Using ann_ tab_ cv() and transfer learning

Walter K. Kremers, Mayo Clinic, Rochester MN

28 July 2023

The functions

The ann_ cv_lin() function fits an artificial neural network model, or neural network (NN) for short, to
tabular data. The network has a simple “sequential” structure with linear components and by default ReLU
activations. It has two hidden layers where the number of terms in each of these two layers can be specified
by the user. Data for input are in a format as with the nested.glmnetr() function. Models can be fit as
generalizations to Cox, logistic or linear regressions.

We wrote the ann_cv_lin() function in part to better understand how a NN model which begins its “nu-
merical optimization” near a model informed by a linear model might perform compared to a standardly
fit NN model. The program is not optimized to find the “best algorithm” for model fitting so other NN
programs may perform better. Still, it does show how this “transfer learning” from a linear model to the
NN can dramatically improve model fit. Here we use the relaxed lasso regression model (tuned on lambda
and gamma) as the linear model for the transfer learning. In that both the relaxed lasso and NN models are
fit in nested.glmneter() we use this function to fit these transfer learning NN models. Because nested cross
validations can have long run times, as an option, one may fit these models without actually performing the
outer nested loop.

The nested.glmnetr() function also fits lasso, XGBoost and p-value tuned stepwise regression models while
using one level of cross validation to inform hyper parameters and another level of cross validation to evaluate
model performance, that is it does nested cross validation. Measures of model performance include deviance
and agreement (concordance or R-square). We also calculate linear calibration coefficients obtained by
regressing the original outcome variable on the predicteds in the hold out data of the nested cross validation.
In this formulation the predicteds are taken before any “final” activation so they are analogous to the X
* Beta term from a Cox, logistic or linear model. A linear calibration regression coeflicient greater than 1
suggests a bias in the model in under estimating the relative differences in risk between sample units and a
coeflicient less than 1 suggests a bias in over estimating these relative differences.

Data requirements

The data elements for input to the ann_tab_ cv() function are basically the same as for the other glmnetr
functions like nested.glmenter() and cv.glmneter(). Input data should comprise of 1) a (numerical) matrix
of predictors and 2) an outcome variable or variables in (numerical) vector form. NULL and Na’s are not
allowed in input matrices or vectors. For the estimation of the “fully” relaxed parts (where gamma=0) of
the relaxed lasso models the package is set up to fit the “gaussian” and “binomial” models using the stats
glm() function and Cox survival models using the the coxph() function of the survival pacakge. When fitting
the Cox model or an extension like with NNs the “outcome” variable is interpreted as the “time” variable
in the Cox model, and one must also specify 3) an indicator variable for event, again in vector form. Start
times are not at this time accounted for in ann_ tab_cv(). Row i of the predictor matrix and element i of
the outcome vector(s) are to include the data for the same sampling unit.

R torch

For fitting the NNs we use the R torch package. We refer to the package reference manual and the book
https://skeydan.github.io/Deep-Learning-and-Scientific- Computing-with-R-torch/ for general information
on this package. To run the NN models one needs to install the R torch package. When first loading torch
from the R library, the package may prompt the user to allow torch to download some tensor libraries which
is necessary to run torch. The NN torch library generally requires input data to be in torch tensor format,
and provides output in torch tensor format as well. Here we convert data from the usual R format to the
torch format so the user does not have to. In some functions, too, we convert outputs from torch format
back to standard R format for the user.

An example dataset

To demonstrate usage of ann_ tab_ cv() we first generate a data set for analysis. The code

Simulate data for use in an example Neural Network fit of survival data

first, optionally, assign seeds for random number generation to get replicable results
set.seed(116291949)

torch_manual _seed(77421177)

simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL, intr=c(1,0,1,0))

generates simulated data with interactions (specified by the intr=c(1,0,1,0) term) for analysis. We extract
data in the format required for input to the ann_tab_ cv() program.

Extract simulated survival data

XS simdata$xs # matriz of predictors

yt simdata$yt vector of survival times

event = simdata$event tndicator of event ws. censoring from survival data
y_ = simdata$y_ vector of quantitative values as an outcome wvariable
yb = simdata$yb vector of 0 and 1 wvalues for an outcome wariable

#
#
#
#

Inspecting the predictor matrix we see

Check the sample size and number of predictors
print (dim(xs))

[1] 1000 100

Check the rTank of the design matriz, i.e. the degrees of freedom in the predictors
rankMatrix(xs) [[1]]

[1] 94

Inspect the first few rows and some select columns
print(xs[1:10,c(1:12,18:20)])

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X18 X19 X20
[1,] 1 1 0 0O O O O O O 1 0 1 0.1513225 -0.4034383 0.35250844
[2,] 1 0 0 0 1 0 0O 1 O O O 0 -1.1610480 0.5533030 0.14578868

https://skeydan.github.io/Deep-Learning-and-Scientific-Computing-with-R-torch/

[3,] 1 0 0 1 0 O 1 O O O O O -0.3292269 0.3086399 -0.48443836
[4,] 1 1 0 O 0 O O O O 1 0 0 2.0635214 -0.5500741 -0.02173104
[6,] 1 0 0 0 1 0 O 1 O O O O 0.3905722 -0.6836452 -0.37643201
[6,] 1 0 1 0 O O O O 1 O O 0 -0.2397597 1.6909447 0.49599945
[r,] 1 0 1 0 0 0 0 1 O O O 0 -0.5592424 0.2314638 -0.53198341
[8,] 1 0 0 1 0 O O O O O 1 0 -1.0050514 0.5319574 0.54287646
[9,] 1 0 0 1 0 O O O O O 1 0 1.2548034 0.8213164 0.17067691
[10,] 1 0 0 0 1 0 O O 1 O O O -0.3079151 -0.6105910 -0.88711869

Fitting a basic neural network model to “tabular” data using ann__tab_ cv()

To fit a NN model we can use a simple function call as in

fit a model with some monitoring to the R comnsole
set.seed(67213041)
torch_manual_seed(7221250)
ann_tab_cox_exl = ann_tab_cv(Xs,

-2)

NP event, "cox", 10,

Epoch: 0 Full data
imax= 42 minloss= 1
Epoch: 42 Train Loss:

0.5323026
gotoend= 0 11=0

Loss: 6.205775 Train Concordance:
which_loss= 42 which_agree= 47
5.198872 Train Concordance: 0.8798803

We see there is little the user needs to specify, which is basically the data one includes when fitting a regular
Cox model. The one piece of input which is unusual is the eppr=-2. The eppr term has no influence on the
model but instructs the program to send some fit information to the R console for monitoring the model
fitting process. Here we see the model loss and concordance calculated using the training data. From the
output generated during model fit we see that for the “starting point” of the model fit the loss function is
about 6.2 and concordance 0.5. The concordance of about 0.5 is what we expect by chance alone, consistent
with the fact that when we begin the model fit we are taking a model chosen at random. After the gradient
descent goes through 42 iterations, as suggested by cross validation, the loss based upon the training data
goes down to about 5.2 and the concordance increases to about 0.88, a marked improvement. This minimal
amount of information sent to the R console is achieved by setting eppr=-2. To avoid any information being
sent to the console one may set eppr = -3, or any number less than -2. Numbers larger than -2 will provide
more updates during the model fitting process.

To see more information on the model fit we submit

simple model summary
ann_tab_cox_ex1$modelsum

n folds epochs length Z1 length Z2 actv
#i#t 10.0000000 200.0000000 16.0000000 8.0000000 1.0000000
drpot mylr wd 11 lasso
#H# 0.0000000 0.0050000 0.0000000 0.0000000 0.0000000
1scale scale which loss which agree CV loss
#i# 5.0000000 1.0000000 42.0000000 47.0000000 3.4905488
CV Agree CV accuracy naive loss naive agree naive accuracy
#it 0.7965589 0.0000000 5.1988721 0.8798803 0.0000000
#it agree i_=0

0.5323026

Here we see that the cross validation is based upon a 10 fold split of the data, and the gradient descent
algorithm goes through 200 iterations or epochs for each fold of the data. For this simple model fit we are
tuning on number of iterations in the gradient descent fitting. This is not necessarily the most robust way
to fit a model but this simple method is common suggesting its usefulness and it will serve to evaluate how
NN model fits might be impacted by using a transfer learning form a linear model to the NN (and discuss
below). Next we see the first hidden layer is a vector of length 16, and the second hidden layer a vector
of length 8. The actv of 1 specifies a ReLU activation function was used, drpot of 0 that no drop out was
used, mylr of 0.005 indicates the learning rate used in the optimization. wd and 11 indicate the L2 and L1
penalties used when model fitting, corresponding to ridge and lasso regression. Both are 0 here indicating
these penalties were not employed. The “which loss” and “which agree” values indicate the number of epochs
when loss is minimized and agreement (concordance or R-square) is maximized in the cross validation and
inform the number of epochs to be used in the final model fit using the whole data set. The CV loss and
CV concordance based upon these numbers of fits were about 3.49 and 0.8, while the “naive” loss and
concordances calculated using training data were much greater at about 5.2 and 0.88. This is as we expect
for concordance as the values based upon the training data are associated with a lot of over fitting due to the
number of free parameters in the NN model. The naive deviance of 5.2 being larger than the cv deviance of
3.49 may derive from the larger sample size when using the whole data set for calculations. CV accuracy, the
fraction of “correctly classified” is not calculated here and 0 is displayed. The concordance for the random
starting model was about 0.5, as sent to the R console in the example above.

We can get more information on the NN model, for example with the command

This shows the tensor (matrix) structure used in the model
str(ann_tab_cox_exl$model$parameters)

List of 6

$ O.weight:Float [1:16, 1:100]
$ O.bias :Float [1:16]

¢ 3.weight:Float [1:8, 1:16]
¢ 3.bias :Float [1:8]

$ 6.weight:Float [1:1, 1:8]

$ 6.bias :Float [1:1]

The first item here, 0.wieght, describes the dimensions of the tensor (matrix) used in transforming the original
data to the first hidden layer, here 100 and 16. While we would usually expect this tensor to be 100 rows
tall and 16 columns wide, tensors are often transposed to take greater advantage of machine architecture
to speed calculations. Next we see 0.bias, a tensor with 1 dimension and thus essentially a vector, which
contains the intercept terms when transforming from the input data to the first hidden layer. The 3.weight
and 3.bias terms determine the transformation from the first hidden to the second hidden layer. Here they
transform a vector with 16 terms to a vector or 8 terms. Finally the 6.weight and 6.bias terms determine
the transformation from the second hidden layer to the model output of 1 dimension. To get more model
information we can use the command

This shows the general structure of the neural network model
ann_tab_cox_ex1$model$modules[[1]]

An ‘nn_module‘ containing 1,761 parameters.

##

-- Modules ——————---—————-——————— -
* O0: <nn_module> #1,616 parameters

* 1: <nn_relu> #0 parameters

x 2: <nn_dropout> #0 parameters

x 3: <nn_module> #136 parameters

* 4: <nn_relu> #0 parameters

* 5: <nn_dropout> #0 parameters
* 6: <nn_module> #9 parameters
x 7: <nn_identity> #0 parameters

This shows the model structure. The first term nn_ module, involves a linear transformation from the inputs
to a hidden layer. This module is based upon the “nn_linear” tensor module which we modified to allow
us to more easily set or update model weights and biases. This is followed by a ReLU activation and
then a “dropout” with probability 0. The activation function is a nonlinear transformation that allows the
NN to fit more general response surfaces than linear models. Without this the NN would simply involve
matrix multiplication which would result in another matrix, and reduce to a linear model. The dropout
can be used to randomly set terms to 0, i.e. to drop them out, with a specified probability. This can
sometimes improve model fit. Here though we set this probability to 0 so this is not impacting our model
fit. The final element “nn_ identity” unsurprisingly means to apply the identity function. This could be set
to “sigmoid”, i.e. (1/(1+exp(-x)), to transform the input values to the interval (0,1), as can be done when
fitting generalizations of the logistic regression model.

See here how we have been inspecting elements of lists of lists. The basic flow of model fitting using R torch
is to first define a model object and then use numerical routines to update the contents of this model object
using numerical algorithms. Here we combine this model object with other information in a list to organize
in one place the model, information about the model fit and how the model was derived.

Though we can, we do not typically inspect individual parameters (weights and biases) in a NN. The value
of NN models lies instead in their ability to predict. In general predicted values can be gotten in R torch by
a command like model(newdata). We can get predicteds form an ann_ tab_ cv() output object, for example,
with a command like

ann_tab_cv() predicteds in torch tensor format

preds = ann_tab_cox_ex1$model (xs)
preds[1:8]

torch_tensor

-1.2694
-2.9719
2.3675
-0.3093
-0.3961
0.6866
-2.3836
-1.3124

[CPUFloatType{8,1}][grad_fn = <SliceBackwardO>]

Since R torch models work with tensors the model predicteds, too, are put in a torch tensor format. We can
easily change the output to a usual R numerical format by wrapping the output in the as.numeric() function,
for example, as in

ann_tab_cv() predicteds in standard R numerical format
preds = as.numeric(ann_tab_cox_exl1$model(xs))
preds[1:8]

[1] -1.2693577 -2.9718771 2.3675289 -0.3093177 -0.3960863 0.6865525 -2.3835573
[8] -1.3124293

We can then use the predicteds in this R numerical format for evaluation using other R functions and
packages. For example for calibration of the NN model one could begin with the code

ann_tab_cv() lienar calibration
cox_fitl = coxph(Surv(yt, event) ~ preds)
summary (cox_fitl)

Call:

coxph(formula = Surv(yt, event) ~ preds)

##

n= 1000, number of events= 699

##

#it coef exp(coef) se(coef) z Pr(>|zl|)

preds 1.2725 3.5696 0.0383 33.22 <2e-16 **x*
-—-

Signif. codes: O ’**%x’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1
##

#it exp(coef) exp(-coef) lower .95 upper .95

preds 3.57 0.2801 3.311 3.848

##

Concordance= 0.883 (se = 0.005)

Likelihood ratio test= 1512 on 1 df, p=<2e-16
Wald test 1104 on 1 df, p=<2e-16
Score (logrank) test 1252 on 1 df, p=<2e-16

Here the coefficient of about 1.27 being greater than 1 suggests the NN model may be underestimating the
hazard ratios between sample elements. To further evaluate the need for calibration we can fit a spline on
the NN predicteds as in

Fit a spline to preds using coxzph, and plot
cox_fit2 = coxph(Surv(y_, event) ~ pspline(preds))
termplot (cox_fit2, 1, T, T)

~ -
> ¥
o
[}
S
S
T N
=
S
O
Qa o
S
o
—
S o _|
= |
©
ol

#

-8 -6 -4 -2 0 2 4

preds

The spline fit depicted in this graph does not appear to be consistent with a straight line suggesting the NN
is not, in its current form, well calibrated.

So, why the ann in ann_ tab_ cv? Many of the torch functions begin with nn_ . To not confuse our function
with a native torch function we begin the name with a different, yet we hope recognizable, letter sequence.
The ann can be thought of as denoting “artificial NN”.

Transfer learning from linear models to neural network models

It is very common to start model fits informed by previously fit NNs. Recognizing that NNs are a general-
ization of linear models one can start an NN model fit informed by a linear model. Basically one can chose
some of the weights (like betas in a linear regression) and biases (like intercepts) to replicate the informing
linear model, and let the other weights and biases be chosen at random as is common, in many contexts
usual, when fitting a NN.

Fitting a neural network model to “tabular” data informed by a
linear model using nested.glmnetr()

To demonstrate such a NN model fit informed by a linear model we use the nested.glmnetr() function. This
is out of convenience in that the nested.glmenter() function already fits (linear) lasso and NN models and so
contains the pieces to combine the two for transfer learning.

An informed NN based upon the Cox regression partial likelihood

A NN for “tabular” data informed by a linear model can be fit using nested.glmnetr()

Fit a NN informed with starting point for iterative fit by a lasso fit
time_start = diff_time()

Start at Sys.time = 2023-07-28 19:33:18.654072

nested_cox_fit_ex2 = nested.glmnetr(XS, yt, event, "cox",
1’ 1’ C(0,0,o,l), C(SQO)’
c(101844880,882560297) , 0)

time_last = diff_time(time_start)

Sys.time = 2023-07-28 19:33:59.064862, elapsed time = 0:0:40 h:m:s

nested_cox_fit_ex2$tuning

steps_n folds_n method dolasso doann_ doxgb_ dorpart dostep

II100|I ll5|l llloglikll l|1ll |I1l| |I0l| IIOII IlOlI
doaic ties limit
IlO|I Ilefronll II1II

Here we see that to fit a NN informed by a lasso model the user need do very little beyond specifying the
data for the fit. In addition to providing the usual data for a Cox model, one specifies doann=1 to “do an
ann” model, and ensemble=c(0,0,0,1) where the ensemble[4] = 1 indicates the NN model is to be fit informed
by the lasso model. The folds_n=c(10,0) specifies there are to be 10 folds for CV, and the 0 indicates to
not do a nested CV, that is to just do the one layer of CV. If unspecified, e.g. as in folds_n=10, a nested
CV will be performed allowing one to assess and compare model performances. How to specify these terms
is described in the reference manual. Here we used diff time() to show how long the program took (Apple
M1) to fit the NN model.

One can get model information about the model fit similar to when using the ann_tab_cv() function, for
example

summary (nested_cox_fit_ex2)
##

Sample information including number of records, events, number of columns in
design (predictor, X) matrix, and df (rank) of design matrix:

family n nevents xs.columns xs.df
#it "cox" "1000" "699" 100" "94"
null.dev/events

#i# "12.418"

#i#

Tuning parameters for models :

folds_n

#it "s"

#i#

Tuning parameters for lasso update ANN model :

n folds epochs length Z1 length Z2 actv drpot mylr wd

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

5.000 200.000 18.000 10.000 1.000 0.000 0.001
11 lscale scale
0.000 5.000 1.000

Naive agreement for cross validation informed LASSO :
1se min 1seR minR 1seR.GO minR.GO ridge
0.833 0.845 0.832 0.838 0.840 0.849 0.850

Number of non-zero terms in cross validation informed LASSO :
1se min 1seR minR 1seR.GO minR.GO ridge
10 39 8 9 6 9 99

Cross validation informed neural network :
naive agreement :

lasso update
0.838

nested_cox_fit_ex2

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

0.000

Sample information including number of records, events, number of columns in

design (predictor, X) matrix, and df (rank) of design matrix:

family n nevents xs.columns
IICOX" "1000" l|699ll "100"
null.dev/events
"12.418"
Tuning parameters for models :

folds_n
ll5|l

Tuning parameters for lasso update ANN model :

n folds epochs length Z1 length Z2 actv drpot mylr

5.000 200.000 18.000 10.000 1.000 0.000 0.001
11 1scale scale
0.000 5.000 1.000

Naive agreement for cross validation informed LASSO :
1se min 1seR minR 1seR.GO minR.GO ridge
0.833 0.845 0.832 0.838 0.840 0.849 0.850

Number of non-zero terms in cross validation informed LASSO :
1se min 1seR minR 1seR.GO minR.GO ridge
10 39 8 9 6 9 99

Cross validation informed neural network :
naive agreement :

lasso update
0.838

xs.df
lI94II

wd
0.000

The lasso informed model fit is saved to "object"$ann_fit_4

The object that provides the lasso information to ann_fit_4 is "object"$cv_glment_fit

nested_cox_fit_ex2$ann_fit 4$modelsum

##
##
##
##
##
##
##
##
##
##

n folds
5.0000000
drpot
0.0000000
lscale
5.0000000
CV Agree
0.8366672
agree i_=0
0.8377749

epochs
200.0000000
mylr
0.0010000
scale
1.0000000
CV accuracy
0.0000000
bestof
1.0000000

length Z1
18.0000000
wd
0.0000000
which loss
1.0000000
naive loss
5.5189328

length Z2
10.0000000
11
0.0000000
which agree
1.0000000
naive agree
0.8377749

actv
1.0000000
lasso
1.0000000
CV loss
3.9233511

naive accuracy

0.0000000

This shows the number of terms, weights and biases, for the the two hidden layers
str(nested_cox_fit_ex2ann_fit_4model$parameters)

List of 6

$ O.weight:Float [1:18, 1:100]
$ O.bias :Float [1:18]

¢ 3.weight:Float [1:10, 1:18]
¢ 3.bias :Float [1:10]

$ 6.weight:Float [1:1, 1:10]
$ 6.bias :Float [1:1]

From this we also see the number of elements in the two hidden layers are 18 and 10. We can inspect the
model structure as in

view more information on the NN model structure
nested_cox_fit_ex2$ann_fit 4%$model$modules[[1]]

An ‘nn_module‘ containing 2,019 parameters.

#i#

-- Modules -----————---"""-""""""""""""""———
* 0: <nn_module> #1,818 parameters

* 1: <nn_relu> #0 parameters

x 2: <nn_dropout> #0 parameters

* 3: <nn_module> #190 parameters

x 4: <nn_relu> #0 parameters

x 5: <nn_dropout> #0 parameters

* 6: <nn_module> #11 parameters

* 7: <nn_identity> #0 parameters

We can obtain predicteds from the lasso informed NN models. Since this involves combining information
from the lasso and NN fits we wrap this in the function predict_ann_ tab() with an example usage of

#print (ann_cv_lin_fit1$model)

preds = predict_ann_tab(nested_cox_fit_ex2, xs, 4)
preds[1:10]

10

[1] -0.24385998 -2.63770723 2.40171099 0.71735048 -0.50466347 0.59652889
[7] -3.04103565 0.08762515 3.68572569 0.64531612

Here the first input is the nested.glmnetr() output object, the second the input the data for which we want
the predicteds and finally modl=4 means we want the predicted from the model indicated by ensemble[4] =
1 in the call to nested.glmentr().

ann_tab_cv() lienar calibration
cox_fit3 = coxph(Surv(yt, event) ~ preds)
summary (cox_£fit3)

Call:

coxph(formula = Surv(yt, event) ~ preds)

##

n= 1000, number of events= 699

##

#it coef exp(coef) se(coef) z Pr(>lzl|)

preds 1.0052 2.7324 0.0337 29.83 <2e-16 ***
——-

Signif. codes: O ’**%xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1
##

exp(coef) exp(-coef) lower .95 upper .95

preds 2.732 0.366 2.558 2.919

##

Concordance= 0.838 (se = 0.007)

Likelihood ratio test= 967.6 on 1 df, p=<2e-16
Wald test 889.9 omn 1 df, p=<2e-16
Score (logrank) test 866.8 on 1 df, p=<2e-16

Here the liner calibration coefficient is very near to 1, much nearer than for the model not informed by the
lasso fit.

Fit a spline to preds using coxzph, and plot

cox_fit4 = coxph(Surv(y_, event) ~ pspline(preds))
termplot (cox_fit4, 1, T, T)

11

S
I

Partial for pspline(preds)
5 0
|

I I I I I I
-6 -4 -2 0 2 4

preds

The spline fit is nearer a straight line than was the case for the uninformed NN fit, but still not as straight

as we might want.

An informed NN based upon least squares
This model is essentialy a generalization of linear regression and can be fit, for example, by

nested_nrm_fit_ex2 = nested.glmnetr(XS, V_» "gaussian", 1,
c(17820414,95337508) , 1, c(1,0,0,1), c(10,0),

We can inspect numerically the fit by

preds = predict_ann_tab(nested_nrm_fit_ex2, xs, 4)
glm_fitl <- glm(y_ ~ preds, "gaussian")
summary (glm_fitl)

##

Call:

glm(formula = y_ ~ preds, family = "gaussian")

##

Coefficients:

#it Estimate Std. Error t value Pr(>[tl)

(Intercept) -0.08032 0.04914 -1.634 0.102

preds 0.99952 0.01731 b57.732 <2e-16 *xxx
——-

12

-1)

Signif. codes: O ’**xx’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1

##

(Dispersion parameter for gaussian family taken to be 2.148111)
#i#

Null deviance: 9303.4 on 999 degrees of freedom

Residual deviance: 2143.8 on 998 degrees of freedom
AIC: 3606.5

##

Number of Fisher Scoring iterations: 2

and graphically by

glm_fit2 <- glm(y_ ~ pspline(preds), "gaussian")
termplot (glm_£fit2, T, T)
n _
i
—
(2] o _|
ke —i
o
o
N—r
Q 1 —
=
2
o O —
S
Ne)
s ¥
®
o
o T' |
|1 11O R A1 1 01411

I I I I I
-10 -5 0 5 10

preds

Here the linear calibration coeflicient is about 1 and the spline fit on the predicteds about linear with wiggle
in the extremes where there are few data.

An informed NN based upon logistic regression

An example NN fit based upon the logistic model frame work is
fit a neural network based upon logistic regression framework

set.seed(4695289)
torch_manual_seed(24260321)

13

nested_bin_fit_ex4 = suppressWarnings(nested.glmnetr (xs=xs, yb, "binomial",
ilg 1, c(1,0,0,1), c(5,0),

0)
print a short summary
nested_bin_fit_ex4

##
Sample information including number of records, events, number of columns in
design (predictor, X) matrix, and df (rank) of design matrix:

#i# family n nevents xs.columns xs.df null.dev/obs
"binomial" "1000" "609" "100" "94" "1.338"
#it

Tuning parameters for models :

folds n

ll5|l

#i#

Tuning parameters for lasso update ANN model :

n folds epochs length Z1 length Z2 actv drpot mylr wd
#it 5.000 200.000 18.000 10.000 1.000 0.000 0.001 0.000
#i# 11 1scale scale

#i# 0.000 5.000 1.000

#i#

Naive agreement for cross validation informed LASSO :

1se min 1seR minR 1seR.GO minR.GO ridge

0.896 0.915 0.894 0.894 0.905 0.924 0.926

##

Number of non-zero terms in cross validation informed LASSO :

1se min 1seR minR 1seR.GO minR.GO ridge

#it 14 45 8 8 8 8 99

#i#

Cross validation informed neural network :

#i#

naive agreement :

Uninformed lasso update

#it 0.991 0.894

Comparison of lasso and neural network models

As the nested.glmnetr() function performs nested cross validation of the lasso and NN models we can use
it to compare performances between these models. An example is

Fit a neural network model informed by cross wvalidation
set.seed(17820414)
torch_manual_seed(95337508)

simdata=glmnetr.simdata(1011, 100, NULL, c(1,0,0,1))
ensemble=c(1,0,0,1) ;
doann=1ist(200, 400, 0.002, 0.001, =8 =8
16, 8, 1, 0, 0, 0, 0, 0,
5, 0, 0)
nested_nrm_fit_ex5 = nested.glmnetr(xs=simdata$xs, simdata$y_,
"gaussian", 1, doann,

14

ensemble, c(5,1), 40, 0)
print a short summary
nested_nrm_fit_exb

##
Sample information including number of records, number of columns in
design (predictor, X) matrix, and df (rank) of design matrix:

#Hit family n xs.columns xs.df null.dev/obs

"gaussian" "1011" "100" "o4n "14.936"

##

Tuning parameters for models :

folds_n

"5

##

Tuning parameters for lasso update ANN model :

n folds epochs length Z1 length Z2 actv drpot mylr wd
5.000 400.000 18.000 10.000 1.000 0.000 0.001 0.000
11 lscale scale

0.000 5.000 1.000

##

Nested cross validation agreement (r-square) for cross validation informed LASSO :
#i# 1se min 1seR minR 1seR.GO minR.GO ridge

0.838 0.841 0.840 0.840 0.678 0.840 0.831

#H#

Nested cross validation agreement (r-square) for cross validation informed Neural Network :
Uninformed lasso update
0.721 0.840

where the NN model with an R-square of 0.84 seems to perform similar to the relaxed lasso models with an
R-squares of about 0.84. Further, the NN fit without this transfer of information from the lasso model with
it’s R-square of 0.72, did not perform nearly as well as the lasso informed NN or the lasso model itself. This
shows the direct benefit of this transfer learning of the information from the linear model when fitting NN
models. It is not the NN itself that it is performing competitivley with the lasso model but the NN model
fit in conjunction with the lasso model information. We can further inspect performances with the summary
function as in

print nested CV concordances
summary(nested_nrm_fit_ex5)

##
Sample information including number of records, number of columns in
design (predictor, X) matrix, and df (rank) of design matrix:

#Hit family n xs.columns xs.df null.dev/obs

'"gaussian" "1011" "100" o4 "14.936"

##

Tuning parameters for models :

folds_n

"5

##

Tuning parameters for lasso update ANN model :

n folds epochs length Z1 length Z2 actv drpot mylr wd
5.000 400.000 18.000 10.000 1.000 0.000 0.001 0.000

15

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

11 lscale scale
0.000 5.000 1.000

Nested Cross Validation averages for LASSO (1se and min), Relaxed LASSO, and gamma=0 LASSO :

deviance per record :
1se min 1seR minR 1seR.GO minR.GO ridge
2.517 2.389 2.398 2.375 4.676 2.375 2.615

deviance per record (linerly calibrated)
1se min 1seR minR 1seR.GO minR.GO ridge
2.383 2.342 2.357 2.354 4.619 2.354 2.498

number of nonzero model terms :
1se min 1seR minR 1seR.GO minR.GO
20.6 38.8 15.4 17.2 12.4 17.2

linear calibration coefficient :
1se min 1seR minR 1seR.GO minR.GO ridge
1.106 1.053 1.041 0.995 NA 0.995 1.099

agreement (r-square)
1se min 1seR minR 1seR.GO minR.GO ridge
0.838 0.841 0.840 0.840 0.678 0.840 0.831

Naive agreement for cross validation informed LASSO :
1se min 1seR minR 1seR.GO minR.GO ridge
0.849 0.855 0.849 0.851 0.855 0.860 0.863

Number of non-zero terms in cross validation informed LASSO :

1se min 1seR minR 1seR.GO minR.GO ridge
24 38 17 18 16 18 99

Nested Cross Validation averages for neural network :

deviance per record :
Uninformed lasso update
4.149 2.405

linear calibration coefficient :
Uninformed lasso update
0.988 0.99%4

agreement (r-square)
Uninformed lasso update
0.721 0.840
Cross validation informed neural network :
naive agreement :

Uninformed lasso update
0.948 0.852

16

Here the cross validated linear calibration coefficients are about 1 for the lasso informed NN and the tuned
relaxed lasso model suggesting these models may be reasonably well calibrated. The fully penalized lasso
and the ridge regression model, with cross validated linear calibration coefficients deviating more form 1, are
less well calibrated.

For this example we deliberately simulated data where there are interaction or product terms in the analysis
data set. This we did by setting intr=c¢(1,0,1,0) in the call to glmnetr.simdata(). NNs can, if there is sufficient
information in the data, pick up non-linear and interaction (or product) terms. In the absence of non-linearity
or interactions a strict linear model should out perform a NN model because it more parsimonious uses model
parameters.

We do not show more simulation results recognizing that one can typically show one model to be better than
the others by simulating the right data set. Instead others can run the nested.glmnetr() function on their
own data sets, potentially historical data sets if at hand, and see which models tend to perform better in
their setting.

Internal implementaiton of the “transfer learning”

The NN model informed by the relaxed lasso model when ensemble[4]=1 adds a column of predicteds to
the input matrix in the nested.glmnetr() call, and then extends the hidden layers to carry the positive and
negative part of the lasso predicteds through to the final model output. It also treats the weights and
biases for this new column so that they remain the same while the ohter weights and biases are updated
according to the gradient descent algorithm. A second option set by ensemble[2] = 1 appends the lasso
predicteds to the xs predictor matrix and treats this similar to the other features or input variables. The
NN model informed by the relaxed lasso model when ensemble[3]=1 fits like with ensemble[4] = 1 but alows
the weights and biases to update during the iterative fit. The models fit for ensemble[i+4]=1 are like those
fit for ensemble[i]=1 except only those variables with non-zero coefficients in the lasso model are included in
the input data set.

Before fitting the NN models the predictor variables are standardized to have mean 0 and standard deviation
of 1. This is accounted for when deriving predicteds. This is important when using L1 (lasso) or L2 (ridge
or weight decay) penalties to assure the models are not scale dependent. This is also done in the glmnet
package functions.

Further extensions of “transfer learning”

Just as one can assign a subset of the bias and weight (initial) values for the NN to replicate a linear model,
and thereby improve model fit, one can also define another subset of the bias and weight values to replicate
linear splines. One attractive feature of the NN numerical optimization is that the bias terms dictating where
the spline “knots” are updated during model fit to improve fit, that is they need not be fixed in advance of
the fitting.

Transfer learning and the gradient boosting machine

Just as we have informed the NN model with the results from a relaxed lasso model fit we an do the same with
gradient boosting machines (GBM) by either adding the lasso predicted as an additional feature (predictor)
or including it as an offset. A GBM is fit by setting doxgb=1 in the nested.glmnetr() call, and the tranfer
lerning model governed by using the ensemble parameter like wiht the NN. Results are similar but different
from those for the NN models. For our data sets the GBMs took much longer to run because of our search
algorithm to find a better hyperparameter set.

17

	The functions
	Data requirements
	R torch
	An example dataset
	Fitting a basic neural network model to ``tabular'' data using ann_tab_cv()

	Transfer learning from linear models to neural network models
	Fitting a neural network model to ``tabular'' data informed by a linear model using nested.glmnetr()
	An informed NN based upon the Cox regression partial likelihood
	An informed NN based upon least squares
	An informed NN based upon logistic regression

	Comparison of lasso and neural network models
	Internal implementaiton of the ``transfer learning''
	Further extensions of ``transfer learning''
	Transfer learning and the gradient boosting machine

