Generalized nonlinear models in R: an overview ofghen package

Heather Turner and David Firth
University of Warwick, UK

Forgnmversion 0.8-2 , 2006-02-27

Contents

1 Introduction!

l2__Generalized Linear Models

2.1 Preamble e 2

3.1 Multiplicative Interaction Terms usi T

. Other Nonlinear Terms usim@nlinf L o e e

6
6
B2L TOLTHOMOG, - - » » » « e e oo e e e 6
7

[#Controlling the Fitting Procedure]

loMethods and Accessor functions

4.1 Basic control Earametgzrs .. 9
A2 USGSET - - - » o o oo oo e e e 9
B3 USIGCONSTA . . . - . o o v o oo oo e e e e e e e e e e 10
BZ USINGENMINGIS . . . - . .« o o oo oo e e e e e 12

14

0.1 Methodb e e 14

0.4 1es1dSVDl e e e 17

[6.1.3 Homogeneousiects e 21
Is .. 22

. niform erence odels e e 30

[6-4_Generalized Addifive Mainffects and Multiplicafive Interaction (GAMMI)Modgls
[B5 BIPIOTMOETS 32
[6:6 Stereotype Model e 36

IA_User-level Functions

*This work was supported by the Economic and Social Research Council (UK) through a Professorial Fellowship.

1 Introduction

The gnmpackage provides facilities for fittingeneralized nonlinear modelse., regression models in which the link-
transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters.
Linear and generalized linear models, as handled bytrendglm functions in R, are included in the class of generalized
nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of gimen package, with some examples of applications. The primary
package documentation in the form of standard help pages, as viewed in R by, for exagapl@r help(gnm), is
supplemented rather than replaced by the present document.

We begin below with a preliminary note (Section 2) on some ways in whiclgtinepackage extends R’s facilities
for specifying, fitting and working with generalizdéidear models. Then (Sectidrj 3 onwards) the facilities for nonlinear
terms are introduced, explained and exemplified.

The gnmpackage is installed in the standard way for CRAN packages, for example byiusingll.packages.
Once installed, the package is loaded into an R session by

> library(gnm)

2 Generalized Linear Models
2.1 Preamble

Central to the facilities provided by tlignmpackage is the model-fitting functi@mm, which interprets a model formula
and returns a model object. The user interfacenfi is patterned afteglm (which is included in R’s standarstats
package), and indeeghm can be viewed as a replacement §dm for specifying and fitting generalized linear models.
In general there is no reason to pref@m to glm for fitting generalized linear models, except perhaps when the model
involves a large number of incidental parameters which are treatalyen¥y eliminatemechanism (see Sectipn }4.4).

While the main purpose of thgnmpackage is to extend the class of models to include nonlinear terms, some of the
new functions and methods can be used also with the faniiti@mndglm model-fitting functions. These are: three new
data-manipulation functiordiag, Symm andTopo, for setting up structured interactions between factors; afaevily
function,wedderburn, for modelling a continuous response variable iriJovith the variance functioN (u) = u?(1-u)?
as in Wedderbuiri (1974); and a new generic functienmPredictors which extracts the contribution of each term to
the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main
purpose of the package, nonlinear models, in Seiion 3.

2.2 Diag and Symm

When dealing witthomologoudactors, that is, categorical variables whose levels are the same, statistical models often
involve structured interaction terms which exploit the inherent symmetry. The fund@icrsand Symm facilitate the
specification of such structured interactions.

As a simple example of their use, consider the log-linear modejsasi-independencguasi-symmetrgndsymmetry
for a square contingency table. Agréesti (2002), Section 10.4, gives data on migration between regions of the USA between
1980 and 1985:

> count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225,
+ 17819, 270, 63, 176, 286, 10192)

> region <_ C(HNE”' ”MW” , ”S L s ”WH)

> row <- gl(4, 4, labels = region)

> col <- gl(4, 1, length = 16, labels = region)

The comparison of models reported by Agresti can be achieved as follows:

> independence <- glm(count ~ row + col, family = poisson)
> quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
> symmetry <- glm(count ~ Symm(row, col), family = poisson)

Loading required package: gtools

> quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
> comparisonl <- anova(independence, quasi.indep, quasi.symm)
> print(comparisonl, digits = 7)

Analysis of Deviance Table

Model 1: count ~ row + col

Model 2: count ~ row + col + Diag(row, col)

Model 3: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 9 125923.29
2 5 69.51 4 125853.78
3 3 2.99 2 66.52

> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)

Analysis of Deviance Table

Model 1: count ~ Symm(row, col)

Model 2: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 6 243.550

2 3 2.986 3 240.564

TheDiag and Symm functions also generalize the notions of diagonal and symmetric interaction to cover situations
involving more than two homologous factors.

2.3 Topo

More general structured interactions than those providefilayg and Symm can be specified using the functi@opo.
(The name of this function is short for ‘topological interaction’, which is the nomenclature often used in sociology for
factor interactions with structure derived from subject-matter theory.)

The Topo function operates on any numbeéy; Eay) of input factors, and requires an argument naspegtwhich
must be an array of dimensidn x ... x Lx, wherel, is the number of levels for thgh factor. Thespecargument
specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new
factor representing the specified interaction.

As an example, consider fitting the ‘log-multiplicative laydieets’ models described in Xig (1992). The data are 7
by 7 versions of social mobility tables fram Erikson et al. (1982):

data(erikson)

erikson <- as.data.frame(erikson)

1vl <- levels(erikson$origin)

levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2],
collapse = " + "), 2), 1vl[3], rep(paste(lvl[4:5], collapse = " + "),
2), 1vli[6:9])

erikson <- xtabs(Freq ~ origin + destination + country, data = erikson)

vV + + VvV Vv VvV

From sociological theory — for which sge Erikson etlal. (1982) of Xie (1992) — the log-linear interaction between origin
and destination is assumed to have a particular structure:

levelMatrix <- matrix(c(2,

3, 4
3, 4
4, 2
» 6, 5,
4, 5
4, 5
6, 5

’ 3

, 1), 7, 7, byrow = TRUE)

w U1t oY= UTOY O
Ul W W o v b
- VS U, BV, BNV, o))

>
+
+
+
+
+
+

(2, I~ o) RN U}

The models of table 3 of Xi¢ (1992) can now be fitted as follows:

> ## Null association between origin and destination
> nullModel <- gnm(Freq ~ country:origin + country:destination,

+ family = poisson, data = erikson)
Running main iterations.
Done

> ## Interaction specified by levelMatrix, common to all countries

> commonTopo <- update(nullModel, ~ . +

+ Topo(origin, destination, spec = levelMatrix))

Running main iterations.

Done

> ## Interaction specified by levelMatrix, different multiplier for each country
> multTopo <- update(nullModel, ~ . + Mult(country, Topo(origin, destination,

+ spec = levelMatrix)))

Running start-up iterations..

Running main iterations.......

Done

> ## Interaction specified by levelMatrix, different effects for each country
> separateTopo <- update(nullModel, ~ . +

+ country:Topo(origin, destination, spec = levelMatrix))
Running main iterations.

Done

>

> anova(nullModel, commonTopo, multTopo, separateTopo)

Analysis of Deviance Table

Model 1: Freq ~ country:origin + country:destination

Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin +
country:destination

Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) +
country:origin + country:destination

Model 4: Freq ~ country:origin + country:destination + country:Topo(origin,
destination, spec = levelMatrix)

Resid. Df Resid. Dev Df Deviance

1 108 4860.0

2 103 244.3 5 4615.7
3 101 216.4 2 28.0
4 93 208.5 8 7.9

Here we have useghm to fit all of these log-link models; the first, second and fourth are log-linear and could equally well
have been fitted usinglm.

2.4 Thewedderburn family

In|Wedderburh[(1974) it was suggested to represent the mean of a continuous response varigbjeign® a quasi-
likelihood model with logit link and the variance functigii(1 — 1)?. This is not one of the variance functions made
available as standard in Rimasi family. Thewedderburn family provides it. As an example, Wedderburn’s analysis of
data on leaf blotch on barley can be reproduced as follows:

> data(barley)

> logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
> fit <- fitted(logitModel)

> print(sum((barley$y - fit)+22/(fit * (1 - fit))+2))

[1] 71.17401

This agrees with the chi-squared value reported on page 331 of McCullagh and Neldér (1989), tkéisislihtly from
Wedderburn’s own reported value.

2.5 termPredictors

The generic functionermPredictors extracts a term-by-term decomposition of the predictor function in a linear, gen-
eralized linear or generalized nonlinear model.
As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

> print(temp <- termPredictors(quasi.symm))

(Intercept) row col Symm(row, col)
1 -0.2641848 0.0000000 0.000000 9.62354843
2 -0.2641848 0.0000000 4.918310 -0.09198126
3 -0.2641848 0.0000000 1.539852 4.63901793
4 -0.2641848 0.0000000 5.082641 0.00000000
5 -0.2641848 4.8693457 0.000000 -0.09198126
6 -0.2641848 4.8693457 4.918310 0.00000000
7 -0.2641848 4.8693457 1.539852 0.07295506
8 -0.2641848 4.8693457 5.082641 -3.94766844
9 -0.2641848 0.7465235 0.000000 4.63901793
10 -0.2641848 0.7465235 4.918310 0.07295506
11 -0.2641848 0©.7465235 1.539852 7.76583039
12 -0.2641848 0.7465235 5.082641 0.00000000
13 -0.2641848 4.4109017 0.000000 0.00000000
14 -0.2641848 4.4109017 4.918310 -3.94766844
15 -0.2641848 4.4109017 1.539852 0.00000000
16 -0.2641848 4.4109017 5.082641 0.00000000

> rowSums (temp) - quasi.symm$linear.predictors

12 13 14 15 16

1 2 3 4 5 6 7 8 910 11 12 13
O 0 © 8§ 0 0 ®© @6 6 0 0 &6 06 0 O O

Such a decomposition might be useful, for example, in assessing the relative contributidferefitierms or groups
of terms.

3 Nonlinear Terms

The main purpose of thgnmpackage is to provide a flexible framework for the specification and estimation of generalized
models with nonlinear terms. Multiplicative interaction terms can be estimated using the in-built capabilitygafithe
function and are specified in the model formula using the symbolic funtitidm. Other nonlinear terms can be estimated
using plug-in functions fognm and are specified usingpnlin.

There are two plug-in functions currently made available inghmpackage:Mul tHomog for fitting multiplicative
interaction terms with homogeneouezts andref for fitting diagonal reference terms. Usersgoimcan define their
own custom plug-in functions to specify other types of nonlinear term.

3.1 Multiplicative Interaction Terms using Mult

Multiplicative interaction terms can be included in the formula argumephtoby using the symbolic wrapper function
Mult. Constituent multiplie@in the interaction are passed as unspecified argumerMalio and are expressed by
symbolic linear formulae. An intercept is automatically added to each constituent multiplier unless otherwise specified.
For example, to fit the row-column association model
logurc = ar + Be + ¥i6e,
also known as the Goodman RC model (Goodman, [1979§othaulaargument ofgnm would be
mu ~R + C+ Mult(-1 + R, -1 + Q)

whereR andC are row and column factors respectively.
Mult has one specified argumentiltiplicity, which is1 by default. This argument determines the number of times
that the specified multiplicative structure appears in the model. For example,

mu ~R + C + Mult(-1 + R, -1 + C, multiplicity = 2)
would give the RC(2) model (Goodman, 1979)

logure = ar + Be + ¥roc + O pe.

In some contexts, it may be desirable to constrain one or more of the constituent multipliers so that it is always
nonnegative. This may be achieved by specifying the multiplier as an exponential, as in the following ‘unfferende’
model (Xie] 1992; Erikson and Goldthoipe, 1992)

l0g pret = it + Ber + €'61c.

Exponentiated constituent multipliers are specifiedjiitm models using the symbolic functidixp; for example, the
uniform difference model above would be specified by the formula

mu ~ R:T + C:T + Mult(Exp(-1 + T), R:0O)

3.2 Other Nonlinear Terms usingNonlin

Nonlinear terms which can not be specified udingt may be specified usingonlin. This symbolic function indicates
a term which requires a plug-in function to estimate the associated paranieter$n takes a single argument, which is
a call to the relevant plug-in function.

For example, in the formula

mu ~ X + A + B + Nonlin(PlugInFunction(A, B, argl = x, arg2 = Q))

the call toNonlin is used to specify a term that requires the plug-in funchibingInFunction.
The two plug-in functions already included in tgampackage are described below, followed by a guide to writing
custom plug-in functions.

3.2.1 MultHomog

TheMultHomog function provides the tools required to fit multiplicative interaction terms with one component in which
the constituent multipliers are thé&ects of two or more factors and thfects of these factors are constrained to be equal
when the factor levels are equal. The argumentaudftHomog are the factors in the interaction, which are assumed to be
objects of clasactor.

As an example, consider the following association model with homogeneous row-cdii@tis e

logurc = ar + e+ 6:1(r = C) + yrye.
To fit this model, with response variable nameqd the formula argument tgnm would be
mu ~ R + C + Diag(R, O + Nonlin(MultHomog(R, C))

If the factors passed ttul tHomog do not have exactly the same levels, a common set of levels is obtained by taking
the union of the levels of each factor, sorted into increasing order.

1 A note on terminology: the rather cumbersome phrase ‘constituent multiplier’, or sometimes the abbreviation ‘multiplier’, will be used throughout
this document in preference to the more elegant and standard mathematical term ‘factor’. This will avoid possible confusion with the completely
different meaning of the word ‘factor’ — that is, a categorical variable — in R.

3.2.2 Dref

Dref is a plug-in function to fit diagonal reference terms involving two or more factors with a common set of levels. A
diagonal reference term comprises an additive component for each factor. The component fdr, fagiimen by

Wiyl

for an observation with levélof factor f, wherews is the weight for factorf andy, is the “diagonal &ect” for levell.
The weights are constrained to be nonnegative and to sum to one so that a “didtptglsayy, is the value of the
diagonal reference term for data points with leivatross the factor®ref constrains the weights by defining them as

et

M Se

and estimating thés.
Factors defining the diagonal reference term are passed as unspecified argubwenfs Eor example, the following
diagonal reference model for a contingency table classified by the row faatwt the column factat,

et e

Mrc = e§1+e§27’r+ e;l+e‘527’c,

would be specified by the formula
mu ~ -1 + Nonlin(Dref(R, C))

Dref has one specified argumefarmula which is a symbolic description of the dependencé:ain any covariates.
For example, the formula

mu ~ -1 + x + Nonlin(Dref(R, C, formula = ~ 1 + X))
specifies the following diagonal reference model

g1tpix b2 +B2X
Hre = BxX+ b 4 g b " T B 4 gt ©

The default value oformulais ~1, so that constant weights are estimated. Thefwients returned bgnm are those that
are directly estimated, i.e. tldg or the&; andpgs, rather than the implied weighte; .

3.2.3 Custom Plug-in Functions

Custom plug-in functions may be written to enage to fit nonlinear terms that can not be specifieday t or through
existing plug-in functions provided by tlgnmpackage.

There are no constraints on the arguments that a plug-in function may take. However it is importnohitiat
when given a call to the plug-in function, can determine the variables that are in the term, so that these variables can be
added to the model frame. By default, expressions passed to unspecified arguments of the plug-in function are assumed
to represent the variables in the term.

If the default action oNonlin will not capture the required variables, a companion function must exist (in the envi-
ronment of the plug-in function), which takes the same arguments as the plug-in function and returns deparsed expressions
representing the necessary variables. The name of this function must be the name of the plug-in fufictohvath
"Variables". For example, the (non-visible) companion functiordiee f is defined as

DrefVariables <- function(..., formula = ~ 1) {
as.character(c(match.call(expand.dots = FALSE)[[2]], formula[[2]]))
}

returning the expressions passed to unspecified arguments and the right-hand side of the formula frasseld tas
character strings. For instance

> gnm:::DrefVariables(A, B, formula = ~1 + C)

[1] nAn IIBII "1 + CII

from whichNonlin will know thatA, B andC need to be added to the model frame.

The call to the plug-in function is evaluated in the environment of the model frame and in the enclosing environment
of the parent frame of the call tgnm. This should ensure that variables passed directly to the plug-in function can be
found. However, to evaluate variables within the plug-in function, it may be necessary to access the model frame, which
can be obtained using the functigatModelFrame.

For example, the factors inbaref term are passed directly to unspecified arguments, so the dummy variables for these
factors can be found as follows:

get design matrices for Dref factors
designlList <- lapply(list(...), class.ind)

But any covariates on which the weights depend are only represented symbolicalljamtéaargument, so the design
matrix for these variables must be found in the context of the model frame:

get design matrix for local structure
gnmData <- getModelFrame()
local <- model.matrix(formula, data = gnmData)

The plug-in function should return a list with at least the following three components:
labels a character vector of labels for the parameters (to whiehwill prefix the call to the plug-in function).

predictor a function which takes a vector of parameter estimates and returns either a vector of fitted values or a matrix
whose columns are additive components of the fitted values.

localDesignFunction a function which takes the specified argumesusf (a vector of parameter estimates) gd-
dictor (the result of the predictor function), and returns the local design matrix. If the plug-in function does not
return astart component (see below), tHecalDesignFunction must also take the argument, which spec-
ifies the index of a column to be returned instead of the full matrix.

and optionally one further component,

start avector of default starting values for the parametigisnay be used to indicate parameters which may be treated
as linear for the purpose of finding starting values, given theNfowalues. See Sectign 4.2 for details of how
these starting values will be used if provided and the starting procedure for nonlinear parameters that will be used
otherwise.

As an example of atart componentDref returns
c(runif(nLocal) - 0.5, rep(0.5, nGlobal))

wherenLocal is the number of weight parameters (parameters which are “local” to a specific facta§boighl is the
number of diagonalféects (“global” level &ects across factors). The randomness in the starting values for the weight
parameters ensures that arbitrariness of the final parameterization is emphasised.

TheMultHomog function provides a simple example opaedictor component:

predictor <- function(coef) {
do.call("pprod", lapply(designList, "%*%", coef))
}

which computes the product of the vectors found by multiplying the design matrix for each factor in the interaction (held in
designList) by the homogeneous ceients (incoef). This function takes advantagelekical scopingdesignList
is an object defined itful tHomog, whichpredictor is able to find becaugeredictor is also defined ifful tHomog
and hencelul tHomog is the enclosing environment ptedictor.
ThelocalDesignFunction created byultHomog is slightly more complicated:

localDesignFunction <- function(coef, ind = NULL, ...) {
X<-0
vList <- lapply(designList, "%*%", coef)
for (i in seq(designList)) {
if (is.null(ind))

X <- X + designList[[*]] * drop(do.call("pprod", vList[-i]))
else
X <- X + designList[[]][, ind] *
drop(do.call("pprod", vList[-i]))

S}

3

Since the result of the predictor function is not needed here, the local design function does not have the specified argument
predictor, but allows such an argument to be passed to the function by the use of the special argunienbince
MultHomog does not return atart component, the local design function can optionally return a single column of the
local design matrix as specified fayd. This functionality is required by the default starting procedure for nonlinear
parameters.

4 Controlling the Fitting Procedure

Thegnm function has a number of arguments whidfeat the way a model will be fitted. Basic control parameters can be
set using the argumentslerance iterStartanditerMax. Starting values for the parameter estimates can be s&taby
and parameters can be constrained to zero by specifyaupstrainargument. Parameters of a stratification factor can
be handled moreficiently by specifying the factor in agliminateargument. These options are described in more detail
below.

4.1 Basic control parameters

The argumentdterStart anditerMax control respectively the number of starting iterations (where applicable) and the
number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either
verboseor trace to TRUE. If verboseis TRUE andtrace is FALSE, which is the default setting, progress is indicated by
printing the character “.” at the beginning of each iterationtrdte is TRUE, the deviance is printed at the beginning of
each iteration (over-riding the printing of “.” if necessary). Whenexerboseds TRUE, additional messages indicate each
stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart.

The fitting algorithm will terminate before the number of main iterations has reatghéthx if the convergence cri-
teria have been met, with tolerance specifiedddgrance Convergence is judged by comparing the squared components
of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all components
of the score vector, the ratio is less thaslerance "2, or the corresponding diagonal element of the Fisher information
matrix is less than 1e-20, the algorithm is deemed to have converged.

4.2 Usingstart

In some contexts, the default starting values may not be appropriate and the algorithm will fail to converge, or perhaps
only converge after a large number of iterations. Alternative starting values may be passetmbyspecifying astart
argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-eliminated
parameters, see Sectjon]4.4), however missing starting valagggre allowed.

If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful
when adding terms to a model, since the estimates from the original model can be used as starting values, as in this
example:

modell <- gnm(mu ~ R + C + Mult(-1 + R, -1 +)
model2 <- gnm(mu ~ R + C + Mult(-1 + R, -1 + C, multiplicity = 2),
start = c(coef(modell), rep(NA, 10))

The gnm call can be made withethod = "coefNames" to identify the parameters of a model prior to estimation, to
assist with the specification of arguments suchtast.
The starting procedure used bym is as follows

1. Generate starting valu@sfor all parameters = 1,..., p from the Uniform{0.1, 0.1) distribution. Shift these
values away from zero as follows

 fo-01 ife<1
' 16 +0.1 otherwise

2. Replace generic starting values with default starting values set by plug-in functions, where applicable.
3. Replace default starting values with any starting values specified Isyati@rgument ofgnm.

4. Compute thgjlm estimate of any parameters that may be treated as linear (i.e. those in linear terms or those with
a default starting value afA set by a plug-in function), fésetting the contribution to the predictor of any terms
specified bystart or a plug-in function.

5. Run starting iterations: update one at a time any remaining nonlinear parameters not spestfetbby plug-in
function, updatingll parameters that may be treated as linear after each round of updates.

Note that no starting iterations (step 5) will be run if all parameters are linear, or if all nonlinear parameters are specified
by start or a plug-in function.

4.3 Usingconstrain

By default,gnm only imposes identifiability constraints according to the general conventions usetbtyandle linear
aliasing. Therefore models that have any nonlinear terms will be usually be over-parameterizgeh avilil return a
random parameterization for unidentified fia@ents.

To illustrate this point, consider the following applicationgyim, discussed later in Sectipn §.1:

data(occupationalStatus)

set.seed(1)

RChomogl <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus, verbose = FALSE)

+ + VvV VvV

Running the analysis again from dférent seed

> set.seed(2)
> RChomog2 <- eval (RChomogl$call)

gives a diterent representation of the same model:

> compareCoef <- cbind(coef(RChomogl), coef(RChomog2))
> colnames (compareCoef) <- c("RChomogl", "RChomog2")
> round(compareCoef, 4)

RChomogl RChomog2

(Intercept) -0.1304 0.1844
origin2 0.5367 0.5143
origin3 1.6920 1.6083
origin4 2.0594 1.9158
origin5 0.8415 0.6961
originé6 2.9458 2.7480
origin7 1.6538 1.4132
origin8 1.4122 1.1466
destination2 0.9557 0.9333
destination3 2.0364 1.9527
destination4 2.3478 2.2042
destination5 1.7409 1.5955
destination6 3.2493 3.0514
destination?7 2.4054 2.1648
destination8 1.9875 1.7220

10

Diag(origin, destination)l 1.5267 1.5267
Diag(origin, destination)2 0.4560 0.4560
Diag(origin, destination)3 -0.0160 -0.0160
Diag(origin, destination)4 0.3892 0.3892
Diag(origin, destination)5 0.7385 0.7385
Diag(origin, destination)6 0.1347 0.1347
Diag(origin, destination)? 0.4576 0.4576
Diag(origin, destination)8 0.3885 0.3885
MultHomog(origin, destination).l -1.5861 -1.4836
MultHomog(origin, destination).2 -1.3678 -1.2653
MultHomog(origin, destination).3 -0.7697 -0.6671
MultHomog(origin, destination).4 -0.1858 -0.0832
MultHomog(origin, destination).5 -0.1686 -0.0661
MultHomog(origin, destination).6 0.3431 0.4457
MultHomog(origin, destination).7 0.7593 0.8618
MultHomog(origin, destination).8 1.0029 1.1054

Even though the linear terms are constrained, the parameter estimates for théfetd$noforigin anddestination

still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained.
Standard errors are only meaningful for identified parameters and hence the outphafy . gnm will show clearly

which cosficients are estimable:

> summary (RChomog2)

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
Nonlin(MultHomog(origin, destination)), family = poisson,

data = occupationalStatus, verbose = FALSE)
Deviance Residuals:
Min 1Q Median 3Q Max

-1.6588 -0.4297 0.0000 0.3862 1.7208
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.18438 NA NA NA
origin2 0.51428 NA NA NA
origin3 1.60827 NA NA NA
origin4 1.91578 NA NA NA
origin5 0.69610 NA NA NA
originé6 2.74796 NA NA NA
origin7 1.41323 NA NA NA
origin8 1.14664 NA NA NA
destination2 0.93329 NA NA NA
destination3 1.95268 NA NA NA
destination4 2.20421 NA NA NA
destination5 1.59551 NA NA NA
destination6 3.05143 NA NA NA
destination? 2.16483 NA NA NA
destination8 1.72201 NA NA NA
Diag(origin, destination)l 1.52667 0.44658 3.419 0.00063 ***
Diag(origin, destination)2 0.45600 0.34595 1.318 0.18747
Diag(origin, destination)3 -0.01598 0.18098 -0.088 0.92965
Diag(origin, destination)4 0.38918 0.12748 3.053 0.00227 **
Diag(origin, destination)5 0.73852 0.23329 3.166 0.00155 **

11

Diag(origin, destination)6 0.13474 0.07934 1.698 0.08945 .

Diag(origin, destination)?7 0.45764 0.15103 3.030 0.00245 **
Diag(origin, destination)8 0.38847 0.22172 1.752 0.07976 .
MultHomog(origin, destination).l -1.48357 NA NA NA
MultHomog(origin, destination).2 -1.26527 NA NA NA
MultHomog(origin, destination).3 -0.66711 NA NA NA
MultHomog(origin, destination).4 -0.08323 NA NA NA
MultHomog(origin, destination).5 -0.06606 NA NA NA
MultHomog(origin, destination).6 0.44570 NA NA NA
MultHomog(origin, destination).7 0.86184 NA NA NA
MultHomog(origin, destination).8 1.10541 NA NA NA
Signif. codes: @ '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 32.561 on 34 degrees of freedom
AIC: 414.9

Number of iterations: 7

Additional constraints may be specified through toastrainargument ofgnm. This argument indicates parameters
that are to be constrained to zero in the fitting process. Parameters can be indicated by a logical vector, a numeric vector
of indices, a character vector of names odhstrain = "pick" they can be selected througfkdialog.

In the case above, constraining one level of the homogeneous multiplicative factfficiestito make the parameters
of the nonlinear term identifiable, and hence all parameters in the model identifiable. For example, setting the last level of
the homogeneous multiplicative factor to zero,

> multCoef <- coef(RChomogl) [grep("Mult", names(coef(RChomogl)))]

> set.seed(1)

> RChomogConstrainedl <- update(RChomogl, constrain = 31, start = c(rep(NA,
+ 23), multCoef - multCoef[8]))

> set.seed(2)

> RChomogConstrained2 <- eval(RChomogConstrainedl$call)

> identical (coef(RChomogConstrainedl), coef(RChomogConstrained2))

[1] TRUE

gives the same results regardless of the random seed set beforehand.

It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However, the
simple constraints imposed lopnstrainare often sfficient to make particular céiécients of interest identifiable. The
functionscheckEstimable or getContrasts, described in Sectidn 5, may be used to check whether particular combi-
nations of parameters are estimable.

4.4 Usingeliminate

Sometimes a model will include a “stratification” factor which identifies units for which a unit-specific intercept should
be estimated. It is often the case that such factors have a large number of levels and though they are required in the model,
are not of direct interest in themselves.

The eliminateargument ofgnm can be used to specify a stratification factor in a model, so that this factor can be
handled more féiciently. The factor should be specified by an expression, which is interpreted as the first term in the
model formula, replacing any intercept term. So in terms of the structure of the model,

gnm(mu ~ A + B + Mult(A, B), eliminate = stratal:strata2)

is equivalent to

12

gnm(mu ~ -1 + stratal:strata2 + A + B + Mult(A, B))

However specifying a stratification factor througliminatehas two advantages over the standard specification. First, the
structure of the eliminated factor is exploited so that computational speed is improved — substantially so if the number
of eliminated parameters is large. Second, the eliminated parameters are excluded from summaries of the model so that
the focus is on the cdicients of interest.

The eliminatefeature is useful, for example, when multinomial-response models are fitted by using the well known
equivalence between multinomial and (conditional) Poisson likelihoods. In such situationffitiersiustatistic involves
a potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest.
For an application see Sectipn 6.6 below. Here we give an artificial illustration: 500 randomly-generated trinomial
responses, and a single predictor variable (whé@f®eton the data generation is null):

> set.seed(1)

>n <- 500

> x <- rep(rnorm(n), rep(3, n))

> counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2)))
> rowID <- factor(rep(l:n, rep(3, n)))

> resp <- factor(rep(1l:3, n))

The logistic model for dependence sman be fitted as a Poisson log-linear mﬁbating eitheglm or gnm:
> system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x, family = poisson))

[1] 12.04 0.22 13.63 NA NA

> system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowID,

+ family = poisson))
Initialising

Running main iterations...
Done

[1] 7.13 0.21 7.58 NA NA
> c(deviance(temp.glm), deviance(temp.gnm))
[1] 1196.341 1196.341

Here the use oéliminatecauses thgnm calculations to run more quickly thayim. The speed advant@'mcreases with
the number of eliminated parameters (here 500). The eliminated parameters do not appear in printed model summaries:

> summary (temp.gnm)

Call:

gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.266771 -0.766713 -0.001797 0.375404 2.854789

Coefficients:

Estimate Std. Error z value Pr(>|z|)
resp2 -1.964709 0.047995 -40.94 <2e-16 ***
resp3 -1.290139 0.036258 -35.58 <2e-16 ***

2For this particular example, of course, it would be more economical to fit the model directlymsingnom (from the recommended package
nne). But fitting as here via the ‘Poisson trick’ allows the model to be elaborated withigrthidramework usingfult or Nonlin terms.

3In fact eliminateis, in principle, capable of much bigger time savings than this: its implementation in the current vergiomisfreally just a
proof of concept, and it has not yet been optimized for speed

13

respl:x -0.009198 NA NA NA

resp2:x -0.017474 NA NA NA
resp3:x 0.045449 NA NA NA
Signif. codes: @ '***' 0.001 '**' .01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 1196.3 on 996 degrees of freedom
AIC: 5982.5

Number of iterations: 3

As usual,gnm has worked here with an over-parameterized representation of the model. The parameterization used by
glm can be seen from

> coef(temp.glm) [-(1:500)]

resp2 resp3 respl:x resp2:x resp3:x
-1.96470932 -1.29013922 -0.05464657 -0.06292256 NA

(we will not print the full summary oftemp . glm here, since it gives details of all 505 parameters!), which easily can be
obtained, if required, by usingetContrasts:

> getContrasts(temp.gnm, 5:3)

Loading required package: qvcalc
[[1]1]

estimate SE quasiSE quasiVar
resp3:x 0.00000000 0.00000000 0.03169678 0.0010046856
resp2:x -0.06292256 0.05462786 0.04449177 0.0019795175
respl:x -0.05464657 0.03580324 0.01664891 0.0002771862

The eliminatefeature as implemented gmmextends the earlier work of Hatzinger and Francis (2004) to a broader
class of models and to over-parameterized model representations.

5 Methods and Accessor functions
5.1 Methods

Thegnm function returns an object of clasg'gnm", "glm", "1m"). There are several methods that have been written
for objects of clasglm or Im to facilitate inspection of fitted models. Out of the generic functions irbtme statsand
graphicspackages for which methods have been writterglar or Im objects, Figur]1 shows those that can be used to
analysegnmobjects, whilst Figurg]2 shows those that are not implementeghfimobjects.

In addition to the accessor functions shown in Figure 1,ghm package provides a new generic function called
termPredictors that has methods for objects of clagsm gimandim. This function returns the additive contribution
of each term to the predictor. See Secfipn 2 for an example of its use.

Most of the methods listed in Figure 1 can be used as they would lggrfiarr Im objects, however care must be taken
with vcoy, as the variance-covariance matrix will depend on the parameterization of the model. In particular, standard
errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are estimable!

5.2 checkEstimable

The checkEstimable function can be used to check the estimability of a linear combination of parameters. For non-
linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives.

14

anova hatvalues rstandard
case.names labels summary
coef logLik variable.names
cooks.distance model.frame vcov
deviance model.matrix weights
extractAIC plot

family print

formula residuals

Figure 1: Generic functions in tHease statsandgraphicspackages that can be used to anatyseobjects.

add1l dummy.coe
alias dfects
confint influence
dfbeta kappa
dfbetas predict
dropl proj

Figure 2: Generic functions in tHese statsandgraphicspackages for which methods have been writtergfaror Im
objects, but which areotimplemented fognmobjects.

The checkEstimable function provides a numerical version of the sort of algebraic test descriied in Catchpple and
Morgan (1997).
Consider the following model, that is described later in Se¢tioh 6.3:

> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +

+ Mult(Exp(election - 1), religion:vote - 1) + Mult(Exp(election -
+ 1), class:vote - 1), family = poisson, data = cautres)
Initialising

Running start-up iterations..
Running main iterations..........
Done

The dfects of the first constituent multiplier in the first multiplicative interaction are identified when the estimate of one
of these fects is constrained to zero, say for tHeeet of the first level. The parameters to be estimated are then the
differences between eacfiext and the #ect of the first level. These filerences can be represented by a contrast matrix
as follows:

coefs <- names(coef(doubleUnidiff))

contrCoefs <- coefs[grep("Multl.Factorl"”, coefs)]

nContr <- length(contrCoefs)

contrMatrix <- matrix(®, length(coefs), nContr, dimnames = list(coefs,
contrCoefs))

contr <- contr.sum(contrCoefs)

contr <- rbind(contr[nContr,], contr[-nContr,])

contrMatrix[contrCoefs, 2:nContr] <- contr

contrMatrix[contrCoefs, 2:nContr]

VVVV + VV\VYV

Multl.Factorl.election2 Multl.Factorl.election3

Multl.Factorl.electionl -1 -1
Multl.Factorl.election2 1 0
Multl.Factorl.election3 0 1
Multl.Factorl.election4 0 0

Multl.Factorl.election4

15

Multl.Factorl.electionl -
Multl.Factorl.election2
Multl.Factorl.election3
Multl.Factorl.election4

L — I — I

Then their estimability can be checked ustigckEstimable

> checkEstimable(doubleUnidiff, contrMatrix)

Multl.Factorl.electionl Multl.Factorl.election2 Multl.Factorl.election3

NA TRUE TRUE
Multl.Factorl.election4
TRUE

which confirms that theffects for the other three levels are estimable when the parameter for the first level is set to zero.
However, applying the equivalent constraint to the second constituent multiplier in the interaction iffintrauo
make the parameters in that multiplier estimable:

coefs <- names(coef(doubleUnidiff))

contrCoefs <- coefs[grep("Multl.Factor2", coefs)]

nContr <- length(contrCoefs)

contrMatrix <- matrix(®, length(coefs), length(contrCoefs), dimnames = list(coefs,
contrCoefs))

contr <- contr.sum(contrCoefs)

contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr,], contr[-nContr,
D

checkEstimable (doubleUnidiff, contrMatrix)

V + VvV + VVYVYyV

Multl.Factor2.religionl:votel Multl.Factor2.religion2:votel

NA FALSE
Multl.Factor2.religion3:votel Multl.Factor2.religion4:votel
FALSE FALSE
Multl.Factor2.religionl:vote2 Multl.Factor2.religion2:vote2
FALSE FALSE
Multl.Factor2.religion3:vote2 Multl.Factor2.religion4:vote2
FALSE FALSE

5.3 getContrasts, se

To investigate simple “sum to zero” contrasts such as those above, it is easiest togseCthrecrasts function, which

checks the estimability of the contrasts and returns the parameter estimates with their standard errors. Returning to the
example of the first constituent multiplier in the first multiplicative interaction term, tierdnces between each election

and the first can be obtained as follows:

> coefs.of.interest <- grep("Multl.Factorl", names(coef(doubleUnidiff)))
> print(myContrasts <- getContrasts(doubleUnidiff, coefs.of.interest))

[[11]

estimate SE quasiSE quasiVar
Multl.Factorl.electionl 0.0000000 0.0000000 0.09803075 0.009610029
Multl.Factorl.election2 -0.0878181 0.1136832 0.05702819 0.003252214
Multl.Factorl.election3 -0.2615200 0.1184134 0.06812239 0.004640660
Multl.Factorl.election4 -0.3283459 0.1221302 0.07168290 0.005138439

Visualization of estimated contrasts using ‘quasi standard errors’|(Firth] R003; Firth and de Menezes, 2004) is achieved
by plotting the resulting object:

> plot(myContrasts[[1]], levelNames = paste("election", c(1, 2,
+ 3, 4)), main = "Relative strength of religion-vote association, log scale')

16

Relative strength of religion-vote association, log scale

0.2

0.0

estimate

T T T T
election 1 election 2 election 3 election 4

For more general linear combinations of parameters than contrasts, the lowerelémttion (which is called inter-
nally by getContrasts and by thesummarymethod) can be used directly. Se€lp (se) for detalils.

5.4 residSVD

Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation,
or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations
are weighted means of the so-calledrking residuals

TheresidSVD function facilitates one particular residual analysis that is often useful when considering multiplicative
interaction between factors as a model elaboration:ffiece residSVD provides a direct estimate of the parameters of
such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals.

As an illustration, consider the biplot model described in Sedtioh 6.5 below. We can proceed by fitting a smaller
model, then useesidSVD to obtain starting values for the parameters in the bilinear term:

> emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley)

> biplotStart <- residSVD(emptyModel, barley$site, barley$variety,

+ d=2)

> biplotModel <- gnm(y ~ -1 + Mult(-1 + site, -1 + variety, multiplicity = 2),
+ family = wedderburn, data = barley, start = biplotStart)

In this instance, the use of purposive (as opposed to the default, random) starting values haikdttl¢he fairly large
number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by
poor starting values. In other situations, the useefidSVD may speed the calculations dramatically (see for example
Sectior] 6.14), or it may be crucial to success in locating the MLE (for exampleedggHouse2001), where the number
of multiplicative parameters is in the hundreds).

The residSVD result in this instance provides a crude approximation to the MLE of the enlarged model, as can be
seen in the following plot:

17

Comparison of residSVD and MLE
for a 2-dimensional biplot model

15

1.0
o

0.5

biplotStart

-1.0

o <)

-1.5

coef(biplotModel)

6 Examples

This section provides some examples of the wide range of models that may be fitted usingnip@ckage. Sections
[6.1,[6.2 anfl 613 consider various models for contingency tables; Sgctjon 6.4 considers AMMI and GAMMI models which
are typically used in agricultural applications, and Sedftioh 6.6 considers the stereotype model, which is used to model an
ordinal response.

6.1 Row-column Association Models

There are several models that have been proposed for modelling the relationship between the cell means of a contingency
table and the cross-classifying factors. The following examples consider the row-column association models proposed by
Goodman[(1979). The examples shown use data from two-way contingency tables,dnnireckage can also be used

to fit the equivalent models for higher order tables.

6.1.1 RC(1) model

The RC(1) model is a row and column association model with the interaction between row and column factors represented
by one component of the multiplicative interaction. If the rows are indexed &yd the columns by, then the log-
multiplicative form of the RC(1) model for the cell means is given by

log ure = ar + Bc + YrOc.

We shall fit this model to theentalHealth data set taken from Agresti (2002) page 381, which is a two-way con-
tingency table classified by the child’s mental impairment (MHS) and the parents’ socioeconomic status (SES). Although
both of these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the
contrasts attribute of these factors‘tareatment”:

> set.seed(1)

> data(mentalHealth)

> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)

18

Thegnmmodel is then specified as follows, using the poisson family with a log link function:

> RClmodel <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS),

+

family = poisson, data = mentalHealth)

Initialising
Running start-up iterations..

Running main iterations

SESB
-0.067413
SESD
0.404969
SESF
-0.200685

MHSmoderate

0.204987

Multl.Factorl.SESA

0.340495

Multl.Factorl.SESC

0.114885

Multl.Factorl.SESE

-0.305574

Multl.Factor2.MHSwell

0.935600

Multl.Factor2.MHSmoderate

Done
> RClmodel
Call:
gnm(formula =
data = mentalHealth)
Coefficients:
(Intercept)
3.831281
SESC
0.109959
SESE
0.025257
MHSmild
0.712969
MHSimpaired
0.251749
Multl.Factorl.SESB
0.343267
Multl.Factorl.SESD
-0.006284
Multl.Factorl.SESF
-0.551460
Multl.Factor2.MHSmild
0.094793
Multl.Factor2.MHSimpaired
-0.755299
Deviance: 3.570562

Pearson chi-squared: 3.568088
Residual df: 8

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be

normalized as in Agresti’'s eqn (9.15):

VVVVVVVVVYV

-0.056941

count ~ SES + MHS + Mult(-1 + SES, -1 + MHS), family = poisson,

colScores/beta2)

rowProbs <- with(mentalHealth, tapply(count, SES, sum)/sum(count))
colProbs <- with(mentalHealth, tapply(count, MHS, sum)/sum(count))
rowScores <- coef(RClmodel)[10:15]

colScores <- coef(RClmodel)[16:19]

rowScores <- rowScores - sum(rowScores * rowProbs)

colScores <- colScores - sum(colScores * colProbs)

betal <- sqrt(sum(rowScores+2 * rowProbs))

beta2 <- sqrt(sum(colScores+2 * colProbs))

assoc <- list(beta = betal * beta2, mu = rowScores/betal, nu =
assoc

19

$beta
[1] 0.1664874

$mu
Multl.Factorl.SESA Multl.Factorl.SESB Multl.Factorl.SESC Multl.Factorl.SESD
1.11233090 1.12143715 0.37107612 -0.02702946
Multl.Factorl.SESE Multl.Factorl.SESF
-1.01036153 -1.81823284
$nu
Multl.Factor2.MHSwell Multl.Factor2.MHSmild Multl.Factor2.MHSmoderate
1.6775144 0.1403989 -0.1369924
Multl.Factor2.MHSimpaired
-1.4136910

6.1.2 RC(2) model

The RC(1) model can be extended to an Rfafodel withm components of the multiplicative interaction. For example,
the RC(2) model is given by

logure = ar + fc + yrdc + br .
Extra instances of the multiplicative interaction can be specified bynthigplicity argument ottult, so the RC(2) model
can be fitted to theentalHealth data as follows

> RC2model <- gnm(count ~ SES + MHS + Mult(-1 + SES, -1 + MHS,
+ multiplicity = 2), family = poisson, data = mentalHealth)
Initialising

Running start-up iterations..

Running main iterations............
Done

> RC2model

Call:

gnm(formula = count ~ SES + MHS + Mult(-1 + SES, -1 + MHS, multiplicity = 2),
family = poisson, data = mentalHealth)

Coefficients:
(Intercept) SESB
3.85530 -0.06444
SESC SESD
0.11140 0.38457
SESE SESF
0.01081 -0.18462
MHSmild MHSmoderate
0.69860 0.16975
MHSimpaired Multl.Factorl.SESA
0.22876 0.95047
Multl.Factorl.SESB Multl.Factorl.SESC
0.99597 0.33932
Multl.Factorl.SESD Multl.Factorl.SESE
-0.17292 -0.91634
Multl.Factorl.SESF Multl.Factor2.MHSwell
-1.39376 0.35782

20

Multl.Factor2.MHSmild Multl.Factor2.MHSmoderate

0.03795 -0.02129
Multl.Factor2.MHSimpaired Mult2.Factorl.SESA
-0.28029 -0.17762
Mult2.Factorl.SESB Mult2.Factorl.SESC
-0.25156 -0.16614
Mult2.Factorl.SESD Mult2.Factorl.SESE
0.28993 0.22675
Mult2.Factorl.SESF Mult2.Factor2.MHSwell
-0.45554 0.30776
Mult2.Factor2.MHSmild Mult2.Factor2.MHSmoderate
0.09804 -0.25536
Mult2.Factor2.MHSimpaired
0.06769
Deviance: 0.5225353
Pearson chi-squared: 0.523331
Residual df: 3

6.1.3 Homogeneousfkects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction
could be modelled by a multiplicative interaction with homogenediests, that is

logure = ar + e + Yrye.

For example, theccupationalStatus data set from Goodmah (1979) is a contingency table classified by the occupa-
tional status of fathers (origin) and their sons (destinatipn). Goodman|(1979) fits a row-column association model with
homogeneousfiects to these data after deleting the cells on the main diagonal. Equivalently we can account for the
diagonal &ects by a separaBd ag term:

> data(occupationalStatus)
> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +

+ Nonlin(MultHomog(origin, destination)), family = poisson,
+ data = occupationalStatus)
Initialising

Running start-up iterations..
Running main iterations........
Done

> RChomog

Call:

gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +
Nonlin(MultHomog(origin, destination)), family = poisson,
data = occupationalStatus)

Coefficients:

(Intercept) origin2

-0.66871 0.57191

origin3 origin4

1.82383 2.28549

origin5 origin6

1.07035 3.25732

origin7 origin8

21

2.03247 1.83018
destination2 destination3
0.99093 2.16824
destination4 destination5
2.57393 1.96977
destination6 destination?
3.56080 2.78406
destination8 Diag(origin, destination)l
2.40556 1.52667
Diag(origin, destination)2 Diag(origin, destination)3
0.45600 -0.01598
Diag(origin, destination)4 Diag(origin, destination)5
0.38918 0.73852
Diag(origin, destination)6 Diag(origin, destination)7
0.13474 0.45764
Diag(origin, destination)8 MultHomog(origin, destination).l1l
0.38847 -1.74759
MultHomog(origin, destination).2 MultHomog(origin, destination).3
-1.52929 -0.93113
MultHomog(origin, destination).4 MultHomog(origin, destination).5
-0.34725 -0.33008
MultHomog(origin, destination).6 MultHomog(origin, destination).7
0.18168 0.59782

MultHomog(origin, destination).8

0.84139

Deviance: 32.56098

Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogeneffaste on the association of the fathers’ occupa-
tional status and the sons’ occupational status, we can compare this model to the RC(1) model for these data:

> data(occupationalStatus)
> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson, data = occupationalStatus)

Initialising
Running start-up iterations..

Running main iterations...........
Done

> RChomog$dev - RCheterog$dev

[1] 3.411823

> RChomog3$df.residual - RCheterog$df.residual
[1] 6

In this case there is little gain in allowing heterogenediisots.

6.2 Diagonal Reference Models

Diagonal reference models, proposed by Sabel (1981,/1985), are designed for contingency tables classified by factors
with the same levels. The cell means are modelled as a function of the diagiauds.ei.e., the mean responses of the
‘diagonal’ cells in which the levels of the row and column factors are the same.

22

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall useothismg data froni Clitord and Heath (1993). The data

come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class
of the head of householdéstination) and the class of their fathesfigin). In order to weight these percentages by

the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:

> set.seed(1)

> data(voting)

> count <- with(voting, percentage/100 * total)

> yvar <- cbind(count, voting$total - count)

The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonall
effects for the corresponding origin and destination classes. This model may be expressed as

_ et . 2
IuOd - @1 +e§270 esl + e§27d~

See Sectiop 3.2.2 for more detail on the parameterization.
The basic diagonal reference model may be fitted ugimgas follows

> classMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination)),

+ family = binomial, data = voting)
Initialising

Running main iterations........

Done

> classMobility

Call:

gnm(formula = yvar ~ Nonlin(Dref(origin, destination)), family = binomial,
data = voting)

Coefficients:
(Intercept) Dref(origin, destination).origin
-1.34325 -0.30736
Dref(origin, destination).destination Dref(origin, destination).1
-0.05501 -0.83455
Dref(origin, destination).2 Dref(origin, destination).3
0.21066 -0.61159
Dref(origin, destination).4 Dref(origin, destination).5
0.76500 1.38370
Deviance: 21.22093
Pearson chi-squared: 18.95311
Residual df: 19

and the origin and destination weights can be evaluated as below

> prop.table(exp(coef(classMobility)[2:3]))

Dref(origin, destination).origin Dref(origin, destination).destination
0.4372469 0.5627531

These results are slightlyfterent from those reported by @brd and Heath (1993). The reason for this is unclear: we
are confident that the above results are correct for the data as givertordCand Heath (1993), but have not been able
to confirm that the data as printed in the journal were exactly as usedfior@land Heath'’s analysis.

23

Clifford and Heath (1993) suggest that movements in and out of the salariat (class 1) should be tfeated\di
from movements between the lower classes (classes 2 - 5), since the former has affieeater social status. Thus they
propose the following model

e e ifo=1
gire T eirenrd 07

] e & _
HMod = ef53+e547°+e53+e‘54yd ifd=1

e e
1@ 0 sy

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat

ifoxlandd #1

> upward <- with(voting, origin != 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

> socialMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,

+ formula = ~1 + downward + upward)), family = binomial, data = voting)
Initialising

Running main iterations..........

Done

> socialMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +
downward + upward)), family = binomial, data = voting)

Coefficients:
(Intercept)
-1.31739
Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
-0.39834
Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.37858
Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.06225
Dref(origin, destination, formula = ~1 + downward + upward).destination.(Intercept)
-0.01158
Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
-0.43218
Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.12247
Dref(origin, destination, formula = ~1 + downward + upward).l
-0.74021
Dref(origin, destination, formula = ~1 + downward + upward).2
0.20469
Dref(origin, destination, formula = ~1 + downward + upward).3
-0.67740
Dref(origin, destination, formula = ~1 + downward + upward).4
0.74824

Dref(origin, destination, formula = ~1 + downward + upward).5

24

1.37497

Deviance: 18.97407
Pearson chi-squared: 17.07493
Residual df: 17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be
evaluated as below

> prop.table(exp(coef(socialMobility)[c(4, 7)] + coef(socialMobility)[c(2,

+ 51))
Dref(origin, destination, formula = ~1 + downward + upward).origin.upwardTRUE
0.3900792
Dref(origin, destination, formula = ~1 + downward + upward).destination.upwardTRUE
0.6099208
> prop.table(exp(coef(socialMobility)[c(3, 6)] + coef(socialMobility)[c(2,
+ 51)
Dref(origin, destination, formula = ~1 + downward + upward).origin.downwardTRUE
0.6044394
Dref(origin, destination, formula = ~1 + downward + upward).destination.downwardTRUE
0.3955606
> prop.table(exp(coef(socialMobility)[c(2, 5)]))
Dref(origin, destination, formula = ~1 + downward + upward).origin.(Intercept)
0.4044959
Dref(origin, destination, formula = ~1 + downward + upward).destination. (Intercept)
0.5955041

Again, the results dier slightly from those reported by @ord and Heath (1993), but the essence of the results is the
same: the origin weight is much larger for the downwardly mobile groups than for the other groups. The weights for the
upwardly mobile groups are very similar to the base level weights, so the model may be simplified by only fitting separate
weights for the downwardly mobile groups:

> downwardMobility <- gnm(yvar ~ Nonlin(Dref(origin, destination,

+ formula = ~1 + downward)), family = binomial, data = voting)
Initialising

Running main iterations.........

Done

> downwardMobility

Call:
gnm(formula = yvar ~ Nonlin(Dref(origin, destination, formula = ~1 +
downward)), family = binomial, data = voting)

Coefficients:
(Intercept)
-1.30746
Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
-0.02851
Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.37534

25

Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)

0.38028

Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE

-0.43540

Dref(origin, destination, formula = ~1 + downward).l

-0.76241

Dref(origin, destination, formula = ~1 + downward).2

0.20093

Dref(origin, destination, formula = ~1 + downward).3

-0.68419

Dref(origin, destination, formula = ~1 + downward).4

0.73438

Dref(origin, destination, formula = ~1 + downward).5

1.36375
Deviance: 18.99389
Pearson chi-squared: 17.09981

Residual df: 18

> prop.table(exp(coef(downwardMobility) [c(3, 5)] + coef(downwardMobility)[c(2,
+ 41))

Dref(origin, destination, formula = ~1 + downward).origin.downwardTRUE
0.5991571

Dref(origin, destination, formula = ~1 + downward).destination.downwardTRUE
0.4008429

> prop.table(exp(coef(downwardMobility) [c(2, 4)]1))

Dref(origin, destination, formula = ~1 + downward).origin.(Intercept)
0.3992031

Dref(origin, destination, formula = ~1 + downward).destination.(Intercept)
0.6007969

Dref example 2: Conformity to parental rules

Another application of diagonal reference models is given by van der SliK et al.|(2002). The data from this paper are not
publicly availabIE], but we shall show how the models presented in the paper may be estimatedrusing

The data relate to the value parents place on their children conforming to their rules. There are two response variables:
the mother’s conformity score (MCFM) and the father's conformity score (FCFF). The data are cross-classified by two
factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates
(AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother’s conformity score, van der Slik|et al. (2002) include five of the six covariates
(leaving out the father’s family conflict score, FCFF) and a diagonal reference term with constant weights based on the
two education factors. This model may be expressed as

1 e

&
Hre = B1Xa + fi2Xo + BaXe + faXa + fsXs + Sy + S e

The baseline model can be fitted as follows:

> set.seed(1l)

> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)

> A

4 We thank Frans van der Slik for his kindness in sending us the data.

26

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM FRMF
0.06364 -0.32425 -0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM
-0.06430 -0.06043 -0.33730
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2
-0.02507 4.95123 4.86328
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5
4.86458 4.72343 4.43516
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7
4.18873 4.43379
Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The codficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic
identifiability constraints that have been imposed af&@ant for these parameters to be identified. The diagoiietes

do not need to be constrained as they represent contrasts witlifttiagonal cells. Therefore the only unidentified
parameters in this model are the weight parameters. This is confirmed in the summary of the model:

> summary (A)

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.63689 -0.50383 0.01714 0.56752 2.25140

Coefficients:

Estimate Std. Error t value Pr(>|t])
AGEM 0.06364 0.07375 0.863 0.38859
MRMM -0.32425 0.07766 -4.175 3.44e-05
FRMF -0.25324 0.07681 -3.297 0.00104
MWORK -0.06430 0.07431 -0.865 0.38727
MFCM -0.06043 0.07123 -0.848 0.39663
Dref(MOPLM, FOPLF).MOPLM -0.33730 NA NA NA
Dref(MOPLM, FOPLF).FOPLF -0.02507 NA NA NA
Dref(MOPLM, FOPLF).1 4.95123 0.16639 29.757 < 2e-16
Dref(MOPLM, FOPLF).2 4.86328 0.10436 46.601 < 2e-16
Dref(MOPLM, FOPLF).3 4.86458 0.12855 37.842 < 2e-16
Dref(MOPLM, FOPLF).4 4.72343 0.13523 34.928 < 2e-16
Dref(MOPLM, FOPLF).5 4.43516 0.19315 22.963 < 2e-16
Dref(MOPLM, FOPLF).6 4.18873 0.17142 24.435 < 2e-16
Dref(MOPLM, FOPLF).7 4.43379 0.16903 26.231 < 2e-16

27

(Dispersion parameter for gaussian family taken to be ®.7384355)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 425.34 on 576 degrees of freedom
AIC: 1507.8

Number of iterations: 10

The over-parameterization of the weights is immaterial, since the weights have been constrained to sum to one as described
earlier, so the weights themselves are estimable. The weights may be evaluated as follows:

> prop.table(exp(coef(A)[6:7]1))
Dref(MOPLM, FOPLF).MOPLM Dref(MOPLM, FOPLF).FOPLF
0.4225701 0.5774299

giving the values reported by van der Slik et al. (2002). All the otheffmients of model A are the same as those
reported by van der Slik et al. (2002) except theffioients of the mother’s gender role (MRMM) and the father’s gender
role (FRMF).van der Slik et all (2002) reversed the signs of thdfictents of these factors since they were coded in
the direction of liberal values, unlike the other covariates. However, simply reversing the signs of tifesentedoes
not give the same model, since the estimates of the diagdfieait® depend on the estimates of thesefmients. For
consistent interpretation of the covariate fméents, it is better to recode the gender role factors as follows:

> MRMM2 <- as.numeric(!conformity$MRMM)

> FRMF2 <- as.numeric(!conformity$FRMF)

> A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +

+ Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
+ verbose = FALSE)

> A

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM2 FRMF2
0.06364 0.32425 0.25324
MWORK MFCM Dref(MOPLM, FOPLF).MOPLM
-0.06430 -0.06043 -0.08270
Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2
®.22955 4.37372 4.28579
Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5
4.28708 4.14593 3.85766
Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7
3.61123 3.85629
Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The codficients of the covariates are now as reported by van der Slik| ¢t al.|(2002), but the diajecial leave been
adjusted appropriately.

van der Slik et al.[(2002) compare the baseline model for the mother’s conformity score to several other models in
which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they

28

consider incorporates an interaction of the weights with the mother’s conflict score as follows:

gf1thix g2thax
Hre = B1X1 + B2X2 + B3X3 + BaXs + BsXs + Ty L e o

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the
results reported by van der Slik et al. (2002),

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

+ Nonlin(Dref(MOPLM, FOPLF, formula = ~ 1 + MFCM)), family = gaussian,
+ data = conformity, verbose = FALSE)

> F

Call:

gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF, formula = ~1 + MFCM)), family = gaussian,
data = conformity, verbose = FALSE)

Coefficients:
AGEM
0.05818
MRMM
-0.32701
FRMF
-0.25772
MWORK
-0.07847
MFCM
-0.01694
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM. (Intercept)
0.79413
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM
-2.51751
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF. (Intercept)
-0.27618
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM
2.03673
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).1
4.82477
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).2
4.88066
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).3
4.83969
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).4
4.74849
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).5
4.42019
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).6
4.17956
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).7
4.40819

Deviance: 420.9022

Pearson chi-squared: 420.9022
Residual df: 575

29

In this case there are two sets of weights, one for when the mother’s conflict score is less than average (coded as zero) and
one for when the score is greater than average (coded as one). These can be evaluated as follows:

> prop.table(exp(coef(F))[c(6,8)])
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM. (Intercept)
0.7446574
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF. (Intercept)
0.2553426
> prop.table(exp(coef(F)[c(7,9)] + coef(F)[c(6,8)]))
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).MOPLM.MFCM
0.02977308
Dref(MOPLM, FOPLF, formula = ~1 + MFCM).FOPLF.MFCM
0.97022692

giving the same weights as in Table 4 of van der Slik &{ al. (2002).

6.3 Uniform Difference (UNIDIFF) Models

Uniform difference models (Xié¢, 1992; Erikson and Goldthorpe, 1992) use a simplified three-way interaction to provide
an interpretable model of contingency tables classified by three or more variables. For example, the ufidoencdi
model for a three-way contingency table, also known as the UNIDIFF model, is given by

Hijk = @ik + Bjk + eXPOK)yij-

They;j represent a pattern of association that varies in strength over the dimension inddxethtyexpd) represents
the relative strength of that association at lduel

This model can be applied to tlyaish data set/(Yaish, 1998, 2004), which is a contingency table cross-classified by
father’s social classofrig), son’s social classlgst) and son’s education levedduc). In this case, we can consider the
importance of the association between the social class of father and son across the education levels. We omit the sub-table
which corresponds to level 7 diest, because its information content is negligible:

> set.seed(1)

> data(yaish)

> unidiff <- gnm(Freq ~ educ * orig + educ * dest + Mult(Exp(-1 +

+ educ), -1 + orig:dest), family = poisson, data = yaish, subset = (dest !=
+

7))

Initialising

Running start-up iterations..

Running main iterationsS.ciiiiin it iiinnnnnnneeeeeennnnnneennns
Done

> coefs.of.interest <- grep("Multl.Factorl", names(coef(unidiff)))
> coef(unidiff)[coefs.of.interest]

Multl.Factorl.educl Multl.Factorl.educ2 Multl.Factorl.educ3 Multl.Factorl.educ4
-0.8242687 -1.0496405 -1.5676923 -1.8632073
Multl.Factorl.educ5
-3.0737713

Thecoefs.of.interest are the multipliers of the association between the social class of father and son. We can contrast
each multiplier to that of the lowest education level and obtain the standard errors for these parameters as follows:

> getContrasts(unidiff, coefs.of.interest)

[[1]]

estimate SE quasiSE quasiVar
Multl.Factorl.educl 0.0000000 0.0000000 0.09757438 0.00952076
Multl.Factorl.educ2 -0.2253718 0.1611874 0©.12885847 0.01660450

30

Multl.Factorl.educ3 -0.7434236 0.2335083 0.21182123 0.04486823
Multl.Factorl.educ4 -1.0389386 0.3434256 0.32609379 0.10633716
Multl.Factorl.educ5 -2.2495026 0.9453763 0.93560641 0.87535936

Four-way contingency tables may sometimes be described by a “double UNIDIFF” model

Hijki = ail + Bjd + expe1)yij + exp@)bi,

where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth
variable. Thecautres data set, from Cautres et|al. (1998), can be used to illustrate the application of the double UNIDIFF
model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we
can see how the association between class and vote, and the association between religion arfibvbetwadien the

most recent election and the other elections:

> set.seed(1)

> data(cautres)

> doubleUnidiff <- gnm(Freq ~ election * vote + election * class *

+ religion + Mult(Exp(-1 + election), religion:vote) + Mult(Exp(-1 +
+ election), class:vote), family = poisson, data = cautres)

Initialising

Running start-up iterations..
Running main iterations..........
Done

> getContrasts(doubleUnidiff, rev(grep("Multl.Factorl", names(coef(doubleUnidiff)))))

[[11]

estimate SE quasiSE quasiVar
Multl.Factorl.election4 0.00000000 0.00000000 0.07168290 0.005138439
Multl.Factorl.election3 0.06682585 0.09906916 0.06812239 0.004640660
Multl.Factorl.election2 0.24052778 0.09116479 0.05702819 0.003252214
Multl.Factorl.electionl 0.32834588 0.12213023 0.09803075 0.009610029

> getContrasts(doubleUnidiff, rev(grep("Mult2.Factorl", names(coef(doubleUnidiff)))))

[[11]

estimate SE quasiSE quasiVar
Mult2.Factorl.electiond 0.00000000 0.0000000 0.10934798 0.011956980
Mult2.Factorl.election3 0.08754435 0.1446833 0.09475938 0.008979340
Mult2.Factorl.election2 0.31990726 0.1320022 0.07395886 0.005469913
Mult2.Factorl.electionl -0.36183013 0.2534754 0.22854400 0.052232362

6.4 Generalized Additive Main Efects and Multiplicative Interaction (GAMMI) Models

Generalized additive mairffects and multiplicative interaction models, or GAMMI models, were motivated by two-way
contingency tables and comprise the row and column m@étts plus one or more components of the multiplicative
interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the
strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell meang,. a GAMMI-K model has the form

K
Olure) = ar + Bc + Z OKYkrOke
k=1

in which g is a link function,e, andg; are the row and column mairffects,yyx, andéy. are the row and column scores
for multiplicative componenk andor is the singular value for componekt The number of multiplicative components,
K, is less than or equal to the rank of the matrix of residuals from the nfizots.

31

The row-column association models discussed in Seffign 6.1 are examples of GAMMI models, with a log link and
poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a
constant variance.

We shall use th@heat data set taken from Vargas et al. (2001), which gives wheat yields measured over ten years.
First we scale these yields and create a new treatment factor, so that we can reproduce the @nalysis of \jargas|et al. (2001):

set.seed(1)

data(wheat)

yield.scaled <- wheat$yield * sqrt(3/1000)

treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,
wheat$N, sep = "")

+ V.V VvV

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from
thewheat dataset. We will proceed by first fitting the maifieets model, then usingesidSVD (see Sectiop 5]4) for the
parameters of the multiplicative term:

> mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian,
+ data = wheat)

Linear predictor - using glm.fit

> svdStart <- residSVD(mainEffects, year, treatment, 3)
> bilinearl <- update(mainEffects, . ~ . + Mult(year - 1, treatment -
+ 1), start = c(coef(mainEffects), svdStart[, 1]))

Running main iterations
Done

We can compare the AMMI-1 model to the maiffiexsts model,

> anova(mainEffects, bilinearl)

Analysis of Deviance Table

Model 1: yield.scaled ~ year + treatment
Model 2: yield.scaled ~ year + treatment + Mult(year - 1, treatment -

D
Resid. Df Resid. Dev Df Deviance
1 207 279515
2 176 128383 31 151133

giving the same results as in Table 1 of Vargas éf al. (2001) (up to error caused by rounding).

6.5 Biplot Models

Biplots are used to display two-dimensional data transformed into a space spanned by linearly independent vectors, such
as the principal components or singular vectors. The plot represents the levels of the two classifying factors by their scores
on the two axes which show the most information about the data, for example the first two principal components.

A rank-n model is a model based on the filstomponents of the decomposition. In the case of a singular value
decomposition, this is equivalent to a model witbomponents of the multiplicative interaction.

To illustrate the use of biplot models, we shall useltheley data set which describes the incidence of leaf blotch
over ten varieties of barley grown at nine sites (Weddethurn,|1974; Cabriel, 1998). The biplot model is fitted as follows:

data(barley)

set.seed(1)

biplotModel <- gnm(y ~ -1 + Mult(site, variety, multiplicity = 2),
family = wedderburn, data = barley)

+ V Vv V

32

Initialising
Running start-up iterations..
Running main 1terations.ttt et ettt e et e

using thewedderburn family function introduced in Sectidrj 2. Matrices of the row and column scores for the first two
singular vectors can then be obtained by:

> barleySVD <- svd(matrix(biplotModel$predictors, 10, 9))
> A <- sweep(barleySVD$v, 2, sqrt(barleySvD3d), "*")[, 1:2]
> B <- sweep(barleySVD$u, 2, sqrt(barleySvD$d), "*")[, 1:2]

> A
[,1] [,2]
[1,] 4.1948212 -0.39186806
[2,] 2.7642419 -0.33951298
[3,] 1.4250456 -0.04654256
[4,] 1.8463067 ©0.33365981
[5,]1 1.2704091 0.15776743
[6,] 1.1562916 0.40048225
[7,] 1.0172048 0.72727990
[8,] 0.6451366 1.46162702
[9,] -0.1470898 2.13234195

> B
[,1] [,2]

[1,] -2.0673655 -0.97420449
[2,] -3.0599788 -0.50683009
[3,] -2.9598021 -0.33190618
[4,] -1.8086251 -0.49758487
[5,1 -1.5579480 -0.08444513
[6,] -1.8939998 1.08460534
[7,] -1.1790432 0.40687015
[8,] -0.8490092 1.14671353
[9,] -0.9704664 1.26558193
[10,] -0.6036790 1.39655898

These matrices are essentially the same as in Gabriel|(1998). From these the biplot can be produced forlsited
varieties 1..9, X:

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data'")

33

Biplot for barley data

q- —
o~ [
X H
_ 6 B
S] o
o F D
< © 5 %
B i 4 B A
2 1
N
|
< _|
|
I I I I I
-4 -2 0 2 4
rbind(A, B)[,1]

The product of the matricelsandB is undtected by rotation or reciprocal scaling along either axis, so we can rotate the
data so that the points for the sites are roughly parallel to the horizontal axis and the points for the varieties are roughly
parallel to the vertical axis. In addition, we can scale the data so that points for the sites are about the line one unit about
the horizontal axis, roughly

> a <- pi/5
rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2,
byrow = TRUE)
rA <- (2 * A/3) %*% rotation
B <- (3 * B/2) %*% rotation
plot(rbind(rA, rB), pch = c(levels(barley$site), levels(barley$variety)),
x1lim = c(-4, 4), ylim = c(-4, 4), main = "Biplot (rotated) for barley data'")

+ V VYV + YV

34

Biplot (rotated) for barley data

q-_
~ 4
" A
) I H
N G- D B
@ 98 FEC
< ©
= 6
e 7
2
5
N
! 4
3 1
2
<
|
I I I I I
-4 -2 0 2 4

rbind(rA, rB)[,1]

In the original biplot, the co-ordinates for the sites and varieties were given by the rows of A and B respectively, i.e
“.T = V(d)(uyi, Uz)
Bl = V(d)(vaj. v2))
The rotated and scaled biplot suggests the simpler model
o =mn1)
B =67
which implies the following model for the logits of the leaf blotch incidence:
o] Bj = %6} + 7j.
Gabriel (1998) describes this as a double additive model, which we can fit as follows:

> variety.binary <- factor(match(barley$variety, c(2, 3, 6), nomatch = 0) >

+ 0, labels = c("rest", "2,3,6"))

> doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),
+ family = wedderburn, data = barley)

Initialising

Running start-up iterations..
Running main iterations..........viiiiiininnnnnnns
Done

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch
incidence:

> biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")A2)

> doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson')*2)
> c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual -

+ biplotModel$df.residual)

[1] 9.513782 15.000000

35

6.6 Stereotype Model

The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a linear logistic model, in
which there is assumed to be a common relationship between the response and the covariates in the model, but the scale
of this association varies between categories and there is an additional categorffettioreategory-specific intercept:

logptic = Boc + ¥e), BrXr-
r

This model can be estimated by re-expressing the categorical data as counts andgasimgael with a log link and
poisson variance function. Tlgnmpackage includes the utility functicszkpandCategorical to facilitate the required
data processing.

For example, thdackPain data set fromi Anderson (1984) describes the progress of patients with back pain. The
data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. These data
can be re-expressed as follows:

> set.seed(1)
> data(backPain)
> backPain[1:2,]

x1 x2 x3 pain
1 1 1 1 same
1 1 1 marked.improvement

> backPainLong <- expandCategorical(backPain, "pain")
> backPainLong[1:12,]

x1 x2 x3 pain count id
1 1 1 1 worse 0 1
1.1 1 1 1 same 1 1
1.2 1 1 1 slight.improvement 0 1
1.3 1 1 1 moderate.improvement 0 1
1.4 1 1 1 marked.improvement 0 1
1.5 1 1 1 complete.relief 0 1
2 1 1 1 worse 0 2
2.1 1 1 1 same 0 2
2.2 1 1 1 slight.improvement 0 2
2.3 1 1 1 moderate.improvement 0 2
2.4 1 1 1 marked.improvement 1 2
2.5 1 1 1 complete.relief 0 2

We can now fit the stereotype model to these data:

> oneDimensional <- gnm(count ~ pain + Mult(pain - 1, x1 + x2 +
+ x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Initialising
Running start-up iterations..

Running main iterations...............
Done

> oneDimensional

Call:

gnm(formula = count ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),
eliminate = id, family = "poisson", data = backPainLong)

Coefficients:

36

painsame

16.1578

painmoderate.improvement

12.4555

paincomplete.relief

21.6653

Multl.Factorl.painsame

1.6657
Multl.Factorl.painmoderate.improvement
1.1045
Multl.Factorl.paincomplete.relief
2.5318

Multl.Factor2.x2

-1.1007

Deviance: 303.1003
Pearson chi-squared: 433.3727
Residual df: 493

painslight.improvement

15.6848

painmarked.improvement

19.9140

Multl.Factorl.painworse

-0.2675
Multl.Factorl.painslight.improvement
1.5614
Multl.Factorl.painmarked.improvement
2.1356

Multl.Factor2.x1

-1.9190

Multl.Factor2.x3

-0.9691

usingeliminateto handle theid factor so that these structural parameters do not appear in the model summaries. This
model is one dimensional since it involves only one functiow ef (x1, x2, x3). We can compare this model to one with
category-specific cdicents of thex variables, as may be used for a qualitative categorical response:

> threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id,
+ family = "poisson", data = backPainLong)

Initialising
Running main iterations.uuit ittt ittt ittt sttt aaa e e aaaaaaaneean

> threeDimensional

Call:
gnm(formula = count ~ pain + pain:(xl + x2 + x3), eliminate = id,
family = "poisson", data = backPainLong)
Coefficients:
painsame painslight.improvement
31.3062 30.9255
painmoderate.improvement painmarked.improvement
27.8080 35.0086
paincomplete.relief painworse:x1
37.4566 8.2129
painsame:x1 painslight.improvement:x1
-2.9470 -2.6174
painmoderate.improvement:x1 painmarked.improvement:x1
-2.3539 -4.1771
paincomplete.relief:x1 painworse:x2
-4.6890 0.2552
painsame:x2 painslight.improvement:x2
-2.4188 -2.2961
painmoderate.improvement:x2 painmarked.improvement :x2
-1.4168 -2.5886
paincomplete.relief:x2 painworse:x3
-3.0197 -1.9924

37

painsame:x3 painslight.improvement:x3

-3.1478 -3.2844
painmoderate.improvement:x3 painmarked.improvement:x3
-2.7386 -3.6838
paincomplete.relief:x3
-4.9330
Deviance: 299.0153
Pearson chi-squared: 443.0034
Residual df: 485

This model has the maximum dimensionality of three (as determined by the number of covariates). To obtain the log-
likelihoods as reported in Andersan (1984) we need to adjust for the extra parameters introduced to formulate the models
as Poisson models. We write a simple function to do this and compare the log-likelihoods of the one dimensional model
and the three dimensional model:

> logLikMultinom <- function(model) {

+ object <- get(model)

+ if (inherits(object, "gnm")) {

+ 1 <- logLik(object) + object$eliminate

+ c(nParameters = attr(l, "df") - object$eliminate, logLikelihood = 1)

+ }

+ else c(nParameters = object$edf, logLikelihood = -deviance(object)/2)

+ }

> t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom))
nParameters logLikelihood

oneDimensional 12 -151.5501

threeDimensional 20 -149.5076

which show that theneDimensional model is adequate.

To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location
and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the
second multiplier td, which may be achieved by specifying the covariate asfésed

> summary (oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),
eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
painsame 16.1578 6.5741 2.458 0.013980 *
painslight.improvement 15.6848 6.5274 2.403 0.016265 *
painmoderate.improvement 12.4555 6.4312 1.937 0.052777 .
painmarked.improvement 19.9140 6.4975 3.065 0.002178 **
paincomplete.relief 21.6653 6.5571 3.304 0.000953 ***
Multl.Factorl.painworse -0.2675 NA NA NA
Multl.Factorl.painsame 1.6657 NA NA NA
Multl.Factorl.painslight.improvement 1.5614 NA NA NA
Multl.Factorl.painmoderate.improvement 1.1045 NA NA NA

38

Multl.Factorl.painmarked.improvement 2.1356 NA NA NA

Multl.Factorl.paincomplete.relief 2.5318 NA NA NA
Multl.Factor2.x1 -1.9190 NA NA NA
Multl.Factor2.x2 -1.1007 NA NA NA
Multl.Factor2.x3 -0.9691 NA NA NA
Signif. codes: @ '***' §.001 '**' .01 '*' 0.05 '.' 0.1 " ' 1

(Dispersion parameter for poisson family taken to be 1)
Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 15

> oneDimensional <- gnm(count ~ pain + Mult(pain - 1, offset(x1) +
+ x2 + x3 - 1), eliminate = id, family = "poisson", data = backPainLong)

Initialising

Running start-up iterations..

Running main iterations...............
Done

> summary (oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain - 1, offset(xl) + x2 +
x3 - 1), eliminate = id, family = "poisson", data = backPainlong)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
painsame 16.1578 6.5742 2.458 0.013980
painslight.improvement 15.6848 6.5274 2.403 0.016265
painmoderate.improvement 12.4556 6.4312 1.937 0.052777
painmarked.improvement 19.9140 6.4976 3.065 0.002178
paincomplete.relief 21.6653 6.5571 3.304 0.000953
Multl.Factorl.painworse 1.3644 NA NA NA
Multl.Factorl.painsame -2.3453 NA NA NA
Multl.Factorl.painslight.improvement -2.1453 NA NA NA
Multl.Factorl.painmoderate.improvement -1.2685 NA NA NA
Multl.Factorl.painmarked.improvement -3.2472 NA NA NA
Multl.Factorl.paincomplete.relief -4.0074 NA NA NA
Multl.Factor2.x2 0.5736 0.2178 2.633 0.008451
Multl.Factor2.x3 0.5050 0.2431 2.077 0.037807 *
Signif. codes: @ '***' §.001 '**' .01 '*' 0.05 '.' 0.1 " ' 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

39

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 15

The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through
theconstrainargument ofgnm or with getContrasts:

> getContrasts(oneDimensional, 6:11)

[[1]1]

estimate SE quasiSE quasiVar
Multl.Factorl.painworse 0.000000 0.000000 1.7797331 3.16745001
Multl.Factorl.painsame -3.709733 1.825565 0.4281333 0.18329814
Multl.Factorl.painslight.improvement -3.509693 1.791730 0.4024683 0.16198074
Multl.Factorl.painmoderate.improvement -2.632939 1.669254 0.5518547 0.30454357
Multl.Factorl.painmarked.improvement -4.611593 1.895238 0.3133219 0.09817064
Multl.Factorl.paincomplete.relief -5.371850 1.999655 0.4919550 0.24201973

giving the required estimates.

40

A User-level Functions

We list here, for easy reference, all of the user-level functions igtimepackage. For full documentation see the package
help pages.

Model Fitting

gnm

fit generalized nonlinear models

Model Specification

Diag create factor dferentiating diagonal elements

Symm create symmetric interaction of factors

Topo create ‘topological’ interaction factors

Mult specify a multiplicative interaction in gnm formula

Exp specify an exponentiated constituent multiplier iMud t term

Nonlin specify a special nonlinear term irgam formula

Dref gnm plug-in function to fit diagonal reference terms

MultHomog gnm plug-in function to fit multiplicative interactions with homogeneofiisas
wedderburn specify the Wedderburn quasi-likelihood family

Methods and Accessor Functions

summary.gnm

summarizegnmfits

getContrasts estimate contrasts and their standard errors for parameters in a gnm model
checkEstimable check whether one or more parameter combinationsggimmamodel is identified
exitInfo print numerical details of last iteration whgnm has not converged

residSvD multiplicative approximation of model residuals

se get standard errors of linear parameter combinatiogsmimmodels
termPredictors (generig extract term contributions to predictor

Auxiliary Functions

asGnm coerce an object of clags or gimto classgnm

expandCategorical expand a data frame by re-expressing categorical data as counts
getModelFrame get the model frame in use lyym

MPinv Moore-Penrose pseudoinverse of a real-valued matrix

qrSolve Minimum-length solution of a linear system

41

References

Agresti, A. (2002).Categorical Data Analysi€2nd ed.). New York: Wiley.
Anderson, J. A. (1984). Regression and ordered categorical varidbRsStatist. Soc. B 48), 1-30.
Catchpole, E. and B. Morgan (1997). Detecting parameter redundBimpetrika 84 187—196.

Cautres, B., A. F. Heath, and D. Firth (1998). Class, religion and vote in Britain and Fraadeettre de la Maison
Francaise 8

Clifford, P. and A. F. Heath (1993). The political consequences of social moBiliRoy. Stat. Soc. A 166, 51-61.
Erikson, R. and J. H. Goldthorpe (1992he Constant FluxOxford: Clarendon Press.

Erikson, R., J. H. Goldthorpe, and L. Portocarero (1982). Social fluidity in industrial nations: England, France and
Sweden British Journal of Sociology 33-34.

Firth, D. (2003). Overcoming the reference category problem in the presentation of statistical m&deislogical
Methodology 331-18.

Firth, D. and R. X. de Menezes (2004). Quasi-varian@&smetrika 91 65-80.
Gabiriel, K. R. (1998). Generalised bilinear regressiiometrika 85 689—-700.

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories.
J. Amer. Statist. Assoc. /837-552.

Hatzinger, R. and B. J. Francis (2004). Fitting paired comparison models in R. Technical Report 3, Department of
Statistics and Mathematics, Wirtschaftsuniversitéat Wien.

McCullagh, P. and J. A. Nelder (1989keneralized Linear Models (Second Editio@hapman & Hall Ltd.

Sobel, M. E. (1981). Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility
effects.Amer. Soc. Rev. 4693-906.

Sobel, M. E. (1985). Social mobility and fertility revisited: Some new models for the analysis of the mofigityse
hypothesisAmer. Soc. Rev. 5699-712.

van der Slik, F. W. P., N. D. de Graaf, and J. R. M. Gerris (2002, 4). Conformity to parental rules: Asymmetric influences
of father's and mother’s levels of educatidBurop. Soc. Rev. 1889-502.

Vargas, M., J. Crossa, F. van Eeuwijk, K. D. Sayre, and M. P. Reynolds (2001). Interpreting treatment by environment
interaction in agronomy trialsAgronomy Journal 93949-960.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method.
Biometrika 61 439-447.

Xie, Y. (1992). The log-multiplicative layertiect model for comparing mobility table&merican Sociological Review 57
380-395.

Yaish, M. (1998). Opportunities, Little Change. Class Mobility in Israeli Society, 1974-19Bh. D. thesis, Nfiield
College, University of Oxford.

Yaish, M. (2004).Class Mobility Trends in Israeli Society, 1974-199kwiston: Edwin Mellen Press.

42

	Introduction
	Generalized Linear Models
	Preamble
	Diag and Symm
	Topo
	The wedderburn family
	termPredictors

	Nonlinear Terms
	Multiplicative Interaction Terms using Mult
	Other Nonlinear Terms using Nonlin
	MultHomog
	Dref
	Custom Plug-in Functions

	Controlling the Fitting Procedure
	Basic control parameters
	Using start
	Using constrain
	Using eliminate

	Methods and Accessor functions
	Methods
	checkEstimable
	getContrasts, se
	residSVD

	Examples
	Row-column Association Models
	RC(1) model
	RC(2) model
	Homogeneous effects

	Diagonal Reference Models
	Uniform Difference (UNIDIFF) Models
	Generalized Additive Main Effects and Multiplicative Interaction (GAMMI) Models
	Biplot Models
	Stereotype Model

	User-level Functions

