frame containing observation-
specific fixed effects fit, full model fit, response vector etc. These can be
then used to visualize the corresponding model fits, for example by panel-
ing for experimental groups or each individual participating in the study.
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