Array operations in the gRbase package

Sgren Hgjsgaard
gRbase version 1.8-4.5 as of 2019-09-25

Contents

1 Introduction 1

2 Arrays/tables in R 2
2.1 Cross classified data - contingency tables. 0L .. 2
2.2 Defining arrays Lo 3

3 Operations on arrays 4
3.1 Normalizing an arrayo e e 4
3.2 Subsetting an array —slicing L L oo 4
3.3 Collapsing and inflating arrays Lo 6
3.4 Permuting an array Lo e 7
3.5 Equality e 7
3.6 Aligning 7
3.7 Multiplication, addition etc: +, —, %, /. 7
3.8 An array as a probability density oo o oo 8
3.9 Miscellaneous 9

4 Examples 9
4.1 A Bayesian network
4.2 Tterative Proportional Scaling (IPS) 11

5 Some low level functions 12
5.1 cell2entry(), entry2cell() and next_cell() 13
5.2 mnext_cell_slice() and slice2entry() 13
5.3 fact_grid() — Factorial grid oo 14

1 Introduction

This note describes some operations on arrays in R. These operations have been implemented to
facilitate implementation of graphical models and Bayesian networks in R.

2 Arrays/tables in R

The documentation of R states the following about arrays:

An array in R can have one, two or more dimensions. It is simply a vector which is
stored with additional attributes giving the dimensions (attribute "dim") and optionally
names for those dimensions (attribute "dimnames”). A two-dimensional array is the
same thing as a matriz. One-dimensional arrays often look like vectors, but may be
handled differently by some functions.

2.1 Cross classified data - contingency tables

Arrays appear for example in connection with cross classified data. The array hec below is an
excerpt of the HairEyeColor array in R:

hec <- ¢(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)
dim(hec) <- c(2, 3, 2)
dimnames (hec) <- list(Hair = c("Black", "Brown"),
Eye = c("Brown", "Blue", "Hazel"),
Sex = c("Male", "Female"))

hec

, , Sex = Male

H##

#Hi#t Eye

Hair Brown Blue Hazel

Black 32 11 10
#it Brown 58 50 25

#it

, , Sex = Female

#i#

#i# Eye

Hair Brown Blue Hazel
H## Black 36 9 5

Brown 66 34 29

Above, hec is an array because it has a dim attribute. Moreover, hec also has a dimnames attribute
naming the levels of each dimension. Notice that each dimension is given a name.

An array with named dimensions is in this package called a named array; this can be checked with
is.named.array () [gRbase]

is.named.array(hec)
[1] TRUE

The functionality described below relies heavily on arrays having named dimensions.

Printing arrays takes up a lot of space. A more compact view of data can be achieved with
ftable(). Since gRbase imports the pipe operator %>% from the magrittr package we will in this
note do:

flat <- function(x) {ftable(x, row.vars=1)}
hec %>% flat

Eye Brown Blue Hazel

#i Sex Male Female Male Female Male Female
Hair

Black 32 36 11 9 10 5
Brown 53 66 50 34 25 29

2.2 Defining arrays
Arrays can be defined in different ways using standard R code:

z1l <- ¢(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)

di <- c(2, 3, 2)

dn <- list(Hair = c("Black", "Brown"),
Eye c("Brown", "Blue", "Hazel"),
Sex = c("Male", "Female"))

dim(z1) <- di

dimnames(z1) <- dn

z2 <- array(c(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29),
dim=di, dimnames=dn)

where the dimnames part in both cases is optional. Another way is to use ar_new() [gRbase| from
gRbase:

counts <- c(32, 53, 11, 50, 10, 25, 36, 66, 9, 34, 5, 29)
z3 <- ar_new(~ Hair:Eye:Sex, levels = dn, value = counts)
z4 <- ar_new(c("Hair", "Eye", "Sex"), levels=dn, values=counts)

Notice that dn when used in ar_new() [gRbase| is allowed to contain superfluous elements. Default
dimnames are generated with

z5 <- ar_new(“Hair:Eye:Sex, levels=c(2, 3, 2), values = counts)
z5 %>% flat

Eye Eyel Eye2 Eye3

Sex Sexl Sex2 Sexl Sex2 Sexl Sex2
Hair

Hairil 32 36 11 9 10 5
Hair2 B3 66 50 34 25 29

Using ar_new () [gRbase|, arrays can be normalized in two ways: Normalization can be over the first
variable for each configuration of all other variables or over all configurations. For example:

z6 <- ar_new(“Hair:Eye:Sex, levels=c(2, 3, 2), values = counts, normalize="first")
z6 %>% flat

#i# Eye Eyel Eye2 Eye3

H## Sex Sex1 Sex2 Sex1 Sex2 Sex1 Sex2

Hair

Hairil 0.3765 0.3529 0.1803 0.2093 0.2857 0.1471

Hair?2 0.6235 0.6471 0.8197 0.7907 0.7143 0.8529

3 Operations on arrays

In the following we shall denote the dimnames (or variables) of the array hec by H, E and S
and we let (h, e, s) denote a configuration of these variables. The contingency table above shall be
denoted by Trgs and we shall refer to the (h, e, s)-entry of Tygs as Tygrs(h, e, s).

3.1 Normalizing an array
Normalize an array with ar_normalize () [gRbase]

ar_normalize(z5, "first") %>% flat

Eye Eyel Eye2 Eye3

Sex Sex1 Sex?2 Sex1 Sex?2 Sex1 Sex?2
Hair

Hairl 0.3765 0.3529 0.1803 0.2093 0.2857 0.1471
Hair2 0.6235 0.6471 0.8197 0.7907 0.7143 0.8529

ar_normalize(z5, "all") %>% flat

#i# Eye Eyel Eye2 Eye3

Sex Sex1 Sex?2 Sex1 Sex2 Sex1 Sex2
Hair

Hairl 0.08889 0.10000 0.03056 0.02500 0.02778 0.01389
Hair2 0.14722 0.18333 0.13889 0.09444 0.06944 0.08056

3.2 Subsetting an array — slicing

We can subset arrays (this will also be called “slicing”) in different ways. Notice that the result
is not necessarily an array. Slicing can be done using standard R code or using ar_slice[gRbase].
The virtue of ar_slice[gRbase] comes from the flexibility when specifying the slice:

The following leads from the original 2 x 3 x 2 array to a 2 X 2 x 2 array by cutting away the
Eye=Brown slice of the array:

ar_slice(hec, slice=list(Eye=c("Blue", "Hazel"))) %>% flat

Eye Blue Hazel

#i# Sex Male Female Male Female
Hair

Black 11 9 10 5
Brown 50 34 25 29

Levels can be written as numerics.!

ar_slice(hec, slice=list(Eye=2:3, Sex="Female"))

Suppose we pick the Sex=Female slice of hec. This slice can be regarded as a 2 X 3 array or as
2 x 3 x 1 array.

ar_slice(hec, slice=list(Sex="Female")) %>% flat

LCurrently names can not be abbreviated, but that might be added later.

Eye Brown Blue Hazel

Hair
Black 36 9 5
Brown 66 34 29

#2x 31 array :
ar_slice(hec, slice=list(Sex="Female"), drop=FALSE) %>% flat

#Hit Eye Brown Blue Hazel
#i# Sex Female Female Female
Hair

Black 36 9 5
Brown 66 34 29

If slicing leads to a one dimensional array, the output will by default not be an array but a vector
(without a dim attribute). However, the result can be forced to be a 1-dimensional array:

A vector:
z <- ar_slice(hec, slice=list(Hair=1, Sex="Female")); z

A 1-dimensional array:
z <- ar_slice(hec, slice=list(Hair=1, Sex="Female"), as.array=TRUE); z

Slicing using standard R code can be done as follows:

hec[, 2:3, 1 %>% flat ## 4 2 =z 2 © 2 array

Eye Blue Hazel

#i# Sex Male Female Male Female
Hair

Black 11 9 10 B
Brown 50 34 25 29
hec[1, , 1] ## A vector

Brown Blue Hazel
&2 11 10

hec[1, , 1, drop=FALSE] ## A 1 =z 3 = 1 array

, , Sex = Male

#i#

Eye

Hair Brown Blue Hazel

Black 32 11 10

Programmatically we can do the above as
do.call("[", c(list(hec), list(TRUE, 2:3, TRUE))) %>% flat

do.call("[", c(list(hec), 1list(1l, TRUE, 1)))
do.call("[", c(list(hec), list(1l, TRUE, 1), drop=FALSE))

gRbase provides two alterntives for each of these three cases above:

ar_slice_prim(hec, slice=list(TRUE, 2:3, TRUE)) %>% flat
ar_slice(hec, slice=list(c(2, 3)), margin=2) %>} flat

ar_slice_prim(hec, slice=list(1, TRUE, 1))
ar_slice(hec, slice=list(1, 1), margin=c(1,3))

ar_slice_prim(hec, slice=list(1, TRUE, 1), drop=FALSE)
ar_slice(hec, slice=list(1, 1), margin=c(1,3), drop=FALSE)

3.3 Collapsing and inflating arrays

Collapsing: The H E-marginal array Ty of Tygg is the array with values

Tup(h.e) =Y Tups(h,e,s)

Inflating: The “opposite” operation is to extend an array. For example, we can extend Typ to
have a third dimension, e.g. Sex. That is

Tsue(s,h,e) = Tup(h,e)

so Tspp(s, h,e) is constant as a function of s.

With gRbase we can collapse with?:

he <- hec %a_% ~“Hair:Eye; he %>/, flat

#i# Eye Brown Blue Hazel
Hair

Black 638 20 15
Brown 119 84 54

Alternatives

he <- ar_marg(hec, “Hair:Eye); he
hs <- ar_marg(hec, c("Hair", "Sex"))
es <- ar_marg(hec, c(2, 3))

With gRbase we can inflate with ar_expand () [gRbase|:

she <- he %a~% list(Sex=c("Male", "Female"))
she %>% flat

Eye Brown Blue Hazel

#i# Hair Black Brown Black Brown Black Brown
Sex

Male 68 119 20 84 15 54
Female 68 119 20 84 15 54

Alternatives

she <- ar_expand(he, list(Sex=c("Male", "Female")))
ar_expand (he, dimnames(hs)) %>% flat

ar_expand (he, hs) %>} flat

2FIXME: Should allow for abbreviations in formula and character vector specifications.

3.4 Permuting an array

A reorganization of the table can be made with ar_perm[gRbase| (similar to aperm()), but arperm|gRbase]
allows for a formula and for variable abbreviation:

ar_perm(hec, “Eye:Sex:Hair) ¥%>% flat

#i# Sex Male Female

#it Hair Black Brown Black Brown
Eye

Brown 32 53] 36 66
Blue 11 50 9 34
Hazel 10 25 5 29

Alternative forms (the first two also works for aperm):
ar_perm(hec, c("Eye", "Sex", "Hair"))
ar_perm(hec, c(2,3,1))

ar_perm(hec, “Ey:Se:Ha)
ar_perm(hec, c("Ey", "Se", "Ha"))

3.5 Equality

Two arrays are defined to be identical 1) if they have the same dimnames and 2) if, possibly after
a permutation, all values are identical (up to a small numerical difference):

hec2 <- ar_perm(hec, 3:1)

hec %a==% hec?2
[1] TRUE

ar_equal (hec, hec2)

3.6 Aligning
We can align one array according to the ordering of another:3

hec2 <- ar_perm(hec, 3:1)
ar_align(hec2, hec)

3.7 Multiplication, addition etc: +, —, *, /

The sum of two arrays Ty and Tyg is defined to be the array TH Es with entries

Tups(h,e,s) = Typ(h,e) + Tus(h,s)

3FIXME; see ar_expand ()

The difference, product and quotient is defined similarly:

With gRbase this is done with ar_mult () [gRbase|:

she <- he %at+’ hs
she %>% flat

Sex Male Female

#i# Eye Brown Blue Hazel Brown Blue Hazel
Hair

Black 121 73 68 118 70 65
Brown 247 212 182 248 213 183
Likewise

he %a+% hs
he %a-% hs
he %ax*% hs
he %a/% hs
he %a/0% hs ## Convention 0/0 = 0

ar_add(he, hs) %>% flat
ar_subt (he, hs) %>% flat
ar_mult(he, hs) %>% flat
ar_div(he, hs) %% flat
ar_divO(he, hs) ¥%>% flat ## Convention 0/0 = 0

Multiplication and addition of a list of multiple arrays is accomplished with ar_prod () [gRbase| and
ar_sum() [gRbase|] (much like prod () [gRbase] and sum() [gRbase|):

ar_sum(he, hs, es)
ar_prod(he, hs, es)

Lists of arrays are processed with

ar_sum_list(list(he, hs, es))
ar_prod_list(list(he, hs, es))

3.8 An array as a probability density

If an array consists of non—negative numbers then it may be regarded as an (unnormalized) discrete
multivariate density. With this view, the following examples should be self explanatory:

ar_dist(hec) %>% flat

Eye Brown Blue Hazel

Sex Male Female Male Female Male Female
Hair

Black 0.08889 0.10000 0.03056 0.02500 0.02778 0.01389
Brown 0.14722 0.18333 0.13889 0.09444 0.06944 0.08056

ar_dist(hec, marg="Hair:Eye) %>% flat

Eye Brown Blue Hazel

Hair
Black 0.18889 0.05556 0.04167
Brown 0.33056 0.23333 0.15000

ar_dist(hec, cond="Eye) %>% flat

Sex Male Female

Eye Brown Blue Hazel Brown Blue Hazel
Hair

Black 0.17112 0.10577 0.14493 0.19251 0.08654 0.07246
Brown 0.28342 0.48077 0.36232 0.35294 0.32692 0.42029

ar_dist(hec, marg="Hair, cond="Sex) %>% flat

#i# Sex Male Female
Hair

Black 0.2928 0.2793
Brown 0.7072 0.7207

3.9 Miscellaneous
Multiply values in a slice by some number and all other values by another number:

ar_slice_mult(hec, list(Sex="Female"), val=10, comp=0) %>% flat

it Eye Brown Blue Hazel

it Sex Male Female Male Female Male Female
Hair

Black 0 360 0 90 0 50
Brown 0 660 0 340 0 290
4 Examples

4.1 A Bayesian network

A classical example of a Bayesian network is the “sprinkler example”, see e.g. http://en.wikipedia.
org/wiki/Bayesian_network:

Suppose that there are two events which could cause grass to be wet: either the sprinkler
is on or it is raining. Also, suppose that the rain has a direct effect on the use of the
sprinkler (namely that when it rains, the sprinkler is usually not turned on). Then the
situation can be modeled with a Bayesian network.

We specify conditional probabilities p(r), p(s|r) and p(wls,r) as follows (notice that the vertical
conditioning bar (]) is replaced by the horizontal underscore:

yn <- c("y","n"

lev <- list(rain=yn, sprinkler=yn, wet=yn)

r <- ar_new(“rain, levels = lev, values = c(.2, .8))
s_r <- ar_new(“sprinkler:rain, levels = lev, values = c(.01, .99, .4, .6))

w_sr <- ar_new(“wet:sprinkler:rain, levels = lev,

values = ¢(.99, .01, .8, .2, .9, .1, 0, 1))

r
rain

y n
0.2 0.8

s_r %% flat

rain y n
sprinkler

#Hy 0.01 0.40
n 0.99 0.60

w_sr %>% flat

sprinkler y n

rain y n y n
wet

##y 0.99 0.90 0.80 0.00
n 0.01 0.10 0.20 1.00

The joint distribution p(r,s,w) = p(r)p(s|r)p(w|s,r) can be obtained with ar_prod() [gRbasel:
ways:

joint <- ar_prod(r, s_r, w_sr); joint %>, flat

sprinkler y n

#Hit rain y n y n
wet

y 0.00198 0.28800 0.15840 0.00000
n 0.00002 0.03200 0.03960 0.48000

What is the probability that it rains given that the grass is wet? We find p(r,w) = > p(r, s, w)
and then p(rjw) = p(r, w)/p(w). Can be done in various ways: with ar_dist () [gRbase|

ar_dist(joint, marg="rain, cond="wet)
#t wet

rain y n

y 0.3577 0.07182

#it n 0.6423 0.92818

Alternative:

rw <- ar_marg(joint, ~“rain + wet)
ar_div(rw, ar_marg(rw, “wet))

or

rw %a/% (rw ha_% “wet)

Alternative:

x <- ar_slice_mult(rw, slice=list(wet="y")); x
#i# wet

rain yn

v 0.1604 0

n 0.2880 0

10

ar_dist(x, marg="rain)
rain

vy n

0.3577 0.6423

4.2 Iterative Proportional Scaling (IPS)
We consider the 3-way lizard data from gRbase:

data(lizard, package="gRbase")
lizard %>% flat

height >4.75 <=4.75

#i#t species anoli dist anoli dist
diam

<=4 32 61 86 73
>4 11 41 35 70

Consider the two factor log-linear model for the 1lizard data. Under the model the expected

counts have the form
IOgm(d» hv 8) = al(d’ h) + a2(d7 3) + a3(h7 S)

If we let n(d, h, s) denote the observed counts, the likelihood equations are: Find m(d, h, s) such
that
m(d,h) =n(d,h), m(d,s)=n(d,s), m(h,s)=n(h,s)

where m(d, h) = >, m(d, h.s) etc. The updates are as follows: For the first term we have
d,h d,h,s)——=
m(d, h,s) < m(d, ,s)m

After iterating the updates will not change and we will have equality: m(d, h, s) = m(d, h, s) :1((‘271))

and summing over s shows that the equation m(d, h) = n(d, h) is satisfied.

A rudimentary implementation of iterative proportional scaling for log—linear models is straight
forward:

myips <- function(indata, glist){
fit <- indata
fit[]l <- 1

md <- lapply(glist, function(g) ar_marg(indata, g))

for (i in 1:4){
for (j in seq_along(glist)){
mf <- ar_marg(fit, glist[[j11)

adj <- md[[j 11 %a/¥% mf
fit <- fit %ax’, adj
¥
}

pearson <- sum((fit - indata)~2 / fit)

11

list(pearson=pearson, fit=fit)

}
glist <- list(c("species","diam"),c("species","height"),c("diam","height"))
fml <- myips(lizard, glist)

fmi$pearson
[1] 0.1506

fmi1$fit %>% flat

height >4.75 <=4.75

species anoli dist anoli dist
diam

<=4 32.8 60.2 85.2 73.8
>4 10.2 41.8 35.8 69.2

fm2 <- loglin(lizard, glist, fit=T)
4 iterations: deviation 0.009619

fm2$pearson
[1] 0.1506

fm2$fit %>% flat

height >4.75 <=4.75

it species anoli dist anoli dist
diam

<=4 32.8 60.2 85.2 73.8
>4 10.2 41.8 35.8 69.2

5 Some low level functions

For e.g. a 2 x 3 x 2 array, the entries are such that the first variable varies fastest so the ordering
of the cells are (1,1,1), (2,1,1), (1,2,1), (2,2,1),(1,3,1) and so on. To find the value of such a
cell, say, (j,k,1) in the array (which is really just a vector), the cell is mapped into an entry of a
vector.

For example, cell (2,3,1) (Hair=Brown, Eye=Hazel, Sex=Male) must be mapped to entry 4 in

hec

, , Sex = Male

##

Eye

Hair Brown Blue Hazel

#t Black 32 11 10
Brown 53 50 25

##

, , Sex = Female

H##

Eye

Hair Brown Blue Hazel
Black 36 9 B

12

Brown 66 34 29

c(hec)
[1] 32 53 11 50 10 25 36 66 9 34 5 29

For illustration we do:

cell2name <- function(cell, dimnames){
unlist(lapply(l:length(cell), function(m) dimnames[[m]] [cell[m]]))
}
cell2name(c(2,3,1), dimnames(hec))
[1] "Brown" "Hazel" "Male"

5.1 cell2entry(), entry2cell() and next_cell()

The map from a cell to the corresponding entry is provided by cell2entry()[gRbase]. The
reverse operation, going from an entry to a cell (which is much less needed) is provided by
entry2cell () [gRbase|.

cell2entry(c(2,3,1), dim=c(2, 3, 2))
[1] 6

entry2cell(6, dim=c(2, 3, 2))
[1] 2 3 1

Given a cell, say i = (2,3,1) in a 2 X 3 x 2 array we often want to find the next cell in the table
following the convention that the first factor varies fastest, that is (1,1,2). This is provided by
next_cell()[gRbase].

next_cell(c(2,3,1), dim=c(2, 3, 2))
[1] 11 2

5.2 next_cell_slice() and slice2entry()

Given that we look at cells for which for which the index in dimension 2 is at level 3 (that is
Eye=Hazel), i.e. cells of the form (4, 3,1). Given such a cell, what is then the next cell that also
satisfies this constraint. This is provided by next_cell_slice () [gRbase|.

next_cell_slice(c(1,3,1), slice_marg=2, dim=c(2, 3, 2))
[1] 2 3 1

next_cell_slice(c(2,3,1), slice_marg=2, dim=c(2, 3, 2))
[1] 1 3 2

Given that in dimension 2 we look at level 3. We want to find entries for the cells of the form
(5:3,0).°

4FIXME: sliceset should be called margin.
SFIXME:slicecell and sliceset should be renamed

13

slice2entry(slice_cell=3, slice_marg=2, dim=c(2, 3, 2))
[1] 5 6 11 12

To verify that we indeed get the right cells:

r <- slice2entry(slice_cell=3, slice_marg=2, dim=c(2, 3, 2))

lapply(lapply(r, entry2cell, c(2, 3, 2)),
cell2name, dimnames(hec))

[[1]]

[1] "Black" "Hazel" "Male"

#it

[[21]

[1] "Brown" "Hazel" "Male"

##

[[3]]

[1] "Black" "Hazel" '"Female"

#it

[[41]

[1] "Brown" "Hazel" "Female"

5.3 fact_grid() — Factorial grid
Using the operations above we can obtain the combinations of the factors as a matrix:

head(fact_grid(c(2, 3, 2)), 6)
[,11 [,2]1 [,3]

[1,] 1
[2,]
[3,]
[4,]
[5,]
[6,]

N =~ N = N
W W NN -
e e

A similar dataframe can also be obtained with the standard R function expand.grid (but factGrid
is faster)

head(expand.grid(list(1:2, 1:3, 1:2)), 6)
#it Varl Var2 Var3

1 1 1 1
2 2 1 1
3 1 2 1
4 2 2 1
5 1 3 1
6 2 3 1

14

