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1 Introduction1

The gRain package is an R package, (R Development Core Team 2007) for efficient2

calculation of (conditional) probability distributions in graphical independence net-3

works, hereafter denoted iNets. Such independence networks are sometimes also4

denoted probabilistic expert systems. A special case of such networks is Bayesian5

networks.6

The networks are restricted to consisting of discrete variables, each with a finite7

state space. The networks will typically satisfy conditional independence restrictions8

which enables the computations to be made very efficiently.9

The gRain package is in its functionality similar to the GRAPPA suite of functions,10

(Green 2005) although there are important differences. The package implements11

the propagation algorithm of Lauritzen and Spiegelhalter (1988). For brevity we12

refer to Lauritzen and Spiegelhalter (1988) as LS.13

2 A worked example: chest clinic14

This section reviews the chest clinic example of LS (illustrated in Figure 1) and15

shows one way of specifying the model in gRain. Details of the steps will be given16

in later sections. Other ways of specifying a iNet are described in Section 8. LS17

motivate the chest clinic example as follows:18

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung can-19

cer or bronchitis, or none of them, or more than one of them. A re-20

cent visit to Asia increases the chances of tuberculosis, while smoking21

is known to be a risk factor for both lung cancer and bronchitis. The22

results of a single chest X–ray do not discriminate between lung cancer23

and tuberculosis, as neither does the presence or absence of dyspnoea.”24

asia

tub

smoke

lung

bronc

either

xray

dysp

Figure 1: Chest clinic example from LS.
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2.1 Building a iNet25

A Bayesian network is a special case of graphical independence networks. In this
section we outline how to build a Bayesian network. The starting point is a prob-
ability distribution factorising accoring to a DAG with nodes V . Each node v ∈ V
has a set pa(v) of parents and each node v ∈ V has a finite set of states. A joint
distribution over the variables V can be given as

p(V ) =
∏
v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that26 ∑
v∗ p(v = v∗|pa(v)) = 1, i.e. that for each configuration of the parents pa(v),27

the sum over the levels of v equals one. Hence p(v|pa(v)) becomes the conditional28

distribution of v given pa(v). In practice p(v|pa(v)) is specified as a table called29

a conditional probability table or a CPT for short. Thus, a Bayesian network can30

be regarded as a complex stochastic model built up by putting together simple31

components (conditional probability distributions).32

Thus the DAG in Figure 1 dictates a factorization of the joint probability function
as

p(V ) = p(α)p(σ)p(τ |α)p(λ|σ)p(β|σ)p(ε|τ, λ)p(δ|ε, β)p(ξ|ε). (2)

In (2) we have α = asia, σ = smoker, τ = tuberculosis, λ = lung cancer, β =33

bronchitis, ε = either tuberculosis or lung cancer, δ = dyspnoea and ξ = xray.34

Note that ε is a logical variable which is true if either τ or λ are true and false35

otherwise.36

2.2 Queries to iNets37

Suppose we are given evidence that a set of variables E ⊂ V have a specific value38

e∗. For example that a person has recently visited Asia and suffers from dyspnoea,39

i.e. α = yes and δ = yes.40

With this evidence, we are often interested in the conditional distribution p(v|E =41

e∗) for some of the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E.42

In the chest clinic example, interest might be in p(λ|e∗), p(τ |e∗) and p(β|e∗), or43

possibly in the joint (conditional) distribution p(λ, τ, β|e∗).44

Interest might also be in calculating the probability of a specific event, e.g. the45

probability of seeing a specific evidence, i.e. p(E = e∗).46

2.3 A one–minute version of gRain47

A simple way of specifying the model for the chest clinic example is as follows.48

1. Specify conditional probability tables (with values as given in Lauritzen and49

Spiegelhalter (1988)):50

> yn <- c("yes", "no")
> a <- cpt(~asia, values = c(1, 99), levels = yn)
> t.a <- cpt(~tub + asia, values = c(5, 95, 1, 99), levels = yn)
> s <- cpt(~smoke, values = c(5, 5), levels = yn)
> l.s <- cpt(~lung + smoke, values = c(1, 9, 1, 99), levels = yn)
> b.s <- cpt(~bronc + smoke, values = c(6, 4, 3, 7), levels = yn)
> e.lt <- cpt(~either + lung + tub, values = c(1, 0, 1, 0, 1, 0, 0,
+ 1), levels = yn)
> x.e <- cpt(~xray + either, values = c(98, 2, 5, 95), levels = yn)
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> d.be <- cpt(~dysp + bronc + either, values = c(9, 1, 7, 3, 8, 2,
+ 1, 9), levels = yn)

2. Create the iNet from the conditional probability tables:51

> plist <- cptspec(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> in1 <- newgmInstance(plist)
> in1

Independence network: Compiled: FALSE Propagated: FALSE

3. The iNet can be queried to give marginal probabilities:52

> querygm(in1, nodes = c("lung", "bronc"), type = "marginal")

$lung
lung
yes no

0.055 0.945

$bronc
bronc
yes no
0.45 0.55

Likewise, a joint distribution can be obtained.53

> querygm(in1, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no
yes 0.0315 0.0235
no 0.4185 0.5265

4. Evidence can be entered as:54

> in12 <- enterEvidence(in1, nodes = c("asia", "dysp"), states = c("yes",
+ "yes"))

5. The iNet can be queried again:55

> querygm(in12, nodes = c("lung", "bronc"))

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygm(in12, nodes = c("lung", "bronc"), type = "joint")

bronc
lung yes no
yes 0.06298076 0.03654439
no 0.74842132 0.15205354

3 Building and using iNets56

3.1 Compilation and propagation57

Before queries can be made to a iNet the iNet must be compiled (see Section B.1.1)58

and propagated (see Section B.1.2). These two steps are forced by the querygm59

function if necessary, but it is in some cases advantegous to do them explicitly.60
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3.1.1 Compilation of an iNet61

Put briefly, compilation of an iNet involves the following steps: It is first checked62

whether the list of CPTs defines a directed acyclic graph DAG. If so, this dag is63

created; it is moralized and triangulated. The CPTs are transformed into potentials64

defined on the cliques of the triangulated graph. See Section B.1.1 for further details.65

The triangulated graph together with the corresponding clique potentials constitute66

an iNet. Thus the list of CPTs is merely one way of constructing an iNet. Consider67

again Bayesian network of Section 2.3:68

> in1

Independence network: Compiled: FALSE Propagated: FALSE

> class(in1)

[1] "cpt-gmInstance" "gmInstance"

The class attributes show that the iNet derives from a list of CPTs. In Section ??69

other ways of constructing an iNet are described.70

> in1c <- compilegm(in1)

Independence network: Compiled: TRUE Propagated: FALSE

> class(in1c)

[1] "compgmInstance" "cpt-gmInstance" "gmInstance"

To be able to answer queries the iNet must be propagated which means that the71

clique potentials must be adjusted to each other in a specific way. See Section B.1.272

for details.73

Default is that propagation are not carried out in connected with compilation but74

this can be changed by setting propagate="TRUE" in compilegm()75

3.1.2 Propagation of an iNet76

A compiled iNet can be propagated as follows. Note that there are various options77

to choose in this connection; see the documentation of gRain for details:78

> in1c <- propagate(in1c)

Independence network: Compiled: TRUE Propagated: TRUE

3.2 Queries and evidence79

3.2.1 Queries80

As illustrated in Section 2.3, queries can be made to a iNet using the querygm()81

function. The result is by default an array (or a list of array(s)). Setting re-82

turn="data.frame" causes the result to be returned as a dataframe (or a list of83

dataframes):84

> querygm(in1c, nodes = c("lung", "bronc"), return = "data.frame")

$lung
lung Freq

yes yes 0.055
no no 0.945

$bronc
bronc Freq

yes yes 0.45
no no 0.55
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> querygm(in1c, nodes = c("lung", "bronc"), type = "joint", return = "data.frame")

lung bronc Freq
1 yes yes 0.0315
2 no yes 0.4185
3 yes no 0.0235
4 no no 0.5265

With type="marginal" the we get P (λ) and P (β). Setting type="joint" gives85

P (λ, β).86

Setting type="conditional" gives P (λ|β), i.e. the distribution of the first variable87

in nodes given the remaining ones:88

> querygm(in1c, nodes = c("lung", "bronc"), type = "conditional",
+ return = "data.frame")

lung bronc Freq
1 yes yes 0.07000000
2 no yes 0.93000000
3 yes no 0.04272727
4 no no 0.95727273

Omitting nodes implies that all nodes are considered.89

3.2.2 Entering evidence90

Suppose we want to enter the evidence that a person has recently been to Asia and91

suffers from dyspnoea. This can be done in one of two ways:92

> in1c2 <- enterEvidence(in1c, nodes = c("asia", "dysp"), states = c("yes",
+ "yes"))
> in1c2 <- enterEvidence(in1c, evlist = list(c("asia", "yes"), c("dysp",
+ "yes")))

The evidence itself is displayed with:93

> evidence(in1c2)

Evidence:
variable state

[1,] asia yes
[2,] dysp yes
Pr(Evidence)= 0.004501375

The probability of observing the evidence is:94

> pevidence(in1c2)

[1] 0.004501375

The marginal, joint and conditional (conditional) probabilities are now:95

> querygm(in1c2, nodes = c("lung", "bronc"))

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no
0.8114021 0.1885979

> querygm(in1c2, nodes = c("lung", "bronc"), type = "joint")
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bronc
lung yes no
yes 0.06298076 0.03654439
no 0.74842132 0.15205354

> querygm(in1c2, nodes = c("lung", "bronc"), type = "conditional")

bronc
lung yes no
yes 0.07761966 0.1937688
no 0.92238034 0.8062312

Note that the latter result is the conditional distribution of lung given bronc – but96

also conditional on the evidence.97

3.2.3 Incremental specification of evidence98

Evidence can be entered incrementally by calling enterEvidence() repeatedly. If99

doing so, it is advantagous to set propagate=FALSE in enterEvidence() and then100

only call the propagate() function at the end.101

3.2.4 Retracting evidence102

Evidence can be retracted (removed from the iNet) with103

> in1c3 <- retractEvidence(in1c2, nodes = "asia")
> evidence(in1c3)

Evidence:
variable state

[1,] dysp yes
Pr(Evidence)= 0.004501375

Omitting nodes implies that all evidence is retracted, i.e. that the iNet is reset to104

its original status.105

3.3 Miscellaneous106

Summary Summaries of iNets are can be obtained:107

> summary(in1)

Nodes : asia tub smoke lung bronc either xray dysp
Compiled: FALSE Propagated: FALSE

> summary(in1c)

Nodes : asia tub smoke lung bronc either xray dysp
Compiled: TRUE Propagated: TRUE
Number of cliques: 6
Maximal clique size: 3
Maximal number of configurations in cliques: NA

The summary() function can be a type argument. Possible values for type include108

"rip", "cliques", "configurations".109

Graphics The DAG in Figure 1 is obtained with plot(pn), while the triangulated110

indirected graph in Figure 2 is obtained with plot(pnc).111
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Odds and ends The functions nodeNames and nodeStates returns the nodes and112

their states. A potential can be turned into a dataframe or a numerical variables113

with as.data.frame and as.numeric.1114

Internally in gRain, a CPT is internally represented as a ctab object, see the package115

documentation for details.116

4 Fast computation of a joint distribution117

If interest is in fast computation of the latter joint distribution one can force these118

variables to be in the same clique of the TUG as:119

> in1c2 <- compilegm(in1, root = c("lung", "bronc", "tub"), propagate = TRUE)

Now compare the computing time of the of the objects, the second one being much120

faster:121

> system.time({
+ for (i in 1:50) querygm(in1c, nodes = c("lung", "bronc", "tub"),
+ type = "joint")
+ })

user system elapsed
5.55 0.01 5.57

> system.time({
+ for (i in 1:50) querygm(in1c2, nodes = c("lung", "bronc", "tub"),
+ type = "joint")
+ })

user system elapsed
0.05 0.00 0.04

5 Simulation122

It is possible to simulate data from an iNet. This uses the current clique, and thus123

generates values conditional on all evidence entered in tne iNet.124

> simulate(in1c, nsim = 5)

asia tub smoke lung bronc either xray dysp
1 no no yes no yes no no yes
2 no no no no yes no no yes
3 no no no no no no no no
4 no no yes no no no no no
5 no no yes no no no no no

6 Prediction125

A predict method is available for iNets for predicting a set of “responses” from a126

set of “explanatory variables”. Two types of predictions can be made. The default127

is type="class" which assigns the value to the class with the highest probability:128

> mydata

bronc dysp either lung tub asia xray smoke
1 yes yes yes yes no no yes yes
2 yes yes yes yes no no yes no
3 yes yes yes no yes no yes yes
4 yes yes no no no yes yes no

1SHD: Rewrite this part...
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> predict(in1c, response = c("lung", "bronc"), newdata = mydata, predictors = c("smoke",
+ "asia", "tub", "dysp", "xray"), type = "class")

$pred
$pred$lung
[1] "yes" "no" "no" "no"

$pred$bronc
[1] "yes" "yes" "yes" "yes"

$pevidence
[1] 0.0508475880 0.0111697096 0.0039778200 0.0001082667

The output should be read carefully: Conditional on the first observation in mydata,129

the most probable value of lung is "yes" and the same is the case for bronc. This130

is not in general the same as saying that the most likely configuration of the two131

variables lung and bronc is "yes".132

Alternatively, one can obtain the entire conditional distribution:133

> predict(in1c, response = c("lung", "bronc"), newdata = mydata, predictors = c("smoke",
+ "asia", "tub", "dysp", "xray"), type = "dist")

$pred
$pred$lung

yes no
[1,] 0.7744796 0.2255204
[2,] 0.3267670 0.6732330
[3,] 0.1000000 0.9000000
[4,] 0.3267670 0.6732330

$pred$bronc
yes no

[1,] 0.7181958 0.2818042
[2,] 0.6373009 0.3626991
[3,] 0.6585366 0.3414634
[4,] 0.6373009 0.3626991

$pevidence
[1] 0.0508475880 0.0111697096 0.0039778200 0.0001082667

7 Alternative ways of specifying an iNet134

This section illustrates alternative ways of specifying an iNet.135

7.1 Defining variables and states – a gmData object136

We will in the following make use of a gmData object (as introduced by Dethlefsen137

and Højsgaard (2005)) for holding the specification of the variables in the iNet.138

Briefly, a gmData object is a graphical meta data object which is an abstraction of139

data types such as dataframes and tables.140

A gmData object needs not contain any real data; it can simply be a specification141

of variable names and their corresponding levels (and several other characterstics,142

for example wheter a categorical variable should be regarded as being ordinal or143

nominal).144

For the chest clinic example in Section 2 we build the gmData object as145

> chestNames <- c("asia", "smoke", "tub", "lung", "bronc", "either",
+ "xray", "dysp")
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> gmd <- newgmData(chestNames, valueLabels = c("yes", "no"))
> gmd

varNames shortNames varTypes nLevels
asia asia a Discrete 2
smoke smoke s Discrete 2
tub tub t Discrete 2
lung lung l Discrete 2
bronc bronc b Discrete 2
either either e Discrete 2
xray xray x Discrete 2
dysp dysp d Discrete 2
To see the values of the factors use the 'valueLabels' function

7.2 Specification of conditional probabilities146

The CPTs can be created with reference to the gmData object as follows:147

> a <- cpt(~asia, values = c(1, 99), gmData = gmd)
> t.a <- cpt(~tub + asia, values = c(5, 95, 1, 99), gmData = gmd)
> s <- cpt(~smoke, values = c(5, 5), gmData = gmd)
> l.s <- cpt(~lung + smoke, values = c(1, 9, 1, 99), gmData = gmd)
> b.s <- cpt(~bronc + smoke, values = c(6, 4, 3, 7), gmData = gmd)
> e.lt <- cpt(~either + lung + tub, values = c(1, 0, 1, 0, 1, 0, 0,
+ 1), gmData = gmd)
> x.e <- cpt(~xray + either, values = c(98, 2, 5, 95), gmData = gmd)
> d.be <- cpt(~dysp + bronc + either, values = c(9, 1, 7, 3, 8, 2,
+ 1, 9), gmData = gmd)

Note: Instead of using formulae as in ~tub+asia we can write e.g. c("tub","asia").148

7.3 Building the iNet149

From a list of conditional probabilities and a corresponding gmData object we can150

build a iNet as above:151

> plist <- cptspec(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
> in1 <- newgmInstance(plist, gmData = gmd)

8 Building a iNet from data152

An iNet can be built from data in two different ways. Suppose we have data in153

the form of a dataframe of cases e.g. as generated by simulate in Section 5. We154

convert data into a table and the table into a gmData object:155

> chestSim <- simulate(in1c, nsim = 1000)
> gcs <- as.gmData(xtabs(~., chestSim))

8.1 From a directed acyclic graph156

The directed graph in Figure 1 can be specified as:157

> g <- list(~asia, ~tub + asia, ~smoke, ~lung + smoke, ~bronc + smoke,
+ ~either + lung + tub, ~xray + either, ~dysp + bronc + either)
> dag <- newdagsh(g)

An iNet can be built from the graph and the gmData object. In this process, the158

CPTs are estimated from data in chestSim as the relative frequencies. To avoid159

zeros in the CPTs one can choose to add a small number, e.g. smooth=0.1 to all160

entries which are zero in the data:161

> in1x <- newgmInstance(dag, gmData = gcs)
> in1x <- compilegm(in1x, propagate = TRUE, smooth = 0.1)
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8.2 From a triangulated undirected graph162

Alternatively, an iNet can be built from an undirected (but triangualted) graph.163

The undirected graph in Figure 2 can be specified as:164

> g <- list(~asia + tub, ~either + lung + tub, ~either + lung + smoke,
+ ~bronc + either + smoke, ~bronc + dysp + either, ~either + xray)
> ug <- newugsh(g)

An iNet can be built from the graph and the gmData object. In this process, the165

clique potentials are estimated as the respective frequencies in the data:166

> in1y <- newgmInstance(ug, gmData = gcs)
> in1y <- compilegm(in1y, propagate = TRUE)

9 Discussion and perspectives167
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A Working with HUGIN net files173

The HUGIN program (see http://www.hugin.com) is a commercial program for174

Bayesian networks. A limited version of HUGIN is freely available. With HUGIN,175

a BN can be saved in a specific format known as a net file (which is a text file). A176

BN saved in this format can be loaded into R using the loadHuginNet function and177

a BN in R can be saved in the net format with the saveHuginNet function.178

HUGIN distinguishes between node names and node labels. Node names have to be179

unique; node labels need not be so. When creating a BN in HUGIN node names are180

generated automatically as C1, C2 etc. The user can choose to give more informative181

labels or to give informative names. Typically one would do the former. Therefore182

loadHuginNet uses node labels (if given) from the netfile and otherwise node names.183

This causes two types of problems. First, in HUGIN it is allowed to have e.g. spaces184

and special characters (e.g. “?”) in variable labels. This is not permitted in gRain.185

If such a name is found by loadHuginNet, the name is converted as follows: Special186

characters are removed, the first letter after a space is capitalized and then spaces187

are removed. Hence the label “visit to Asia?” in a net file will be converted to188

“visitToAsia”. Then same convention applies to states of the variables. Secondly,189

because node labels in the net file are used as node names in gRain we may end up190

with two nodes having the same name which is obviously not permitted. To resolve191

this issue gRain will in such cases force the node names in gRain to be the node192

names rather than the node labels from the net file. For example, if nodes A and B193

in a net file both have label foo, then the nodes in gRain will be denoted A and B.194

It is noted that in itself this approach is not entirely fool proof: If there is a node195

C with label A, then we have just moved the problem. Therefore the scheme above196

is applied recursively until all ambiguities are resolved.197
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B iNets and the LS algorithm198

To make this paper self–contained, this section briefly outlines PNs and compu-199

tations with PNs as given in LS. Readers familiar with the algorithm can safely200

skip this section. The outline is based on the chest clinic example of LS which is201

illustrated in Figure 1.202

B.1 Propagation203

The LS algorithm allows conditional distributions to be calculated in a very effi-204

cient way, i.e. without first calculating the joint distribution and then carry out the205

marginalizations. Efficient propagation in iNets is based on representing the joint206

distribution (1) in different forms. These forms are derived from modifying the207

DAG. We describe these steps in the following but refer to Lauritzen and Spiegel-208

halter (1988) for further details as well as for references.209

B.1.1 Compilation – from conditionals to clique potential presentation210

The key to the computations is to transform the factorization in (2) into a clique211

potential representation: First the DAG is moralized which means that the parents212

of each node are joined by a line and then the directions on the arrows are dropped.213

Thus the moralized graph is undirected.214

Next the moralized graph is triangulated if it is not already so. A graph is triangu-215

lated if it contains no cycles of length ≥ 4 without a chord. Triangulatedness can216

be checked using the Maximum Cardinality Search algorithm. If a graph is not tri-217

angulated it can be made so by adding edges, so called fill-ins. Finding an optimal218

triangulation of a given graph is NP–complete. Yet, various good heuristics exist.219

For graph triangulation we used the Minimum Clique Weight Heuristic method as220

described by Kjærulff (1990). Figure 2 shows the triangulated, moralized graph.221

We shall refer to the triangulated moralized DAG as the TUG.222

smoke

either

tub

asia
lung

bronc

xraydysp

Figure 2: Triangulated moralized DAG – the chest clinic example from LS.

An ordering C1, . . . , CT of the cliques of a graph has the Running Intersection223

Property (also called a RIP ordering) if Sj = (C1 ∪ . . . Cj−1) ∩ Cj is contained in224

one (but possibly several) of the cliques C1, . . . , Cj−1. We pick one, say Ck and call225

this the parent clique of Cj while Cj is called a child of Ck. We call Sj the separator226

and Rj = Cj \ Sj the residual, where S1 = ∅. It can be shown that the cliques of a227

graph admit a RIP ordering if and only if the graph is triangulated.228

The functions p(v|pa(v)) are hence defined on complete sets of the TUG. For each
clique C we collect the conditional probability tables p(v|pa(v)) into a single term
ψC by multiplying these conditional probability tables. Triangulation may have cre-
ated cliques to which no CPT corresponds. For each such clique the corresponding
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potential is identical equal to 1. Thereby we obtain the clique potential representa-
tion of p(V ) as

p(V ) =
T∏

j=1

ψCj . (3)

As such, a DAG and a corresponding factorization as in (2) is just one way of getting229

to the representation in (3).230

B.1.2 Propagation – from clique potential to clique marginal represen-231

tation232

The propagation algorithm works by turning the clique potential representation into
a clique marginal representation: To obtain the clique marginals p(Cj) we proceed
as follows. Start with the last clique CT in the RIP ordering. The factorization (3)
implies that RT ⊥⊥ (C1 ∪ · · · ∪ CT−1) \ ST |ST . Marginalizing over RT gives

p(C1 ∪ · · · ∪ CT−1) = [
T−1∏
j=1

ψCj ]
∑
RT

ψCT
.

Let ψST
=

∑
RT

ψCT
. Then p(RT |ST ) = ψCT

/ψST
and we have

P (V ) = p(C1 ∪ · · · ∪ CT−1)p(RT |ST ) = {[
T−1∏
j=1

ψCj
]ψST

}ψCT
/ψST

.

Since ψST
is a function defined on ST and the RIP ordering ensures that ST is

contained in one of the cliques C1, . . . , CT−1, say Ck we can absorb ψST
into ψCk

by setting ψCk
← ψCk

ψST
. After this absorption we have p(C1 ∪ . . . CT−1) =∏T−1

j=1 ψCj
. We can then apply the same scheme to this distribution to obtain

p(RT−1|ST−1). Continuing this way backward gives

p(V ) = p(C1)p(R2|S2)p(R3|S3) . . . p(RT |ST ) (4)

where p(C1) = ψC1/
∑

C1
ψC1 . This is called a set chain representation.233

Now we work forward. Suppose C1 is the parent of C2. Then p(S2) =
∑

C1\S2
p(C1)

and so p(V ) = p(C1)p(C2)p(R3|S3) . . . p(RT |ST )/p(S2). Proceeding this way yields
the clique marginal representation

p(V ) =
T∏

j=1

p(Cj)/
T∏

j=2

p(Sj). (5)

Based on this representation, marginal probabilities of each node can be found by234

summing out over the other variables.235

B.2 Absorbing evidence236

Consider entering evidence E = e∗. We note that P (V \E|E = e∗) ∝ p(V \E,E =237

e∗). Hence evidence can be absorbed into the model by modifying the terms ψCj
238

in the clique potential representation (3): Entries in ψCj which are inconsistent239

with the evidence E = e∗ are set to zero. We then proceed by carrying out the240

propagation steps above leading to (5) where the terms in the numerator then241

becomes p(Cj |E = e∗). In this process we note that
∑

C1
ψC1 is p(E = e∗). Hence242

the probability of the evidence comes at no extra computational cost243
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B.3 Answering queries to BNs244

To obtain p(v|E = e∗) for some v ∈ V \ E, we locate a clique Cj containing v and245

marginalize as
∑

Cj\{v} p(Cj). Suppose we want the distribution p(U |E = e∗) for a246

set U ⊂ V \E. If there is a clique Cj such that U ⊂ Cj then the distribution is simple247

to find by summing p(Cj) over the variables in Cj \U . If no such clique exists we can248

obtain p(U |E = e∗) by calculating p(U = u∗, E = e∗) for all possible configurations249

u∗ of U and then normalize the result which is computationally demanding if U has250

a large state space. However, if it is known on beforehand that interest often will251

be in the joint distribution of a specific set U of variables, then one can ensure that252

the set U is in one clique in the TUG. The potential price to pay is that the cliques253

can become very large.254
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