An R Package flare for High Dimensional Linear
Regression and Precision Matrix Estimation

Xingguo Li*f Tuo Zhao** Xiaoming Yuan® Han Liu¥

Abstract

This paper describes an R package named flare, which implements a family of new high
dimensional regression methods (LAD lasso, SQRT lasso, L, lasso and Dantzig selector) and
their extensions to sparse precision matrix estimation (TIGER and CLIME). The proposed
solver is based on the alternating direction method of multipliers (ADMM), which is further
combined with the linearization and coordinate descent algorithm. The package flare is coded
in C and has a friendly user interface. The memory usage is optimized by using the sparse matrix
output. The experiments show that flare is efficient and can scale up to large problems.

1 Introduction

As a popular sparse linear regression method for high dimensional data analysis, lasso has been
extensively studied by machine learning and statistics communities [9]. It adopts the L;-penalized
least square formulation to estimate and select non-zero parameters simultaneously. It further
generated a wide range of research interests, and motivated many variants using non-smooth loss
functions such as Lq loss and Lo loss functions. However, these non-smooth loss functions pose a
great challenge to computation. To the best of our knowledge, no efficient solver has been developed
so far, while several software packages such glmnet has been developed to solve large scale lasso
problem [5].

In this paper, we describe a newly developed R package named flare (tuning optimized regression
under gparity constraints), which implements a family of new linear regression methods including
LAD lasso [10], SQRT lasso [1], L, lasso and Dantzig selector [4]. By using the column by col-
umn regression scheme, we further extends these regression methods to sparse precision matrix
estimation problems including CLIME [3] and TIGER [7]. The proposed solver is based on the
alternating direction method of multipliers (ADMM) combined with the linearization and efficient
coordinate descent algorithm. The global convergence result of ADMM has been established in [6].
The numerical simulations show that flare is very efficient and can scale up to large problems.

*Xingguo Li and Tuo Zhao contributed equally to this work;

TDepartment of Mathematics and Statistics, University of Minnesota Duluth;
iDepartment of Computer Science, Johns Hopkins University;

$Department of Mathematics, Hong Kong Baptist University;

TDepartment of Operations Research and Financial Engineering, Princeton University.

2 Notation

Before we proceed with the technical background, we first start with some notations. Let A =
[Aji] € R¥*4 and v = (v1,...,v9)t € R4, Amin(A) and Apax(A) denote the smallest and largest
eigenvalues of A. We define vector norms:

[olls =D logl, [Joll3 =) o3, [[V]]o = manx v
j j

We also define the following winterization, univariate and group soft-thresholding operators denoted
by W, § and G respectively

W(v,\) = [sign(v;) - min{|v;, A}y,

S(v,) = [sign(v;) - max{|v;| —)\,O}}?:l,
G(v,\) = ﬁ - max{[|v;||2 — \, 0}.

3 Algorithm

Let X € R™? and y € R™ be the design matrix and response vector respectively, we aim to solve
the following optimization problem,

~

B = argmin L(r,\) + ||B]1 st.b—AB=r. (1)
B

where A > 0 is the regularization parameter. The corresponding L(7r,\), A and b for different
regression methods are shown in Table 1. As can be seen, LAD lasso and SQRT lasso are equivalent
to Ly lasso with ¢ = 1 and ¢ = 2 respectively. All methods above can be efficiently solved by the

Table 1: Regression methods in flare.

Method Loss function A b Existing solver
1
LAD lasso L(r,\) = 7)\”7’”1 X Y L.P.
n
1
T1 L(r,\) = X .0.C.P.
SQRT lasso (r,\) NG |72 y S.0.C
1
L, lasso L(r,\) = %Hrﬂq X Y None
Dantzig selector | L(r,\) = 00 f [[7floc > A XTX | XTy L.P.
’ 0 otherwise
following updating scheme
1 1
ettt = argmin o [[u’/p+ b — AB' — |2+ ~L(r,), (2)
r p
1 2 1
Bt = arggmn 3 Hut/p — 4 p— ABH2 + ;H:@”h (3)
ut+1 _ ut 4 p(b _ ,,,t+1 _ AﬁtJrl), (4)

where u is the Lagrange multiplier, and p > 0 is the penalty parameter. Existing ADMM based
algorithms usually choose a fixed p, while in the package “flare”, we dynamically adjust p to well
balance the timing performance and precision. For LAD lasso, SQRT lasso, and Dantzig selector,
(2) has closed form solutions as follows,

LAD lasso ittt =Sl /p+b— ABL1/)p), (5)
SQRT lasso :r'™ =G(u'/p+b— AB",1/p), (6)
Dantzig selector : r'™ = W(u'/p+b— AB"). (7)

For L, lasso with 1 < ¢ < 2, we can solve it by the bi-section based root finding algorithm [8]. (3)
is a standard L; penalized least square problem. For simplicity, existing ADMM based algorithms
usually adopt the linearization at 3 = 3! as follows and solve (3) approximately.

1 1
Bt = argmin 3 |8 —8"+AT(AB" —u' + ' — b)/sz + ;||5\|1, (8)
B
where v > Apax(ATA). (8) has a closed form solution

Bt-i—l ZS<ﬁt—AT(A,@t—’ut+Tt+1—b)/’y,;)) (9)

However, such a linearization step is too conservative, and usually makes the algorithm convergence
slowly in practice. To overcome this drawback, we propose an acceleration scheme to further boost
the empirical performance:

(I) We first solve (3) exactly by the efficient coordinate descent algorithm combined with active
set and the covariance update tricks suggested by [5];

(IT)After a few iterations, when the obtained solution is close to the optimum, we switch to the
linearization and solve (3) approximately.

Such a hybrid procedure is motivated by a very common phenomenon in convex optimization [2].
At the early stage of iterations, when the solution is far from the optimum, we can gain progress
by taking an aggressive step (solving (3) exactly). After a few iterations, when the solution is close
to the optimum, we need to take a conservative step (the linearization) to avoid oscillating around
the optimum.

4 Examples

We illustrate the user interface by two examples. The first one is the eye disease dataset in our
package.

> library(flare); data(eyedata) # Load the dataset

> outl = flare.slim(x,y,method="1q",q=1.5,nlambda=40,lambda.min.ratio=0.25)
> out2 = flare.slim(x,y,method="dantzig",nlambda=20,lambda.min.ratio=0.9)

> plot(outl); plot(out2) # Plot solution paths

Regularization Path Regularization Path

0.06
1

Coefficient
0.04

1

Coefficient

0.02
1
/

-002 0.00 002 004 006 008

0.00
1
i

0.2 0.3 0.4 0.5 0.6 0.65 0.70 0.75

Regularization Parameter Regularization Parameter

(a) Lq lasso (b) Dantzig selector

Figure 1: Solution paths obtained by the package flare

The program automatically generates a sequence of 40 regularization parameters and estimates the
corresponding solution paths of L, lasso and Dantzig selector. We further plot two solution paths
in Figure 1, and we see that L, lasso has a stable and sparse path, while the solutions of Dantzig
selector may dramatically change along the path.

Our second example is the simulated dataset using the data generator in our package.

Generate data with hub structure

L = flare.tiger.generator(n=200,d=200,graph="hub",g=10)

outl = flare.tiger(L$data,method="clime",nlambda=10,lambda.min.ratio=0.5)
Model selection using cross validation.

outl.opt = flare.tiger.select(outl,criterion="cv"

out2 = flare.tiger(L$data,lambda = 2*sqrt(log(200)/400))

Visualize obtained grpahs

plot(L); plot(outl.opt); plot(out2)

V V V V V V V V

For CLIME, the program automatically generates a sequence of 10 regularization parameters,
estimates the corresponding graph path, and chooses the optimal regularization parameter by cross
validation. For TIGER, we manually choose the regularization to be 24/log(d)/n, and we further
compare the obtained graphs with the ground truth using the visualization functions in our package,
and the resulting figures are shown in Figures 2.

5 Numerical Simulation

All experiments below were carried out on a PC with Intel Core i5 3.3GHz processor, and the
convergence threshold of flare is chosen to be 1073. Timings (in seconds) are averaged over
50 replications using a sequence of 5 regularization parameters, and the range of regularization
parameters is chosen so that each method produced approximately the same number of non-zero
estimates.

We first evaluate the timing performance of our package for linear regression. We set n = 100
and vary d from 500 to 4000 as is shown in Table 2. We independently generate each row of

(b) CLIME (c) TIGER

Figure 2: Graphs estimated by the package flare

the design matrix from a d-dimensional normal distribution N(0, %), where 3, = 0.5 =*. Then
we generate the response vector using y; = 3X;1 + 2X;2 + 1.5X;4 + €;, where ¢; is independently
generated from N(0,1). As can be seen from Table 2, LAD lasso, SQRT lasso and L; 5 lasso all
achieve very good timing performance. Dantzig selector is slower than others, but still much faster
then general linear program solver.

We then evaluate the timing performance of our package for sparse precision matrix estimation.
We set n = 200 and vary d from 100 to 800 as is shown in Table 2. We independently generate the
data from a d-dimensional normal distribution N (0, %), where X, = 0.5k, The corresponding
precision matrix 2 = £~ has ;; = 1.3333, Q;;, = —0.6667 for all j,k =1,....,d and |j — k| = 1,
and all other entries are 0. As can be seen from Table 2, TIGER and CLIME both achieve good
timing performance, and CLIME is slower than TIGER due to a more difficult formulation.

Table 2: Average timing performance (in seconds) with standard errors in the parentheses on sparse
linear regression and sparse precision matrix estimation.

Sparse Linear Regression

Method d = 500 d = 1000 d = 2000 d = 4000
LAD lasso 0.1243(0.0404) | 0.2944(0.0488) | 0.6934(0.0561) | 2.2351(0.0859)
SQRT lasso 0.0564(0.0018) | 0.1213(0.0366) | 0.6499(0.0485) | 2.1836(0.0556)
L 5 lasso 0.5664(0.0448) | 0.6337(0.0043) | 1.0176(0.0459) | 2.4514(0.0674)
Dantzig selector | 0.2407(0.0740) | 4.2093(1.0691) | 20.519(1.1620) | 120.06(2.0016)

Sparse Precision Matrix Estimation

Method d =100 d = 200 d = 400 d=800
TIGER 2.9412(0.5437) | 5.8062(0.1269) | 19.903(0.2034) | 138.49(1.9792)
CLIME 0.4556(0.0436) | 2.575(0.0922) | 25.487(0.5885) | 388.09(8.9558)

6 Conclusion

Our developed package flare is complementary to the existing glmnet package. It provides the
implementation of several new regression methods. We will maintain and support this package in

the future.

References

1]

2]

A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso: pivotal recovery of sparse
signals via conic programming. Biometrika, 98(4):791-806, 2011.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, the second
edition edition, 2009.

T. Cai, W. Liu, and X. Luo. A constrained ¢; minimization approach to sparse precision
matrix estimation. Journal of the American Statistical Association, 106:594-607, 2011.

E. Candes and T. Tao. The dantzig selector: Statistical estimation when p is much larger than
n. The Annals of Statistics, 35(6):2313-2351, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Journal of statistical software, 33(1):1, 2010.

B. He and X. Yuan. On non-ergodic convergence rate of douglas-rachford alternating direction
method of multipliers. Technical report, Tech. rep, 2012.

H. Liu and L. Wang. Tiger: A tuning-insensitive approach for optimally estimating gaussian
graphical models. Technical report, Massachusett Institute of Technology, 2012.

J. Liu and J. Ye. Efficient {1 /I; norm regularization. Technical report, Arizona State University,
2010.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267-288, 1996.

Lie Wang. L1 penalized lad estimator for high dimensional linear regression. Technical report,
Massachusett Institute of Technology, 2012.

