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Abstract

The software support for fitting so-called “frailty” (random effect) models for time-to-
event data has grown considerably in the previous years. Such models are attractive to use
when modeling recurrent event data or clustered failures. The usual problem specific to
mixed models, which is integrating over the random effects, is further complicated by the
presence of a non-parametric “baseline” intensity function. So far, the support for such
semi-parametric models was limited, both in terms of the choice for the random effect
distribution and in terms of the type of data that the model can be fitted on. We propose
a new R package that estimates shared frailty models using the full likelihood, based
on the Expectation-Maximization algorithm. The software supports a large number of
distributions for the random effect from the Power Variance Family (PVF). Left truncated
clustered failures and recurrent events in Andersen-Gill or gaptime formulation are also
supported, and conditional and marginal estimates of the survival and cumulative hazard
are provided.

Keywords: shared frailty, EM algorithm, recurrent events, clustered failures, left truncation,
survival analysis, R.

1. Introduction

Time-to-event data is very common in medical applications. Often, these data are marked
by incomplete observations. For example, the phenomena of right censoring occurs when the
actual event time is not observed, but the only thing that is known is that the event has not
taken place by the end of follow-up. Sometimes, individuals enter the data set only if they
have not experienced the event before a certain time point. This is known as left truncation,
which, if not accounted for correctly, leads to bias. Regression models for such data have
been developed in the field of survival analysis. The most popular is the Cox proportional
hazards model (Cox 1972), which is semi-parametric in nature: the effect of the covariates is
assumed to be time-constant and fully parametric, while the time-dependency arises from the
non-parametric baseline hazard. Cox regression has been the standard in survival analysis
for a few reasons: the non-parametric baseline is the best one can do if this function is not
known in advance, and the estimation is not computationally intensive. For a long time, this
has been implemented in all major statistical software, such as R (R Core Team 2016) (from
S-PLUS times), Stata, SAS or SPSS.

When individuals belong to clusters, or may experience recurrent events, the observations are
correlated, and in this case the Cox model is not appropriate. Random effect “shared frailty”
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models have been developed for dealing with such situations. Originating from the field of
demographics (Vaupel, Manton, and Stallard 1979), these models traditionally assume that
the proportional hazards model holds conditional on the frailty. The most popular distribution
for the random effect is the gamma distribution, chosen mostly for computational convenience.
A variety of distributions that have desirable properties have been proposed; see Hougaard
(2000) for a comprehensive overview. These include the gamma, positive stable (PS), inverse
gaussian (IG) and the Power Variance Family (PVF), which includes compound Poisson
distributions with mass at 0.

Several surprising results have been demonstrated with frailty models. For example, if pro-
portional hazards are assumed conditional on the frailty, then this assumption does not hold
on the marginal level, for most distributions except the PS. In this case, the model fits propor-
tional hazards on both conditional and marginal levels, with the marginal effect always being
an attenuated version of the conditional. In fact, the choice of the distribution for the frailty
implies a different marginal model, with some emphasizing early depence of the observations
(IG) and others the late dependence (gamma). Therefore, it is of great interest to be able to
compare a number of different distributions of the random effect.

For the Cox model, the computational advantage comes from the fact that the semi-parametric
(infinitely dimensional) baseline hazard is not directly estimated, and this is due to the pro-
portional hazards assumption. This simplicity does not carry over to shared frailty models.
In this paper we present frailtyEM (Balan and Putter 2017), an R package which uses the
general Expectation-Maximization (EM) algorithm for fitting shared frailty models. This im-
plementation comes to complete the landscape of packages that may be used for such models.
At the time of writing this manuscript, in R, semi-parametric shared frailty models can also be
fitted in other ways. The first is via a penalized likelihood method with the survival package
for the gamma and log-normal distributions (Therneau and Grambsch 2000; Therneau 2015a)
and coxme package for the log-normal distribution (Therneau 2015b). The second way is via
h-likelihood with the frailtyHL (Do Ha, Noh, and Lee 2012) package, and the third way is
via a pseudo full likelihood approach frailtySurv package (Monaco, Gorfine, and Hsu 2017;
Gorfine, Zucker, and Hsu 2006). Finally, a Monte Carlo EM-type estimation is available in
the phmm Donohue and Xu (2013); Vaida and Xu (2000); Donohue, Overholser, Xu, and
Florin (2011). Several other options are available for parametric modeling: parfm (Munda,
Rotolo, Legrand et al. 2012) for fully parametric models and frailtypack (Rondeau, Mazroui,
and Gonzalez 2012; Rondeau and Gonzalez 2005) for models where the baseline is fully para-
metric or spline-approximated. The latter is comparable in flexibility with semi-parametric
models, where the baseline hazard is unspecified.

The frailtyEM package estimates semi-parametric shared frailty models that may be used
for recurrent events data in Andersen-Gill and gaptime formulation, clustered failures and
clustered failures with left truncation. The supported family of distributions for the random
effect includes gamma, IG, PS and the PVF family. The results of the estimation can be easily
visualized. Point estimates for regression coefficients are provided with confidence intervals
that take into account the estimation of the frailty distribution, and plot methods may be used
to visualize both conditional and marginal survival and cumulative hazard curves with 95%
confidence bands, marginal covariate effects, and empirical Bayes estimates of the random
effects. A comparison with respect to functionality between frailtyEM and other R packages
is provided in Table 1.

The rest of this paper is structured as follows. In Section 2 we present a brief overview the
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semi-parametric shared frailty model, and the implications of left truncation. In Section 3 we
discuss the estimation method used and how this is implemented. In Section 4 we illustrate
the usage of the functions from the frailtyEM package on two classical data sets available in
R.

2. Model

We consider the following scenario: there are I clusters and Ji individuals in cluster i. The
outcome from each individual is represented by a realization of a counting process Nij . We
consider that the intensity of Nij takes the form

λij(t|Zi) = Yij(t)Zi exp(β>xij(t))λ0(t) (1)

where Yij(t) indicates whether Nij is under observation at time t, Zi is an unobserved random
effect common to all individuals from cluster i (the“shared frailty”), xij(t) a vector of possibly
time-dependent covariates, β a vector of unknown regression coefficients and λ0(t) > 0 an
unspecified baseline intensity function. We assume that event times are independent given
Zi = zi. We consider the general case where the zi follows a distribution with positive
support from the infinitely divisible family, i.e., they are i.i.d. realizations of a random variable
described by the Laplace transform

LZ(c;α, γ) ≡ E [exp(−Zc)] = exp(−αψ(c; γ)) (2)

with α > 0 and γ > 0. This formulation includes several distributions, such as the gamma,
PS, IG, PVF. These distributions have been extensively studied in Hougaard (2000). Denote
θ = (α, γ) as the parameter vector that describes the distribution. The parametrizations used
are described in Appendix A1.

2.1. Likelihood

The maximum likelihood problem is to maximize the marginal likelihood, based only on the
observed data. This is obtained by integrating over the random effects. With the specification
(1), the marginal likelihood is obtained as the product over clusters of expected marginal
contributions, i.e.,

L(θ, β, λ0(·)) =
∏
i

Eθ

∏
j

∫ ∞
0

{
Yij(t)Zi exp(β>xij(t)λ0(t)

}dNij(t)

× exp

−∑
j

∫ ∞
0

Yij(t)Zi exp(β>xij(t))λ0(t)dt


To make the connection with the data representation, we consider that (i, j, k) refers to the k-
th observation from the j-th individual in the i-th cluster. Thus, tijk is the event or censoring
time and δijk = dNij(tijk) is the event indicator for (i, j, k). We write the value of the covariate
vector for this observation as xijk. In the most basic case of clustered failures, k ≡ 1, while
in the case of recurrent events j ≡ 1. More observations for one individual may also arise
in the case of clustered failures when the covariates are time-dependent, and the individual
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is artificially censored at the time when the value of the covariates changes. Nevertheless,
the (i, j, k) pair refers to a certain cluster, individual, and period of time where the covariate
vector does not change.

The baseline cumulative hazard for this observation is denoted as Λ0,ijk. Also, let Λ̃i =∑
jk exp(β′xijk)Λ0,ijk. The marginal likelihood can be written as

L(θ, β, λ0(·)) =
∏
i

Eθ

∏
j

{∏
k

(Zi exp(β>xijk)λ0(tk))
δijk

}
exp(−ziΛ̃i)

 .
We consider the Breslow estimator for the baseline hazard, i.e., λ0(t) ≡ λ0t for t an event
time, and 0 otherwise. By using (2), the marginal likelihood can be rewritten as

L(θ, β, λ0(·)) =
∏
i

∏
j

{∏
k

(exp(β>xijk)λ0(tk))
δijk

}
(−1)niL(ni)Z (Λ̃i)

 , (3)

where L(k)Z is the k-th derivative of the Laplace transform and ni is the total number of events
in cluster i.

2.2. Ascertainment and left truncation

The problem of ascertainment with random effect time-to-event data is usually a difficult one.
Consider that the event of observing the cluster i in the data set is Ai. Thus, the distribution
of the random effect in cluster i is described by the Laplace transform of Zi|Ai, which follows
from Bayes’ rule as

LZi|Ai(c) =
E [P (Ai|Zi) exp(−cZi)]

E [P (Ai|Zi)]
. (4)

Expressing P (Ai|Z = z) depends on the type of the study at hand and on the way the data
were collected. In frailtyEM an option is included to deal with the classical scenario of left
truncation, i.e., where

P (Ai|Zi = zi) = P (Ti1 > tL,i1, Ti2 > tL,i2...TJi > tL,iJi |Zi = zi)

Assume that, given zi, the left truncation times tL,i are independent and the cluster size is
not informative. In this case,

P (Ai|Zi = zi) =

Ji∏
j=1

exp

(
−zi

∫ tL,ij

0
exp(β>xij(t))λ0(t)dt

)
. (5)

A difficulty here is that the values of the covariate vector and of the baseline intensity must
be known prior to the entry time in the study. To assign a value for x before the entry time
is speculative. Therefore, we only consider this case when xi is time constant.

With the previous notation, denote the risk accumulated before each of the entry times of
cluster i as

Λ̃L,i =
∑
j

exp(β>xij)Λ0L,ij
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where Λ0L,ij =
∫ tL,ij
0 λ0(t)dt. Then, it follows from (2), (4) and (5) that the Laplace transform

can be written as

LZ|Ai(c;α, γ) =
exp(−αψ(c+ Λ̃L,i; γ))

exp(−αψ(Λ̃L,i; γ))
= exp(−αψ̃(c; Λ̃L,i, γ)) (6)

where ψ̃(c; ΛL,i, γ) = ψ(c + ΛL,i; γ) − ψ(ΛL,i; γ). Thus, the random effect stays in the same
infinitely divisible family of distributions under this ascertainment scheme.

Note that, in general, the ascertainment scheme does not have a simple description and
P (Ai|Zi = zi) may or may not be available in closed form. For example, in family studies,
the families may be selected only when a number of individuals live long enough (Rodŕıguez-
Girondo, Deelen, Slagboom, and Houwing-Duistermaat 2016). In this case, (5) does not hold.
In the case of registry data on recurrent events, individuals (clusters) may be selected only if
they have at least one event during a certain time window (Balan, Jonker, Johannesma, and
Putter 2016b). These specific cases are not currently accommodated by frailtyEM.

2.3. Goodness of fit and measures of dependence

A reasonable question when fitting random effect models is whether there is evidence for
heterogeneity. To answer this a priori , the Commenges-Andersen score test may be used
(Commenges and Andersen 1995). This test is referred in frailtyEM as the Commenges-
Andersen test, and is performed before the actual estimation of the model (1). This test does
not depend on the frailty distribution. The user may opt to skip this, or to just perform the
test without fitting the shared frailty model in the .control argument of emfrail().

After fitting the model, the likelihood ratio test may be used to assess whether the model
with the frailty is a better fit than a model without frailty. In this case, the null model is
the model without frailty. With the parametrizations described in Appendix A1, this test lies
at the edge of the parameter space, and the test statistic under the null hypothesis follows
asymptotically a mixture of χ2(0) and χ2(1) distribution (Zhi, Grambsch, and Eberly 2005).

An explicit assumption of model (1) is that the censoring is non-informative on the frailty.
This assumption is usually difficult to test. In frailtyEM, a correlation score test is imple-
mented for the gamma distribution, following Balan, Boonk, Vermeer, and Putter (2016a).
This can also be used, for example, for testing whether a recurrent event event process and a
terminal event are associated.

Several measures of dependence are implemented in frailtyEM. The first is the variance of
the estimated frailty distribution Z, which is useful for the gamma and the PVF family. The
variance of logZ is also useful for the positive stable distribution for which the variance is
infinite. Other measures of associtaion include Kendall’s τ and the median concordance. A
thorough discussion and comparison of these measures can be found in Hougaard (2000).

3. Estimation

frailtyEM implements a general full-likelihood estimation procedure for the gamma, positive
stable and PVF frailty models, based on a profile likelihood method and making use of the
expectation-maximization (EM) algorithm Dempster, Laird, and Rubin (1977).
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For fixed parameters of the frailty distribution θ, we define the profile maximum likelihood

L̂(θ) = max
β,λ0

L(β, λ0|θ).

For each θ, denote β̂(θ) and λ̂0(θ) the value of the parameters that maximize L(β, λ0|θ). A
first observation is that, if θ̂ maximizes L(θ), then (θ̂, β̂(θ̂), λ̂0(θ̂)) maximize L(θ, β, λ0). Thus,
we split the problem of maximizing the likelihood into two: obtaining β̂(θ), λ̂0(θ) for a fixed
θ (the “inner problem”) and maximizng L(θ) over θ (the “outer problem”).

3.1. The inner problem

For the inner problem the EM algorithm is used. This has been first proposed for the gamma
frailty model in Nielsen, Gill, Andersen, and Sørensen (1992) and Klein (1992), and a gener-
alization is discussed in Hougaard (2000).

Most ideas from Nielsen et al. (1992) are used here. The crucial observations are that the
E step involves calculating the empirical Bayes estimates of the frailties ẑi = E[Zi|data].
The expectation is taken with respect to the “posterior” distribution of the random effect.
Afterwards, the M step is essentially a proportional hazards model with the log ẑi as offset
for each cluster.

The E step For the E step β and λ0 are fixed, either at their initial values or at the values
from the previous M step. Let ni =

∑
j,k δijk be the number of events in cluster i. The

conditional distribution of Zi given the data has Laplace transform

L(c) =
E
[
Znii exp(−ZiΛ̃i) exp(−Zic)

]
E
[
Znii exp(−ZiΛ̃i)

] =
L(ni)(c+ Λ̃i)

L(ni)(Λ̃i)
. (7)

The E step reduces to calculating the derivative of (7) in 0, i.e.,

ẑi = −L
(ni+1)(Λ̃i)

L(ni)(Λ̃i)
. (8)

The marginal (log-)likelihood is also calculated at this point, Lθ(β, λ0) to keep track of con-
vergence. It can be seen that (3) involved only the denominator of (7) in addition to a straight
forward expression of β and λ0.

The E step is generally the expensive operation of the EM algorithm. In very few scenarios
can (8) be expressed in a closed form: for the gamma and the inverse gaussian distributions.
In these scenarios, the E step is calculated with the fast_estep() routine. For all other cases,
the E step is calculated via a recursive algorithm with an internal routine estep(), which is
described in Appendix A2. For efficiency and speed, this function was written in C++ and is
interfaced with R via the Rcpp library (Eddelbuettel and François 2011; Eddelbuettel 2013).

The M step With the same argument as made in Nielsen et al. (1992), the M step is
equivalent to a regular proportional hazards model with log ẑi added as an offset for all the
cases in zi. This is done via the agreg.fit() function in the survival package. Estimates of
β are directly obtained from this, while estimates for λ0 and the subsequent calculations of Λ̃i
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(and, eventually Λ̃L,i, in the case of left truncation) require a careful calculation of subjects
at risk and the respective linear predictors at every event and entry time point. The ordering
required for determining these “at risk” sets is cached in emfrail().

The EM algorithm stops after the marginal log-likelihood has converged, i.e., when difference
in L̂(θ) is smaller than ε between two consecutive iterations. The value of ε can be set with
the .control argument of emfrail.

3.2. Outer problem

The “outer” problem refers to finding θ̂ which maximizes the profile likelihood L̂(θ). The
resulting θ̂ is the maximum likelihood estimator and the maximum likelihood is obtained at
L̂(θ̂). For the infinitely divisible distributions in frailtyEM, θ is one dimensional.

In the maximization procedure, θ is introduced on the log-scale. That is for numerical stability
(the interval for searching for the maximum likelihood is “stretched” to the real numbers) and
for asymptotic normality. Although maximum likelihood estimates are asymptotically normal,
the likelihood is likely to be skewed, especially if the maximum likelihood is close to the edge
of the parameter space. In this case, the standard error of the estimate may be difficult to
interpret for constructing confidence intervals. It has been shown that symmetric confidence
intervals of log θ, translated to the scale of θ, provide good coverage (Balan et al. 2016b).

Several parameters may be used to regulate the outer optimization via the .control argu-
ment. These can be found in the documentation of the emfrail_control() function.

3.3. Standard errors

After the maximizer has converged and the outer maximization is finished and θ̂ has been ob-
tained, the Hessian is approximated numerically with the functions available in the numDeriv
package (Gilbert and Varadhan 2016). By inverting this value, the variance of ̂log θ is ob-
tained. A symmetric 95% confidence interval is built on that scale, and translated for all the
other derived quantities described in 2.3. Furthermore, the delta method is used to provide
standard errors for these parameters as well, by using the deltamethod() implementation in
the msm (Jackson 2011) package.

A more precise yet computationally intensive method for quantifying the uncertainty in ̂log θ
or θ is through likelihood-based confidence intervals. This requires finding the θ values for
which the difference between the maximum likelihood and the specific profile maximum likeli-
hood values at θ equals a critical value, calculated from the χ2(1) distribution, and is discussed
in Appendix A2. This can be achieved with a root-finding routine such as the uniroot()

function in the stats package.

The standard error of the estimates for β and λ0(·) are calculated with Louis’ formula (Louis
1982), for θ fixed to the maximum likelihood estimate. The resulting information matrix leads
to an underestimate of the standard errors, because it does not account for the uncertainty
in estimating θ. These standard errors are reported by the survival package for example,
although Therneau and Grambsch (2000) recommend using the bootstrap for more precision.
In frailtyEM, adjusted standard errors are obtained by calcuating the information matrix for
β and λ0 also at θ̂ ± ε. This is described in more detail in Appendix A3.
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3.4. Output, summary and prediction

The return object type is emfrail, which is essentially a list that contains the results of
the “outer” maximization, the results of the “inner” maximization at this estimate, and a few
other fields which are used for different methods. The object type is documented in ?emfrail.
Some options to obtain only part of this object as an output are available via the .control

argument.

By itself, an emfrail object prints the call, a summary of “outer” optimization, the estimates
of the covariates and the pvalue of the Commenges-Andersen test. A more user-readable
summary of an emfrail object is provided by the summary.emfrail() method. This returns
an object of the class emfrail_summary that contains general fit information, covariate esti-
mates and several distribution-specific measures of fit and dispersion described in Section 2.3.
Arguments to summary.emfrail() may be used to show confidence intervals either likelihood
based or delta method based, as described in Section 3.3.

A method for predicting cumulative hazard and survival curves, both conditional and marginal,
exists in predict.emfrail(). Confidence bands are based on the asymptotic normality of
the estimated λ0, and available both for adjusted and un-adjusted for the uncertainty of θ.
The user can specify which quantities to obtain and values of the linear predictor at which
to calculate these curves. The function returns a data frame from which several plots can be
easily created.

A few simple plot functions have been created for convenience, both using the base plot
engines from the graphics package and the ggplot2 package. An overview of the available
plots may be found in ?plot_emfrail and ?ggplot_emfrail. These include plot_pred()

for plotting marginal and conditional cumulative hazard or survival curves, plot_hr() for
plotting marginal and conditional estimated hazard ratios, and hist_frail() for a histogram
of the posterior estimates of the frailties. The same plots may be obtained with the ggplot2
engine by adding the prefix gg to these functions. Furthermore, a scatter plot of the posterior
estimates of the frailties may be obtained with ggplot_frail(), which also includes quantiles
of the posterior distribution in the case of the gamma distribution.

An additional function is provided to calculate the marginal log-likelihood for a vector of
values of θ, emfrail_pll(), without actually performing the outer optimizaion. This may be
useful for visualizing the profile log-likelihood or when debugging (e.g., to see if the maximum
likelihood estimate of θ lies on the boundary).

4. Illustration

The package is loaded in the usual way,

> library("frailtyEM")

The features of the package will now be illustrated with two well-known data sets available
in R.

4.1. CGD

The data are from a placebo controlled trial of gamma interferon in chronic granulotomous
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disease (CGD). It contains the time to recurrence of serious infections observed, from ran-
domizatio until end of study for each patient.

> data("cgd")

The variables of interest here are: tstart, tstop and status determine the outcome. The
individual is identified by the variable id. For the purpose of illustration, we will use treat

(treatment or placebo) and sex (female or male) as covariates, althought a larger number of
variables are recorded in the data set.

A basic emfrail model can be fitted like this:

> m1 <- emfrail(.data = cgd,

+ .formula = Surv(tstart, tstop, status) ~ sex + treat + cluster(id))

The arguments of emfrail visible above are .data and .formula. The .control and
.distribution are taken as defaults; for the latter, that is the gamma frailty distribution.
The .formula argument contains a Surv object at the left hand side and a +cluster() state-
ment on the right hand side (essentially as +frailty() in coxph). The .distribution and
.control arguments must be objects of the type emfrail_distribution and emfrail_control,
which are created by calls to functions with the same names. For example, the default choice
for the distribution is:

> str(emfrail_distribution())

List of 4

$ dist : chr "gamma"

$ theta : num 2

$ pvfm : num -0.5

$ left_truncation: logi FALSE

- attr(*, "class")= chr "emfrail_distribution"

The emfrail_distribution objects have 4 fields: dist describes the distribution of the
frailty (here, a gamma distribution), theta is the frailty parameter and the starting value for
the optimization. The parametrizations are described in Appendix A1. The pvfm field only
plays a role when dist=="pvf", and describes which PVF family distribution should be used
(default is -0.5, corresponding to the IG). Finally, left_truncation is a logical variable, on
whether to treat an observation as left truncated or not. For example, in the case of recurrent
events in Andersen-Gill format, this should be FALSE, because the “entry” time does not refer
to ascertainment, and the frailty must not be taken conditional on not having had an event
before that time point. The adjustment that is applied if left truncation is present is described
in Section 2.2.

The emfrail object may be accessed with the summary() method:

> sm1 <- summary(m1, lik_ci = TRUE)

> sm1

Call:

emfrail(.data = cgd, .formula = Surv(tstart, tstop, status) ~
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sex + treat + cluster(id))

Regression coefficients:

coef exp(coef) se(coef) adjusted se z p

sexfemale -0.22750 0.79652 0.39565 0.39580 -0.57500 0.5653

treatrIFN-g -1.05208 0.34921 0.31037 0.31042 -3.38973 0.0007

Estimated distribution: gamma / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.0221

(marginal) no-frailty Log-likelihood: -331.997

(marginal) Log-likelihood: -326.619

LRT: 1/2 * pchisq(10.8), p-val 0.00052

Frailty summary:

theta = 1.218 (0.59) / 95% CI: [0.539, 4.326]

variance = 0.821 / 95% CI: [0.231, 1.855]

Kendall's tau: 0.291 / 95% CI: [0.104, 0.481]

Median concordance: 0.289 / 95% CI: [0.101, 0.491]

E[log Z]: -0.464 / 95% CI: [-1.165, -0.12]

Var[log Z]: 1.241 / 95% CI: [0.26, 4.346]

Confidence intervals based on the likelihood function

The first two parts of this output, about regression coefficients and fit summary, exist regard-
less of the frailty distributions. The last part, “frailty summary”, provides a useful output
according to the distribution. The calculations behind this section are described for each
distribution in Appendix A1. Since only log θ is actually estimated in the “outer” step, the
delta method is employed to obtain standard errors for all derived quantities. The confidence
intervals may be obtained either likelihood-based or delta method-based, see Appendix A3
for details. The delta method based confidence intervals are shown if lik_ci = FALSE. We
found the profile likelihood confidence intervals more reliable, especially when the parameter
estimates approach the edges of the parameter space.

Both the Commenges-Andersen test for heterogeneity and the one-sided likelihood ratio test
deems the random effect highly significant. This is also suggested by the confidence interval
for the frailty variance, which is far from 0.

The results are almost identical to a gamma frailty fit from coxph. The marginal log-likelihood
in the emfrail object is slightly higher, that is because the estimation of the parameters of
the frailty distribution is more precise. In addition, emfrail also provides a 95% confidence
interval for the frailty variance.

> m_cph <- coxph(Surv(tstart, tstop, status) ~ sex + treat + frailty(id),

+ data = cgd,

+ ties = "breslow")

> m_cph

Call:

coxph(formula = Surv(tstart, tstop, status) ~ sex + treat + frailty(id),
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data = cgd, ties = "breslow")

coef se(coef) se2 Chisq DF p

sexfemale -0.227 0.396 0.330 0.330 1.0 0.56590

treatrIFN-g -1.051 0.308 0.264 11.673 1.0 0.00063

frailty(id) 56.160 37.4 0.02495

Iterations: 6 outer, 27 Newton-Raphson

Variance of random effect= 0.822 I-likelihood = -326.6

Degrees of freedom for terms= 0.7 0.7 37.4

Likelihood ratio test=98.8 on 38.8 df, p=3.98e-07 n= 203

The empirical Bayes frailty estimates are also identical for the two ways of fitting the model,
as seen in Figure 4.1.

To illustrate the predicted cumulative hazard curves we take two individuals, one from the
treatment arm and one from the placebo arm, both males. The two are shown in Figure 4.1

The cumulative hazard in this case can be interpreted as the expected number of events at
a certain time. It can be seen that the frailty “drags down” the marginal hazard. This is
a well-known effect observed in frailty models, as described in Aalen, Borgan, and Gjessing
(2008, ch. 7).

A similar model can be fitted with the positive stable distribution:

> m2 <- emfrail(.data = cgd,

+ .formula = Surv(tstart, tstop, status) ~ treat + sex + cluster(id),

+ .distribution = emfrail_distribution(dist = "stable"))

> summary(m2)

Call:

emfrail(.data = cgd, .formula = Surv(tstart, tstop, status) ~

treat + sex + cluster(id), .distribution = emfrail_distribution(dist = "stable"))

Regression coefficients:

coef exp(coef) se(coef) adjusted se z p

treatrIFN-g -1.08462 0.33803 0.33188 0.33583 -3.26806 0.0011

sexfemale -0.13710 0.87188 0.40689 0.40692 -0.33694 0.7362

Estimated distribution: stable / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.0221

(marginal) no-frailty Log-likelihood: -331.997

(marginal) Log-likelihood: -329.39

LRT: 1/2 * pchisq(5.21), p-val 0.0112

Frailty summary:

theta = 8.572 (5.41) / 95% CI: [3.232, 90.316]

Kendall's tau: 0.104 / 95% CI: [0.011, 0.236]
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> plot(exp(m_cph$frail),

+ sm1$frail$z,

+ xlab = "frailty estimates (coxph)",

+ ylab = "frailty estimates (emfrail)")

> abline(0,1)
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Figure 1: Scatterplot of the empirical Bayes frailty estimates from emfrail() versus those
from coxph()
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> library("ggplot2")

> p1 <- ggplot_pred(m1,

+ newdata = data.frame(sex = "male", treat = "rIFN-g")) +

+ ggtitle("rIFN-g") + ylim(c(0, 2)) +

+ theme_minimal()

> p2 <- ggplot_pred(m1,

+ newdata = data.frame(sex = "male", treat = "placebo")) +

+ ggtitle("placebo") + ylim(c(0, 2)) +

+ theme_minimal()

> gridExtra::grid.arrange(p1, p2, nrow = 1)
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Figure 2: Predicted conditional and marginal cumulative hazards for males, one from the
treatment arm and one from the placebo arm
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> pl1 <- ggplot_hr(m1,

+ newdata = data.frame(treat = c("placebo", "rIFN-g"),

+ sex = c("male", "male"))) +

+ ggtitle("gamma") +

+ theme_minimal()

> pl2 <- ggplot_hr(m2,

+ newdata = data.frame(treat = c("placebo", "rIFN-g"),

+ sex = c("male", "male"))) +

+ ggtitle("stable") +

+ theme_minimal()

> gridExtra::grid.arrange(pl1, pl2, nrow = 1)
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Figure 3: Conditional and marginal hazard ratio from the gamma and the positive stable
frailty models

Median concordance: 0.102 / 95% CI: [0.011, 0.233]

E[log Z]: 0.067 / 95% CI: [0.006, 0.179]

Var[log Z]: 0.406 / 95% CI: [0.037, 1.176]

Attenuation factor: 0.896 / 95% CI: [0.764, 0.989]

Confidence intervals based on the likelihood function

The coefficient estimates are similar to those of m1. The “Frailty summary” part is quite dif-
ferent though. The positive stable distribution has infinite expectation. However, Kendall’s
τ is easily obtained, and in this case it is smaller than in the gamma frailty model. Unlike
the gamma or PVF distributions, the positive stable frailty predicts a marginal model with
proportional hazards where the marginal hazard ratios are an attenuated version of the con-
ditional hazard ratios shown in the output. The attenuation factor, shown in the output, is
calculated as described in Appendix A1. This is discussed at length in Hougaard (2000) and
it can be easily visualized with emfrail, as shown in Figure 3.

The plot shows that the marginal hazard ratio of the gamma frailty model is not time-constant,
while the one from the positive stable frailty model is. This is discussed in Aalen et al. (2008,
ch. 7). In Hougaard (2000) this is seen as a strength of the positive stable frailty model.
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4.2. Kidney

The kidney data set is also available in the survival package. The data, presented originally
in McGilchrist and Aisbett (1991), contains the time to infection for kidney patients using
a portable dialysis equipment. The infection may occur at the insertion of the catheter
and at that point, the catheter must be removed, the infection cleared up, and the catheter
reinserted. Each of the 38 patients has exactly 2 observations, representing recurrence times
from insertion until the next infection. There are 3 covariates: sex, age and disease (a factor
with 4 levels). A data analysis based on frailty models is described in Therneau and Grambsch
(2000, ch. 9.5.2). The authors note that, when disease is included in the model, a gamma
frailty model offers no evidence of heterogeneity. However, when disease is removed from
the model, then there seems to be moderate evidence for heterogeneity. This is an example
where the frailty may be interpreted as a missing covariate.

> data(kidney)

> kidney$sex <- ifelse(kidney$sex == 1, "male", "female")

> m_gam <- emfrail(.data = kidney,

+ .formula = Surv(time, status) ~ age + sex + cluster(id))

> summary(m_gam)

Call:

emfrail(.data = kidney, .formula = Surv(time, status) ~ age +

sex + cluster(id))

Regression coefficients:

coef exp(coef) se(coef) adjusted se z p

age 0.0054372 1.0054520 0.0115813 0.0116976 0.4694817 0.6387

sexmale 1.5528412 4.7248755 0.4451769 0.4995172 3.4881440 0.0005

Estimated distribution: gamma / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.0245

(marginal) no-frailty Log-likelihood: -184.657

(marginal) Log-likelihood: -182.053

LRT: 1/2 * pchisq(5.21), p-val 0.0112

Frailty summary:

theta = 2.517 (1.49) / 95% CI: [0.97, 21.802]

variance = 0.397 / 95% CI: [0.046, 1.031]

Kendall's tau: 0.166 / 95% CI: [0.022, 0.34]

Median concordance: 0.162 / 95% CI: [0.022, 0.34]

E[log Z]: -0.212 / 95% CI: [-0.597, -0.023]

Var[log Z]: 0.486 / 95% CI: [0.047, 1.72]

Confidence intervals based on the likelihood function

Therneau and Grambsch discuss these models and they conclude that an outlier case is at
the source of the frailty effect. With the frailtyEM package, the positive stable frailty model
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may also be fitted. Unlike the gamma frailty model, the positive stable does not attempt to
“correct” non-proportional hazards.

> m_stab <- emfrail(.data = kidney,

+ .formula = Surv(time, status) ~ age + sex + cluster(id),

+ .distribution = emfrail_distribution(dist = "stable"))

> summary(m_stab)

Call:

emfrail(.data = kidney, .formula = Surv(time, status) ~ age +

sex + cluster(id), .distribution = emfrail_distribution(dist = "stable"))

Regression coefficients:

coef exp(coef) se(coef) adjusted se z p

age 0.0021816 1.0021839 0.0092248 0.0092248 0.2364892 0.8131

sexmale 0.8209988 2.2727687 0.2987240 0.2987245 2.7483521 0.0060

Estimated distribution: stable / left truncation: FALSE

Fit summary:

Commenges-Andersen test for heterogeneity: p-val 0.0245

(marginal) no-frailty Log-likelihood: -184.657

(marginal) Log-likelihood: -184.657

LRT: 1/2 * pchisq(-1.96e-05), p-val 0.5

Frailty summary:

theta = 105683.7 (33775246) / 95% CI: [2.879, Inf]

Kendall's tau: 0 / 95% CI: [0, 0.258]

Median concordance: 0 / 95% CI: [0, 0.255]

E[log Z]: 0 / 95% CI: [0, 0.2]

Var[log Z]: 0 / 95% CI: [0, 1.341]

Attenuation factor: 1 / 95% CI: [0.742, 1]

Confidence intervals based on the likelihood function

The Commenges-Andersen test for heterogeneity shows the same evidence as before, as it
does not depend on the frailty distribution. However, the positive stable parameter lies at the
edge of the parameter space (θ is between 0 and 1 for the PS distribution). Therefore, the
LRT is not significant. The major difference with the gamma frailty fit is that the regression
coefficient for sex is much smaller. To untangle this effect, one can check the (marginal)
proportional hazards assumption. This reveals that sex has a significant non-proportional
effect on the hazards:

> zph1 <- cox.zph(coxph(Surv(time, status) ~ age + sex + cluster(id), data = kidney))

> zph1

rho chisq p

age 0.0214 0.0231 8.79e-01

sexmale -0.4390 29.2598 6.33e-08

GLOBAL NA 29.3325 4.27e-07
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In small samples, the gamma frailty model implicitly fits a marginal non-proportional hazards
model, and in this case it succeeds. The PS distribution fits proportional hazards both
conditionally and marginally, and in this case it fails. To untangle this effect, we can perform
a proportional hazards test with the log-estimated frailties as an offset:

> s_gam <- summary(m_gam)

> off_z <- log(s_gam$frail$z)[match(kidney$id, s_gam$frail$id)]

> zph2 <- cox.zph(coxph(Surv(time, status) ~

+ age + sex + offset(off_z) + cluster(id),

+ data = kidney))

> zph2

rho chisq p

age -0.0145 0.00427 0.948

sexmale -0.2170 1.39043 0.238

GLOBAL NA 1.41146 0.494

In this case, this is evidence that the gamma frailty corrects for proportionality rather than
heterogeneity.

5. Conclusion

We have shown that the EM based approach has certain advantages in the context of frailty
models. First of all, it is semiparametric, which means that it is an extension of the Cox
proportional hazards model. In this way, classical results from semiparametric frailty models
(for example, based on the data sets in Section 4) can be replicated and further insight may
be obtained by fitting models with different frailty distributions. Until now, the Commenges-
Andersen test, positive stable and PVF family, have not all been implemented in a consistent
way in an R package.

Several options not discussed in this paper include the left truncation adjustment. There is
no available data set to illustrate this option, however the peroforming of a larger simulation
study to assess the effects of left truncation in clustered failure data is now possible.

Other extensions of this software are possible, since all that is needed is to specify the Laplace
transform and the corresponding derivatives for the E step. An interesting extension would
be to choose discrete distributions from the infinitely divisible family for the random effect,
such as the Poisson distribution. The newest features will be implemented in the development
version of the package at https://github.com/teddybalan/frailtyEM.

In the current landscape for modeling random effects in survival analysis, frailtyEM is a
contribution that focuses on implementing classical methodology in an efficient way. This
comes to aid researches, as well as clinicians, facilitating the analysis of present and future
studies.

Appendix A1: Results for the Laplace transforms

We consider distributions from the infinitely divisible family (Ash 1972, ch 8.5) with the

https://github.com/teddybalan/frailtyEM
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Laplace transform

LY (c) = exp(−αψ(c; γ)).

We now consider how α and γ can be represented as a function of a positive parameter θ.

The gamma distribution For Y a gamma distributed random variable, ψ(c; γ) = log(γ+
c)− log(γ), the derivatives of which are

ψ(k)(c; γ) = (−1)k−1(k − 1)!(γ + c)−k.

For identifiability, the restriction EY = 1 is imposed; this leads to α = γ. The distribution
is parametrized with θ > 0, θ = α = γ. The variance of Y is VarY = θ−1. Kendall’s τ

is then τ = 1
1+2θ and the median concordance is κ = 4

(
21+1/θ − 1

)−θ − 1. Furthermore,
E log Y = ψ(θ)− log θ and Var log Y = ψ′(θ) where ψ and ψ′ are the digamma and trigamma
functions.

The positive stable distribution For Y a positive stable random variable, ψ(c; γ) = cγ

with γ ∈ (0, 1), the derivatives of which are

ψ(k)(c; γ) =
Γ(k − β)

Γ(1− γ)
(−1)k−1cγ−1.

For identifiability, the restriction α = 1 is made; EY is undefined and VarY = ∞. The
distribution is parametrized with θ > 0, γ = θ

θ+1 .

Kendall’s τ is then τ = 1− θ
θ+1 and the median concordance is κ = 22−2

θ
θ+1 −1. Furthermore,

E log Y = −
({

θ
1+θ

}−1
− 1

)
ψ(1) and Var log Y =

({
θ

1+θ

}−2
− 1

)
ψ′(1).

In the case of the PS distribution, the marginal hazard ratio is an attenuated version of the
conditional hazard ratio. If the conditional log-hazard ratio is β, the marginal hazard ratio
is equal to β θ

θ+1 .

The PVF distributions For Y a PVF distribution with fixed parameter m ∈ R, m > −1
and m 6= 0,

ψ(c; γ) = sign(m)(1− γm(γ + c)−m)

where sign(·) denotes the sign. This is the same parametrizaion as in Aalen et al. (2008). The
derivatives of ψ are

ψ(k)(c; γ) = sign(m)(−γ)m(γ + c)−m−k(−1)k+1Γ(m+ k)

Γ(m)
.

The expectation of this distribution can be calculated as minus the first derivative of the
Laplace transform calculated in 0, i.e.,

EY = αψ′(0; γ)L(0;α, γ) =
α

γ
m.
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The second moment of the distribution can be calculated as the second derivative of the
Laplace transform at 0,

EY 2 = α2ψ′2(0)− αψ′′(0) =
α2

γ2
m2 +

α

γ2
m(m+ 1).

For identifiability, we set EY = 1. The distribution is parametrized through a parameter θ > 0
which is determined by γ = (m+ 1)θ and α = sign(m)m+1

m θ. This results in VarY = θ−1.

A slightly different parametrization is presented in Hougaard (2000), dependent on the pa-
rameter ηH . The correspondence is obtained by setting ηH = (m+ 1)θ.

The PVF family of distributions includes the gamma as a limiting case when m→ 0. When
γ → 0 the positive stable distribution is obtained. When m = −1 the distribution is degen-
erate, and with m = 1 a non-central gamma distribution is obtained. Of special interest is
the case m = −0.5, when the inverse Gaussian distribution is obtained. With m > 0, the
distribution is compound Poisson with mass at 0. In this case, P (Y = 0) = exp(−m+1

m θ).

For m < 0, closed forms for Kendall’s τ and median concordance are given in Hougaard (2000,
Section 7.5).

Left truncation

To determine the Laplace transform under left truncation, we determine ψ̃ from (6).

For the gamma distribution, we have

ψ̃(c; γ,ΛL) = log(γ + ΛL + c)− log(γ + ΛL)

which implies that the frailty of the survivors is still gamma distributed, but with a change
in the parameter γ.

For the positive stable we have

ψ̃(c; γ,ΛL) = (c+ ΛL)γ − ΛγL,

which is not a positive stable distribution any more.

For the PVF distributions, we have

ψ̃(c; γ,ΛL) = sign(m)
(
γm(γ + ΛL)−m − (γ + ΛL)m(γ + ΛL + c)−m

)
,

which is not PVF any more.

Closed forms

The gamma distribution leads to a Laplace transform for which the derivatives can be calcu-
lated in closed form. It can be seen that

L(c;α, γ) = γα(γ + c)−α.

The k-th derivative of this expression is

L(k)(c;α, γ) = γα(γ + c)−γ−k
Γ(α+ k)

Γ(α)
.
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This can be exploited also in the case of left truncation, since the gamma frailty is preserved,
as shown in the previous section.

The inverse gaussian distribution is obtained when the PVF parameter is m = −1
2 . Under

the current parametrization, we have β = θ/2 and α = θ. In this case, the Laplace transform
is

L(c; θ) = exp
{
θ
(

1−
√

1 + 2c/θ
)}

.

The k-th derivative of this can be written as

L(k)(c; θ) = (−1)k
(

2

θ
c+ 1

)−k/2 Kk−1/2(√2θ
(
c+ θ

2

))
K1/2

(√
2θ
(
c+ θ

2

))
where K is the modified Bessel function of the second kind.

The emfrail() uses the closed form formulas when possible, by default.

Appendix A2: A general E step

As shown in (7), the calculation of the E step for the general case involves taking derivatives
of Laplace transforms of the form

L(c) = exp(g(c))

where for simplicity we denote g(c) = −αψ(c; γ). The expression for the k-th derivative of
L(c) can be obtained with a classical calculus result, di Bruno’s formula, i.e.,

L(n)(c) =
∑

m∈Mn

n!

m1!m2!...mn!

n∏
j=1

(
g(j)(c)

j!

)mj
L(c), (9)

where Mn = {(m1, ...,mn)|
∑n

j=1 j ×mj = n}. For example, for n = 3,

M3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)} .

This corresponds to the “partitions of the integer” 3, i.e., all the integers that sum up to 3:

{(1, 1, 1), (1, 2, 0), (3, 0, 0)} .

We implemented a recursive algorithm in C++ which resides in the emfrail_estep.cpp

which loops through these partitions, calculates the corresponding derivatives of ψ and the
coefficients.

Appendix A3: Standard errors

The outer maximization of L̂(θ) is carried out on the log-scale, as described in section 3,
and the numeric hessian is used to obtain Var(θ̂). Afterwards, the delta method is employed
to derive standard errors for θ and the other functionals of θ described in Appendix A1.



22 frailtyEM: An R package for shared frailty models

However, the standard error is not very meaningul for parameters with skewed distributions.
Confidence intervals are constructed in two ways.

The first type of confidence intervals provided by frailtyEM are based on the the asymptotic
normality of ̂log θ, by constructing a 95% symmetric confidence interval on the log-scale, and
then translating it to the other functionals of θ.

The second type are likelihood-based confidence intervals. Under the null hypothesis, the
likelihood ratio test statistic follows a χ2(0)+χ2(1) distribution. The critical value associated
with this test statistic is approximately 1.92. Using the root-finding algorithm implemented in
the uniroot() function in the stats package, a confidence interval is obtained from the values
of θ with the property that L̂(θ) ≥ L̂(θ̂)− 1.92. This confidence interval is then translated to
the functionals of θ.

The likelihood-based confidence intervals are the default in emfrail() because the coverage
is guaranteed to be the same for all transformations of θ.

Considering the vector of parameters η = (β, λ0(·)), the information matrix for (θ, η) can be
written as follows:

I =

[
Iθ,θ Iθ,η
Iη,θ Iη,η

]
.

The part corresponding to η, Iη,η is calculated using Louis’ formula, which has been com-
monly employed to obtain this quantity from EM algorithms Louis (1982). This is done
under the assumption of θ fixed to the maximum likelihood estimate θ̂. This leads to an
underestimate of the standard errors, as is noted also in Therneau and Grambsch (2000, sec.
9.5). The calculation of the variance-covariance matrix I−1 in this case involves approximat-
ing Iη,θ and adjusting Iη,η, as described in Hougaard (2000, Appendix B.3) and Putter and
Van Houwelingen (2015).

Confidence intervals for the conditional cumulative hazard are obtained from the part of
the variance-covariance matrix corresponding to λ0(·), and confidence intervals for Λ0(t) =∑

s≤t λ0(t) are obtained with the usual formula. For confidence intervals, the delta method
is used to calculate a symmetric confidence interval for log Λ0(t) for all t, which is then
exponentiated.
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