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This document describes how to use the R-package fgpt. The Floating Grid Permutation Technique
(FGPT) offers functions which can be used for spatially restricted permutation tests. First the permutation
technique will be explained. Next this documents starts with explaining the use of lower level functions
on examples which broaden the understanding of the methodology and show the functionality of those
functions. Lastly higher level functions will be explained which can be used to easily perform spatially
restricted permutation tests.

First install and load the fgpt package:
install.packages("fgpt", repos="http://R-Forge.R-project.org")

## Installing package into ’/tmp/RtmpVkbZhU/Rinst797/12a2ee85’
## (as ’1ib’ is unspecified)

##
## The downloaded source packages are in
## '/tmp/Rtmpmé4qdOa/downloaded_packages'

library("fgpt")

Some insight in the premutation technique is required to use this package. The Floating Grid Permu-
tation Technique is introduced in Radersma and Sheldon (2015). The next paragraphs will give a short
overview of the method.

1 Theory

Permutation tests are important in many scientific fields (for instance ecology and evolution) as they can
deal with small sample sizes and various forms of dependencies among observations. A common source
of dependence is spatial autocorrelation. Accounting for spatial autocorrelation is often crucial in eco-
evolutionary studies, because many ecological and evolutionary processes are spatially restricted, such as
gene flow, dispersal, mate choice, inter- and intraspecific competition, mutualism and predation.

The FGPT is a spatially restricted permutation technique for point observations with known geograph-
ical locations. Within the randomization process, the probability an observation is assigned to any of the
spatial locations is a negative function of the distance between its original and assigned location. The slope
of this function depends on a preset parameter and by exploring its parameter space, non-random spatial
processes can be both assessed and controlled for at multiple spatial scales.

In the FGPT a set of grid cell sizes is chosen, which represents the different spatial scales that will be
examined. The null distribution of observations for a particular grid cell size is calculated by first project-
ing the grid on a map of the geographical locations (Fig[Th). Next the grid is randomly moved and rotated
(Fig [Tb). Within each grid cell observations are shuffled or when appropriate sampled with replacement
(bootstrapped). The statistic appropriate for testing the hypotheses is calculated. The procedure is re-
peated a large number of times to produce a reference null distribution of the statistic (Fig [If). For every



observation, and for every grid cell size, a negative near linear relationship between the distance between
the original and assigned location and the probability of assignment is achieved, which simulates spatial
autocorrelation (Fig [Id). To deal with group membership (e.g. observations were collected in multiple
years) shuffling can be restricted to observations with the same group while the statistic is calculated over
all observations at once.
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Figure 1: A graphical representation of the FGPT. The grey areas represent the study area and black dots
and capital letters represent locations of observations. (a) A grid of size s is projected on the original map of
the area with our focal observation marked as A. (b) At the first iteration the grid is randomly moved and
rotated. Observations B, C and D share the same grid cell with A. Within each grid cell, all observations
are randomized. (c) At the next iteration A shares a grid cell with only two other observations, C and E.
Again all observations are randomized within grid cells, so A is randomized with C and E. (d) After many
iterations (for graphical purposes we show only 25) we get a distribution for the probability an observation
is assigned to any of the spatial locations. The probability that A is assigned to the location of observation
C is higher than to the location of observation D. This method assumes probability of being assigned to a
specific location is decreases with distance to the observed location.

2 Lower level functions

2.1 Exploring basic principles with a 1D example

I start with a small one dimensional example. Assume 10 observations, which are conveniently spaced out
on a line with a spatial unit of one between consecutive observations. So the x coordinates are in this case
1 to 10 and the y coordinates 0 for all observations.



x.coor <- 1:10
y.coor <- rep(0,10)

X.coor
## [1] 1 2 3 4 5 6 7 8 910
y.coor

# [11 0000000000

Normally those observations would not only have coordinates, but also so-called marks. Marks are for
instance measurements which were taken at the geographical locations, such as traits of individual animals
or plants. For convenience I take the x-coordinates as marks and will randomize the x coordinates. This
way the randomization procedures are easily traceable. I first start with a non-spatial randomization.
I produce 5 sets of randomized x coordinates with the R function sample, which is available as a base
function in R.

set.seed(23)
apply(array(x.coor, dim=c(10,5)),2,sample, size=10)

#it [,11 [,2]1 [,3] [,4] [,5]
# [1,] 6 9 6 7 8
##  [2,] 3 7 3 3 1
##  [3,] 9 4 2 9 3
##  [4,] 5 3 10 8 5
## [5,] 7 6 9 2 7
#  [6,] 8 1 5 5 4
# [7,] 4 10 7 6 9
## [8,] 10 2 4 10 2
#  [9,] 2 8 1 4 6
## [10,] 1 5 8 1 10

A non-random randomization should not lead to a correlation between the original x coordinates and
the locations they are assigned to by the randomization procedure. I can check this by running 1000
randomizations and plot the randomized sets to the x coordinates:

set.seed(45)

rand.setsl <- apply(array(x.coor, dim=c(10,1000)),2,sample, size=10)

plot(as.vector(rand.setsl)+runif (10000, -0.4,0.4), rep(1:10,1000)+runif (10000,
-0.4,0.4), col="#FF000030", pch=16, xlab="original location",
ylab="assigned location", main="non spatial")
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With a correlation test I can check whether there is correlation between the original and assigned
location.

cor.test(rep(1:10,1000) ,as.vector(rand.setsl))

##

## Pearson's product-moment correlation

#i#

## data: rep(1:10, 1000) and as.vector(rand.setsl)
## t = 0.8218, df = 9998, p-value = 0.4112

## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:

## -0.01138372 0.02781377

## sample estimates:

it cor

## 0.008218182

So no correlation is present.

I now reproduce the previous randomizations while using the FGPT. Again I begin with 5 permutations
to show how the results look like. To produce spatially restricted random datasets I use the function fgperm
and introduce the spatial locations by combining the x and y coordinates into a two column matrix.

set.seed(72)
xy <- cbind(x.coor,y.coor)
fgperm(xy, z=x.coor, scale=3, iter=5, as.matrix=TRUE)

#t (,11 [,2]1 [,3]1 [,4] [,5]
##  [1,] 1 3 3 1 2
##  [2,] 2 1 2 2 1
##  [3,] 4 4 1 3 3



#  [4,] 3 2 4 4 5
##  [5,] 5 7 5 5 4
##  [6,] 6 5 6 6 6
##  [7,] 7 6 8 7 8
## [8,] 8 9 7 8 9
## [9,] 10 8 9 10 10

## [10,] 9 10 10 9 7

Notice that lower values tend to stay at the top of the table and the higher values at the bottom. Now see
whether the Floating Grid permutations result in a correlation between the original and assigned locations.

set.seed(24)

rand.sets2 <- fgperm(xy, z=x.coor,scale=3, iter=1000)

plot(unlist(rand.sets2)+runif (10000, -0.4,0.4), rep(1:10,1000)+runif (10000,
-0.4,0.4), col="#FF000030", pch=16, xlab="original location",
ylab="assigned location", main="FGPT: scale = 3")

FGPT: scale =3
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cor.test(rep(1:10,1000) ,unlist(rand.sets2))

##

## Pearson's product-moment correlation

##

## data: rep(1:10, 1000) and unlist(rand.sets2)

## t = 264.8677, df = 9998, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.9282583 0.9334887

## sample estimates:

#Hit cor



## 0.9309212

Well, there is a pretty strong correlation. Note that the observations of the original location 1 are only
assigned to 1,2,3 and 4. I set scale to 3, which is the maximum distance observations are assigned to
and happen to be the difference between x-coordinate 4 and 1. The FGPT should result in a negative near
linear relationship between the distance between the observed and assigned location and the probability
of assignment. I can check whether that is the case by plotting a histogram of for all observations that
originate from 1.

hist(unlist(rand.sets2) [which(rep(1:10,1000)==1)], breaks=0:10+0.5,
xlab="assigned location", main="observed location 1")
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Hmm, that doesn’t look right. There are too many observations allocated to 1. Well, that is an edge
effect. More on edge effects can be found in the paper that introduced FGPT (Radersma and Sheldon 2015).
Now I try a observation in the middle, for instance 5.

hist(unlist(rand.sets2) [which(rep(1:10,1000)==5)], breaks=0:10+0.5,
xlab="assigned location", main="observed location 5")
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That looks better. Now lets see what happens when I increase the scale. First to 6 and than to 1000.



set.seed(7)
xy <- cbind(x.coor,y.coor)
fgperm(xy, z=x.coor, scale=6, iter=5, as.matrix=TRUE)

#it [,11 [,2]1 [,31 [,4] [,5]
##  [1,] 1 3 2 1 3
#  [2,] 6 1 1 7 1
##  [3,] 2 2 3 5 2
##  [4,] 4 7 4 2 5
## [5,] 7 8 6 3 4
# [6,] 5 4 8 6 10
#  [7,] 3 6 7 4 7
##  [8,] 9 5 9 8 9
# [9,] 10 9 10 9 8
## [10,] 8 10 5 10 6

Low values still tend to be at the top of the table and high values at the bottom. Again I plot a 1000
permutations again and check the correlation.

rand.sets3 <- fgperm(xy, z=x.coor,scale=6, iter=1000, add.obs=FALSE)
plot(unlist(rand.sets3)+runif (10000, -0.4, 0.4),
rep(1:10,1000) +runif (10000, -0.4, 0.4), col="#FF000030", pch=16,
xlab="original location", ylab="assigned location", main="FGPT: scale = 6")

cor.test(rep(1:10,1000) ,unlist(rand.sets3))

##

## Pearson's product-moment correlation

##

## data: rep(1:10, 1000) and unlist(rand.sets3)
## t = 119.0738, df = 9998, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## 0.7575771 0.7737916

## sample estimates:

## cor

## 0.7658061



FGPT: scale = 6
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Still a correlation, but less steep. Note that the furthest location an observed value of 1 was assigned
to is 8. This is because the near linear relationship between distance and assignment probability is tailing
off to the grid cell size (i.e. scale) times the square root of 2. That is approxemately 8.5 in this case. So in
principle values of 9 could occur, but with very small probability. Now I plot and check for a correlation

when scale is 1000.

set.seed(6)
xy <- cbind(x.coor,y.coor)
fgperm(xy, z=x.coor, scale=1000, iter=5, as.matrix=TRUE)

#Ht [,11 [,2]1 [,3] [,4] [,5]
# [1,] 10 3 3 2 1
##  [2,] 6 8 6 7 5
##  [3,] 2 4 8 4 7
##  [4,] 1 1 4 5 8
## [5,] 3 9 1 3 6
##  [6,] 5 10 9 10 2
##  [7,] 7 5 7 6 3
## [8,] 9 2 2 8 4
##  [9,] 8 7 10 9 10
## [10,] 4 6 5 1 9

rand.sets4 <- fgperm(xy, z=x.coor,scale=1000, iter=1000, add.obs=FALSE)

plot(unlist(rand.sets4)+runif (10000, -0.4,0.4),

rep(1:10,1000) +runif (10000, -0.4,0.4), col="#FF000030",
pch=16, xlab="original location", ylab="assigned location", main="FGPT: scale

cor.test(rep(1:10,1000) ,unlist(rand.sets4))

#it

## Pearson's product-moment correlation

1000")



##

## data: rep(1:10, 1000) and unlist(rand.sets4)

# t = 1.7274, df = 9998, p-value = 0.08413

## alternative hypothesis: true correlation is not equal to O
## 95 percent confidence interval:

## -0.002328131 0.036860318

## sample estimates:

#Hit cor

## 0.01727273
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The results of scale 1000 look very similar to the results of the non spatial permutation. That makes
sense, because the probability that all obervations will share the same grid cell is very large for grid cell
sizes of 1000. A non spatial permutation test would yield similar results as the FGPT with infinite large
grid cells.

2.2 Exploring functionalities with a 2D example

Now I am going to produce a two dimensional example, which I use to explore the functionalities of the
permutation function fgperm and start performing some permutation tests with the function fgstat.

For confenience I use observation locations which are situated in a grid.

x.coor <- rep(1:10, times=10)
y.coor <- rep(1:10, each=10)

I am also going to produce three types of marks which are three independent observations (i.e. traits)
belonging to the 100 locations in the grid. I am going to investigate whether those marks show spatial
autocorrelation and whether they correlate with eachother. To show the potential of the FGPT I am going



to introduce spatial autocorrelation in the marks. The first two marks are affected by space alone; the first
mark shows a gradient from east to west and the second from south to north.

set.seed(29)

markl <- x.coor+rnorm(100,10,2)

mark2 <- y.coor+rnorm(100,10,2)

plot(x.coor, y.coor, cex=(markl-5)/10, pch=16, col="red",main="mark 1")
plot(x.coor, y.coor, cex=(mark2-5)/10, pch=16, col="red",main="mark 2")
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The third mark will correlate with the first mark. Although the spatial cline of the third mark is
opposite to the cline of the first mark, I let the third mark correlate positively to the first mark at fine
spatial scales. So when the first mark is at a given location relative high compared to its neighbours, the
third mark will be relative high as well. This is depicted in the following graphs. In the first graph the red
bubbles represent the third mark and the open circles the first mark.

set.seed(9)

mark3 <- markl+rnorm(100,0,0.5)+11-2*x.coor

plot(x.coor, y.coor, cex=(mark3-3)/10, pch=16, col="red",main="mark 3")
points(x.coor, y.coor, cex=(mark1-3)/10)

plot (markl,mark3, pch=16, col="red", main="Mark 1 versus mark 3")
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Time to start using the fgperm function. fgpermis a function to produce permuted datasets in which the
permutations are spatially resticted. In the previous paragraph the effect of scale was already investigated,
so I will not discuss its functionality here. Minimally required input for fgperm is a two-column matrix
containing the geographical coordinates of the observations and scale. If I leave the argument z empty
the function will automatically permute the indices of the spatial locations, in this case 1 to 100. I could
also enter for instance the first mark in z to permute mark 1 rather than the indices.

set.seed(435)

Xy <- cbind(x.coor,y.coor)

randl <- fgperm(xy=xy, scale=3)

rand2 <- fgperm(xy=xy, z=markl, scale=3)

rand1[[1]][1:10]
## [1] 12 14 1 4 527 6 28 19 9
rand2[[1]][1:10]

## [1] 15.84971 12.64995 9.47310 13.61984 13.42935 16.13989 15.95717 20.22088 19.83874
## [10] 21.83337

Whether I should permute indices or marks depends on my data and hypothesis. This will be discussed
in more detail when I discuss the function fgstat.

By default the fgperm uses the Fisher-Yates shuffle, which is a sampling technique without replacement.
Other sampling techniques can be passed on to fgperm, by changing the argument FUN. Here I show how
I can sample with replacement, but other functions can be used as well.

set.seed(5)
replace <- function(x){x[sample.int(length(x),replace=TRUE)]}
rand3 <- fgperm(xy=xy, scale=3, FUN=replace)

rand3[[1]][1:10]
## [1] 2 1 32535 7 7 20 29 19

As you can see index 7 is sampled twice for the first 10 locations in the first permutation. I can also
change the number of iterations (default is 999), the ratio between the sides of the grid cell sizes (read
the original paper for the purpose of this argument), whether I would like to add the observed values as
the first permuted dataset (advisable: see Ruxton and Neuhduser (2013) for more information on good
practices in permutation techniques) and whether I would like the output to be a matrix rather than a list.
A list is required for the function fgstat, which I will introduced later. Before moving on to fgstat I first
introduce the function fgploc which has some additional functionality to fgperm which might come in
handy in certain cases.

In fgploc an additional function must be added which manipulates the observations within grid cells.
I can for instance scale observations within grid cells. This will give information on the deviations from
the mean while correcting for any non-random variation at broader spatial scales than the grid cell size. I
will show a small example, but I will not go into details for when to use this function.

set.seed(7)
rand4 <- fgploc(xy=xy, scale=3, marks=markl, FUN.mani=scale)

rand4[[1]][1:10]

## [1] 1.2691525 -0.1244069 -0.7449662 -0.3035829 0.7541650 0.7654143 1.9821839
## [8] -0.6528209 -0.9574298 -0.4152900

Now compare the output with the output of the function fgperm. When I take the average of all
permutated values grouped by x coordinate for both rand4 and rand2 an interesting difference is visible.
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fgploc results in all values to be close to 0 and not increasing with the x coordinate, while fgperm results
in means increasing with the x coordinate. fgploc removed the spatial cline, however if I would increase
the grid cell size this correction disappears. Note that rand4 contains NaNs. This is because the function
scale needs at least two observations per grid cell, but some observations will not share their grid cell
with any other observation (this is particulary the case close to the edge).

round (tapply(rand4[[1]],x.coor, mean),2)

#it 1 2 3 4 5 6 7 8 9 10
## -0.11 0.27 -0.38 -0.05 0.48 -0.37 0.32 -0.21 -0.06 NaN

round(tapply(rand4[[1]],x.coor, mean, na.rm=TRUE),2)

it 1 2 3 4 5 6 7 8 9 10
## -0.11 0.27 -0.38 -0.05 0.48 -0.37 0.32 -0.21 -0.06 0.12

round (tapply(rand2[[1]],x.coor, mean),2)

## 1 2 3 4 5 6 7 8 9 10
## 11.44 12.36 12.76 14.18 14.37 15.93 16.99 16.71 18.86 19.00

2.3 Analyzing data: spatial autocorrelation within marks

Now I am going to start analyzing the permuted datasets. I use the function fgstat for this. Arguments
minimally required for fgstat are permuted datasets which are the output of the fgperm or fgploc func-
tions and the marks if they were not introduced in the function fgperm. By default fgstat explores the
means of the permuted datasets, but other functions can be used to explore the data as well (e.g. sd, var,
etc.). I first test whether the mean of mark 1 deviates from random. Before I do so, I will first add the
original observations to the permuted datasets. This is not only convenient for the analyses, but also good
practice (Ruxton and Neuhduser, 2013).

randl <- fgperm(xy=xy, z=markl, scale=6, add.obs=TRUE)
calcl <- fgstat(randl)
hist(calcl, xlab="mean markl", main="scale = 6")

abline(v=calc1[1], col="red", lwd=2)
calci[1]

## observed
## 15.26126

quantile(calcl, probs=c(0.025,0.975))

#it 2.5% 97.5Y
## 15.26126 15.26126
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scale = 6
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Well the mean is exactly the same for all permutations as well as the observed mean. This does make
sense, because in this case the spatially restricted permutation test explores whether patterns deviate from
random given the spatial distribution and not whether marks are non-randomly distributed in space. To
test for spatial autocorrelation in univariate datasets the spatial distribution of the observations need to be
taken into account. This can be done by calculating Moran’s I (Moran 1950; Legendre and Legendre 2012
p- 793). Moran’s I is a measure for the correlation between observations and the distance between them.
Moran’s I relies on a so-called spatial weighting matrix. A spatial weighting matrix discribes the strenghts
of the spatial relationship between all observations. This can be binary (with 1 for neighbours and 0 for
non-neighbouring observations) or continious (e.g. one over the distance between observations). A binary
spatial weighting matrix often works best and therefore I am using that. The single step FGPT function,
fgeasy, also makes use of a binarary spatial weighting matrix. I define neighbours as all combinations of
observations which lie within a specific distance from each other. This distance is the maximum distance of
the minimum spanning tree; i.e. the minimum distance which ensures that all observations are connected.
First calculate the spatial weighting matrix:

dist.mat <- as.matrix(dist(xy))

diag(dist.mat) <- NA

w.mat <- ifelse(dist.mat<=max(apply(dist.mat,1,min, na.rm=TRUE)),1,0)
diag(w.mat) <- O

w.mat[1:4,1:4]

H##
#
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We also need a function to calculate Moran’s I (Legendre and Legendre 2012 p. 793).

mori <- function(x,w.mat){
x <- x-mean(x)
length (x)*sum((x %*% t(x))*w.mat,na.rm=TRUE)/(sum(w.mat,na.rm=TRUE)*sum(x~2))
}

We can now repreat the analyses, but with Moran’s I rather than the mean. The function fgstat now
also needs an argument refering to the function for calculating the test statistic (in this case FUN = mori)
and potentially some arguments which are passed on to this function, in this case the spatial weighting
matrix; w.mat=w.mat.
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calc2 <- fgstat(randl, FUN=mori, w.mat=w.mat)

hist(calc2, xlab="Moran's I for markl", main="scale = 6")
abline(v=calc2[1], col="red", 1lwd=2)

calc2[1]

## observed
## 0.5075187

quantile(calc2, probs=c(0.025,0.975))

#it 2.5% 97 .5%
## 0.2342411 0.4746520
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The observed Moran’s 1 is significantly higher than the reference distribution, so positive spatial auto-
correlation is present. More on this in the paragraph on higher level functions.

2.4 Analyzing data: dependencies between marks

I can also test for correlations between all three marks. I start with mark 1 and mark 2. I combine mark 1
and mark 2 into a two column matrix and run the analyses. I need to add a function which produces the
correlations as the argument FUN.

set.seed(34)
rand2 <- fgperm(xy=xy, scale=3, add.obs=TRUE)

calc3 <- fgstat(rand2,cbind(markl,mark2), FUN=cor)
hist(calc3, xlab="corr. markl and mark2", main="scale = 3")
abline(v=calc3[1], col="red", 1lwd=2)

calc3[1]

#i# observed
## -0.2260576

quantile(calc3, probs=c(0.025,0.975))

#it 2.5% 97 .5%
## -0.25082788 -0.07969986
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corr. markl and mark2

Mark 1 and mark 2 did not correlate significantly for scale 3. Now I try correlate mark 2 with mark 3

and mark 1 with mark 3.

calc3 <- fgstat(rand2,cbind(mark2,mark3), FUN=cor)
calcd <- fgstat(rand2,cbind(markl,mark3), FUN=cor)

hist(calc3, xlab="corr. mark2 and mark3", main

abline(v=calc3[1], col="red", 1lwd=2)
calc3[1]

## observed
## 0.0171499

quantile(calc3, probs=c(0.025,0.975))

#it 2.5% 97 .5%
## -0.01515912 0.13895177

hist(calc4, xlab="corr. markl and mark3", main

abline(v=calc4[1], col="red", 1lwd=2)
calc4[1]

#i# observed
## -0.3370119

quantile(calc4, probs=c(0.025,0.975))

#it 2.5% 97.5%
## -0.6475929 -0.4881910
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So I find a significant positive correlation between mark 1 and mark 3. This means the FGPT picks up
signals of the fine-scale positive correlation between mark 1 and mark 3. No let’s redo the analysis for scale
20. By using a large scale I test for broad-scale effects. Will I be able to pick up the negative correlation
between mark 1 and mark 3 at broader scales?
rand5 <- fgperm(xy=xy, scale=20, add.obs=TRUE)
calch <- fgstat(rand5,cbind(markl,mark3), FUN=cor)
hist(calch, xlab="corr. markl and mark3", main="scale = 20")
abline(v=calc5[1], col="red", 1lwd=2)
calc5[1]

#i# observed
## -0.3370119

quantile(calch, probs=c(0.025,0.975))

#it 2.5% 97.5%
## -0.5156901 0.1405670

scale =20
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corr. markl and mark3

Well the correlation is still positive, but not significant anymore. I can’t show there is a signifcant neg-
ative correlation at broader-scales. Whether I will be able to find such a pattern depends on many factors,
such as the size of the study area and the relative strength of the fine-scale and broad-scale effects. Later in
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this document I will discuss an example in which I will be able to show the presence of both negative and
positive spatial effects at the same time, which occur at different scales. Other than correlations I could also
investigate distances or relatedness between two observations. I could for instance look at genetic related-
ness between mated pairs of individuals. To investigate distances I need a distance matrix for which one
of the observations is represented by the columns and the other by the rows. I will produce a relatedness
matrix and analyse it. Relatedness is in this case a function of the distance between two individuals.

set.seed(10)

spatial.dist <- as.matrix(dist(xy, diag=TRUE, upper=TRUE))

rel.mat <- array(rnorm(rep(1,10000),0.8-(as.vector(spatial.dist)/1000),0.02),
dim=c(100,100))

calc6 <- fgstat(randl,rel.mat)

hist(calc6, xlab="relatedness", main="scale = 3")
abline(v=calc6[1], col="red", 1lwd=2)

calc6[1]

## observed
## 0.7949443

quantile(calc6, probs=c(0.025,0.975))

#it 2.5% 97 .5%
## 0.7919407 0.7992302

calc7 <- fgstat(rand5,rel.mat)

hist(calc7, xlab="relatedness", main="scale = 20")
abline(v=calc7[1], col="red", 1lwd=2)

calc7[1]

## observed
## 0.8020244

quantile(calc7, probs=c(0.025,0.975))

#it 2.5% 97 .5%
## 0.7915746 0.8000963

scale =3 scale = 20
o — _
o p—
N o —
QS _ ||
o - -
5z =] 5
& g 8
s 8 | S S
g = g
[T [T
o _|
8 - 0
o - o - —
] T T T T 1 ] T 1
0.790 0.794 0.798 0.790 0.795 0.800
relatedness relatedness

So no significant relatedness for scale 3, but only for scale 20.
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3 Higher level functions

The higher level functions of the FGPT make use of the function fgperm and fgstat, which I introduced
in the previous chapter. The most important higher level function is fgeasy. Which is basically repeating
the spatially restricted permutations with the FGPT for different grid cell sizes. There are also a summary
and plotting functions. I will introduce the higher level functions by using the examples presented in the
original manuscript (Radersma and Sheldon 2015).

3.1 The assortative pairing example from the manuscript

In this first example I am going to show how to analyze univariate and bivariate data. The code to produce
the dataset is not provided here, but can be found in the supplementary materials of the paper. The dataset
is however available in the package. First we load the data and explore it.

data("Gpulex")

str(Gp.xy)

## num [1:200, 1:2] 0.257 2.956 0.516 8.505 0.4 ...
str (f.pheno)

## num [1:200] 10.32 12.34 9.37 13.53 9.38 ...
str(m.pheno)

## num [1:200] 16.1 16.3 18 20.9 15.9 ...

This dataset is a simulation of a population of freshwater Crustaceans living in a river section. There is
spatial segregation for body size in the population due to spatial variation in water current. This should
result in spatial autocorrelation for body size. First I am going to test whether that is the case. Next I will
test whether there is only habitat segregation or also size assortative pairing present in the population.

Is there spatial autocorrelation in male body size?
set.seed(12)

fgla <- fgeasy(xy=Gp.xy, marks=m.pheno, iter=99)

##
##
## Floating Grid Permutation Technique
##
##
## Progress bar for spatially restricted permutations

## 0% |—mmmm o | 100%
##
##
## Non-spatial permutation test is now running.......
##

##

## The analysis took 16.18 secs

summary(fgla)

##
##
## Floating Grid Permutation Technique
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#i#

##

## Number of scales: 21

## Number of iterations per scale: 99

##

I e R i et

## Results for univariate analyses, unexplained Moran's I:

B oo

##

H# cell_size mean lower_limit upper_limit P_value % failures Reject HO
##  0.5126558 -0.006930510 0.008908401 -0.0290701649 0.60 0 0
##  1.0253115 -0.021577561 0.018089378 -0.0552797934 0.30 0 0
##  1.5379673 -0.019114302 0.031013668 -0.0708321081 0.38 0 0
##  2.0506231 -0.012679978 0.047124403 -0.0767646775 0.74 0 0
##  2.5632789 -0.006597326 0.045231018 -0.0768356042 0.90 0 0
##  3.0759346 0.001626950 0.052150838 -0.0577487712 0.88 0 0
##  3.5885904 0.013587490 0.090865377 -0.0620826822 0.74 0 0
##  4.1012462 0.031604714 0.117996384 -0.0453787506 0.38 0 0
##  4.6139019 0.045582957 0.125977424 -0.0288832781 0.36 0 0
##  5.1265577 0.067851947 0.137822750 -0.0306676306 0.18 0 0
##  5.6392135 0.083472646 0.179369469 -0.0044385407 0.08 0 0
##  6.1518693 0.109871789 0.225761093 0.0002185802 0.06 0 0
##  6.6645250 0.120308314 0.256598800 -0.0120095406 0.12 0 0
#  7.1771808 0.126885091 0.338834387 0.0006477360 0.06 0 0
##  7.6898366 0.167943668 0.364580654 0.0064539584 0.04 0 1
##  8.2024923 0.179136477 0.429282137 -0.0121465769 0.08 0 0
##  8.7151481 0.197853559 0.445123418 0.0307374849 0.04 0 1
##  9.2278039 0.236719372 0.496425271 0.0083983192 0.04 0 1
##  9.7404597 0.259588924 0.511029855 0.0223026415 0.02 0 1
## 10.2531154 0.217466868 0.493964676 0.0075505128 0.06 0 0
## Inf 0.217466868 0.493964676 0.0075505128 0.06 0 0
o __—___

## NOTE: Rejection of HO based on alpha = 0.05

The method automatically selects 20 grid cell sizes and also produces a non-spatial permutation test
(Inf). The output is rather self-explainatory, except maybe the J of failure. When there are missing
values in the observed dataset, the Floating Grid Method will not always be able to calculate the statistics.
This will be particulary the case for very small grid cell sizes. The percentage of failing permutations is
printed. Now plot the results.

plot(fgla)
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Yes, at larger spatial scales Moran’s I is significantly larger than expected, meaning that males living
close to eachother are more alike than males living further away.

The FGPT can also deal with missing values. In fact it can deal with distances or correlations between
two traits, even if the traits never share a location. The function is, in that case, not able to calculate the
statistics for the observed values. Best to analyse those cases with the lower level functions.

Back to missing values. First I remove a few observations to show that the method can deal with
missing values. I remove 5 observation for males and 5 for females.

set.seed(9)
remove.f <- sample(200,5)
remove.m <- sample(200,5)

remove.f

## [1] 45 5 42 43 87
remove.m

## [1] 27 78 74 132 195

f.pheno[remove.f] <- NA
m.pheno [remove.m] <- NA

Now I run the analysis to test whether there is a correlation between male and female body size.
set.seed(456)

fglb <- fgeasy(xy=Gp.xy, marks=cbind(f.pheno,m.pheno), pairwise=TRUE,
correlate="pearson", iter=99)

##
i
## Floating Grid Permutation Technique
#i#
##
## Progress bar for spatially restricted permutations

## 0% |—mmmm o | 100%
##
#i#
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## Non-spatial permutation test is now running

0.
. 7328602
. 7268252
.7181540
.7194088
.6985602
.6824549
.6621671
.6617321

O O O OO OO OO0OO0OOOOOOOOOoO oo

7311195

.6467456
.6235421
.6101308
.6423135
.58569945
.5988681
.6091966
.6198668
.6216463
.5694798
.5974418
.5974418

##

##

## The analysis took 15.41 secs

summary (£fg1b)

#H#

##

## Floating Grid Permutation Technique

##

##

## Number of scales: 21

## Number of iterations per scale: 99

##

# --—-——

## Results for multivariate analyses, pearson correlation
A coccocccossssssssssscccocesossssoos

##

##  cell_size observed mean lower_limit upper_limit
##  0.5126558 0.7102058 0.7037710 0.67003495
##  1.0253115 0.7102058 0.6838552 0.63168753
##  1.5379673 0.7102058 0.6839199 0.64226372
##  2.0506231 0.7102058 0.6738621 0.62747525
##  2.5632789 0.7102058 0.6647059 0.61500436
##  3.0759346 0.7102058 0.6427368 0.59356699
##  3.5885904 0.7102058 0.6228554 0.57173840
##  4.1012462 0.7102058 0.6058531 0.54660803
##  4.6139019 0.7102058 0.5953096 0.52713146
##  5.1265577 0.7102058 0.5726894 0.48346705
##  5.6392135 0.7102058 0.5456135 0.45576775
##  6.1518693 0.7102058 0.5224727 0.41817397
##  6.6645250 0.7102058 0.5022512 0.36246011
##  7.1771808 0.7102058 0.4804855 0.32902077
##  7.6898366 0.7102058 0.4681666 0.27874110
##  8.2024923 0.7102058 0.4350640 0.20557980
##  8.7151481 0.7102058 0.4142873 0.14079425
##  9.2278039 0.7102058 0.3609138 0.02158481
##  9.7404597 0.7102058 0.3786334 0.01969927
## 10.2531154 0.7102058 0.3676864 0.01590489
## Inf 0.7102058 0.3676864 0.01590489
##

## NOTE: Rejection of HO based on alpha = 0.05

plot (fgib)
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J T

grid cell size

In this case the Pearson Product Momentum correlation makes sense, but when dealing with non-
normally distributed data also the Spearman Rank correlation or the Kendall’s tau correlation can be used.
The FGPT calls upon the cor.test function, so for more information on those correlations check the help
pages 7cor.test.

There is also an alternative way to analyse this data. Instead of looking for correlations between the
male and the female phenotypes I could look at the differences between them. To do so I first need
to produce a matrix which contains all possible combinations of males and females and next run the
analyses.

size.diff <- matrix(m.pheno, nrow=200, ncol=200) -
matrix(f.pheno, nrow=200, ncol=200,byrow = TRUE)

set.seed(99)
fglc <- fgeasy(xy=Gp.xy, marks=size.diff, iter=99, pairwise=TRUE, correlate=FALSE)

##
##
## Floating Grid Permutation Technique

## ===

##

## Progress bar for spatially restricted permutations

B 0% | mmm o m o m e | 100%
##
##
## Non-spatial permutation test is now running.......
##

##

## The analysis took 16.67 secs

summary (fglc)

#i#

## ===
## Floating Grid Permutation Technique
i
##
## Number of scales: 21

## Number of iterations per scale: 99
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#i#
##
##
##
Ht
#i#
#i#t
##
H##
H#
it
#i#
##
##
H#
#i#
#i#
##
##
##
Ht
#i#
#it
##
##
H#
it
#i#
##
##
H#
#i#
#i#
#it
##
##
H#t
it
#Hi#t
##
##
H#
it
#i#
##
##
H#
Ht
#i#
#Hit
##
H#
H#

cell_size
.5126558
.0263115
.5379673
.0506231
.5632789
.0759346
.5885904
.1012462
.6139019
. 1265577
.6392135
.1518693
.6645250
.1771808
.6898366
.2024923
.7151481
.2278039
. 7404597
.2531154

Inf

© © 000NN OO DdWWNNRFE = O

—
o

Results for multivariate analyses, variance:

observed
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984
.004984

NNANANANANNNNNANANNANNNNNNNA

OO NNNNNNNNN NN

mean lower_limit upper_limit P_value % failures Reject HO

.000896
.010647
.008823
.011230
.013241
.009360
.009697
.006028
.004097
.003876
.003219
.996232
.995071
.999890
.996225
.993982
.987827
.986310
.992588
.989974
.989974

6

(o)1) ) e) Iie)Nie) I e) Me) I e) I o) o) Hie) Nie) o) B e) N o) Iie) M o) B 0) I o))

.976959
.982825
.981891
977637
.982045
.968946
.960189
.961096
.961112
.948879
.958121
.955606
.941412
.946172
.941748
.938911
.919696
.928898
.935210
.925697
.925697

7
.036261
.036652
.034985
.043859
.045065
.045385
.042942
.047153
.044394
.056039
.044716
.043495
.052754
.060130
.048748
.044829
.045352
.042356
.044492
.044492

NN NN NANNANANNANNANANNANNANANN

cell_size
.5126558
.02563115
.5379673
.0506231
.5632789
.0759346
.5885904
.1012462
.6139019
. 1265577
.6392135
.1518693
.6645250
.1771808
.6898366
.2024923
.7151481
.2278039
. 7404597
10.2531154

Inf

© © 000NN OO d D> WWwWNNFE = O

observed
.923395
.923395
.923395
.923395
.923395
.923395
.923395
.923395
.923395
.923395
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.923395
.923395
.923395
.923395
.923395
.923395
.923395
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## NOTE: Rejection of HO based on alpha = 0.05

In this case both the mean and the variance are explored by fgeasy.

plot(fgilc)
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In this case I focus on the variance rather than the mean. I don’t expect the mean to be informative,
because the mean is pretty much independent of the spatial scale. There is only a bit of variation in the
mean for different permutations, because of the missing values. Because of the missing values, not all
individuals will be paired in every permutation which results in some variation in the average difference
between female and male individuals. The variance plot looks very similar to the correlation plot (though
upside down). The fact that the variance is lower than expected for grid cell size of 2.6 and larger suggests
that pairs are better matched with respect to body size than expected by change.

3.2 The inbreeding avoidance example from the manuscript

To illustrate the use of the FGPT for multivariate data (e.g. relatedness), I am going to use the inbreeding
avoidance example from the manuscript (only the second population of this example). First we load the
data and explore it.

24



data("Pmajor")

str(xy)

##
##
H#
Ht

num [1:200,

..$ : NULL

1:2] 46.6 150 300.6 390.8 513.9 ...
- attr(*, "dimnames")=List of 2

..$ : chr [1:2] "locx" "locy"

str(rel2)

## num [1:200, 1:200] 0.00407 0.00543 0 0 O ...

In short, I have a population of 200 breeding pairs of birds. Because of limited dispersal there is isolation

by distance (individuals are more closely related to individuals which live close by than further away). I
want to test for inbreeding aviodance (the tendancy to avoid pairing with a closely related individual).

The data consists of a two column table containing the geographical locations of all breeding pairs (xy)

and a matrix with the relateness between all males and females (rel2). I analyze the data with the function
fgeasy and use summary and plot to explore the results. I run only 99 iterations to save some time, but
9999 would be advisable.

set.seed(78)
fg2a <- fgeasy(xy=xy, marks=rel2, iter=99, pairwise=TRUE, correlate=FALSE)

0.18
0.04
0.10

##

##

## Floating Grid Permutation Technique

##

##

## Progress bar for spatially restricted permutations

i O% | —mmmm o | 100%
##

##

## Non-spatial permutation test is now running.......

##

##

## The analysis took 16.74 secs

summary (fg2a)

##

##

## Floating Grid Permutation Technique

##

##

## Number of scales: 21

## Number of iterations per scale: 99

##

HH oo

## Results for multivariate analyses, mean:

# --—-——

##

## cell_size  observed mean lower_limit upper_limit P_value
##  127.3504 0.02534385 0.02990843 0.024086253 0.03734179
##  254.7007 0.02534385 0.03994916 0.027685001 0.05565887
##  382.0511 0.02534385 0.03780814 0.024694681 0.05240883
##  509.4015 0.02534385 0.03232086 0.020502042 0.04504899
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#i#
##
##
##
Ht
#i#
#i#t
##
H##
H#
it
#i#
##
##
H#
#i#
#i#
##
##
##
Ht
#i#
#it
##
##
H#
it
#i#
##
##
H#
#i#
#i#
#it
##
##
H#t
it
#Hi#t
##
##
H#
it
#i#
##

636

891

2292

.7518
764.
.4525
1018.
1146.
1273.
1400.
1528.
1655.
1782.
1910.
2037.
2164 .
.3065
2419.
2547.

1022

8029
1633
5036
8540
2044
5547
9051
2554
6058
9562

6569
0073
Inf

Results for

cell_size
127.3504
254.7007
382.0511
509.4015
636.7518
764.1022
891.4525
1018.8029
1146.1533
1273.5036
1400
1528.
1655.
1782.
1910.
2037.
2164.
2292
2419
2547.

2044
5547
9051
2554
6058
9562
.3065
.6569
0073

Inf

0
0
0
0
0
0
0
0
0
0
.8540 0.
0
0
0
0
0
0
0
0
0
0

.025634385
.025634385
.02534385
.02534385
.02534385
.025634385
.025634385
.02534385
.02534385
.02534385
.02534385
.025634385
.02534385
.02534385
.02534385
.025634385
.02534385
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.02882095
.02494516
.02174869
.02022145
.01846501
.01682889
.01675992
.01488685
.01396133
.01353112
.01296374
.01266848
.01154475
.01088668
.01229635
.01082354
.01082354

0.019330783
0.015592652
0.013064829
0.010483253
0.011329314
0.007582945
0.008228848
0.006648949
0.007022758
0.004946924
0.005132854
0.004965581
0.004687978
0.004445900
0.004355554
0.003871611
0.003871611
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multivariate analyses, variance:

observed

.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196

004765196

.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196

NOTE: Rejection of HO

plot(fg2a)

mean lower_limit
0.006883974 0.0045056280
0.011925643 0.0067336416
0.011544360 0.0055292187
0.009671802 0.0047905536
0.008670729 0.0043022233
0.007252911 0.0034689055
0.006329121 0.0026515854
0.005713981 0.0021715455
0.005303790 0.0020267462
0.004810383 0.0014409787
0.004884431 0.0013992308
0.004206070 0.0012861455
0.003950239 0.0012594269
0.003933232 0.0008034390
0.003606816 0.0006361299
0.003674424 0.0005696507
0.003269020 0.0006348777
0.002981919 0.0005590222
0.003652823 0.0005203161
0.003054778 0.0005208093
0.003054778 0.0005208093
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.03945908
.03532870
.03305772
.03112643
.02828370
.02567040
.02887907
.02662582
.02489060
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.02359677
.02406322
.02123207
.02155678
.02226080
.02097666
.02097666
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.50
.90
.56
.36
.16
.12
.22
.08
.04
.02
.04
.06
.02
.02
.02
.02
.02
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upper_limit P_value % failures Reject HO

.010357707
.017642788
.017837643
.015151214
.013112908
.011968604
.010947818
.010534816
.009144113
.008832562
.010163406
.007925789
.008153498
.008091900
.007869953
.007447006
.006736441
.006549696
.007304152
.006416816
.006416816
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.94
.92
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.32
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In this case the means are of most interest. There is inbreeding avoidance in the population, because
at the finer spatial scales individuals are less related than expected. I can also choose the grid cell size
myself, to for instance focus on a certain spatial scale. Here I explore fine spatial scales.

set.seed(11)
fg2b <- fgeasy(xy=xy, marks=rel2, scale.seq=c(1,100,200,300,400,500,800),
iter=99, pairwise=TRUE, correlate=FALSE)

##
##
## Floating Grid Permutation Technique
##
##
## Progress bar for spatially restricted permutations

#Hh# 0% |—mmmm o | 100%
##
##
## Non-spatial permutation test is now running.......
i

##

## The analysis took 7.39 secs

27



summary (£g2b)

#i#
#i#
##
##
H##
Ht
#i#
#Hit
##
H#
H#
it
#i#
##
##
H#
#i#t
#i#
##
##
##
Ht
#i#
#it
##
H#
H#
it
#i#
##
##
H#
#i#
#i#
##

Floating Grid Permutation Technique

Number of scales: 8
Number of iterations per scale: 99

cell_size
1

100

200

300

400

500

800

Inf

O O O O O O oo

Results for

observed

.02534385
.02534385
.02534385
.025634385
.025634385
.02534385
.02534385
.02534385

mean lower_limit upper_limit P_value
.02534385
.02426126
.02660359
.02592183
.02526096
.01933188
.01457406
.01457406

.02534385
.02714887
.03618019
.03998607
.03721098
.03319221
.02419542
.02419542

0

O O O O O oo

multivariate analyses,

variance:

cell_size
1

100

200

300

400

500

800

Inf

observed

.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196
.004765196

## NOTE: Rejection of HO

plot(fg2b, plane=1)

mean
0.004765196
0.005565405
0.010229910
0.012356762
0.011513405
0.009903885
0.006930606
0.006930606

1

O O O O O O oo

ower_limit
.004765196
.004557436
.005511208
.006560290
.006089801
.004411416
.002651862
.002651862
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02534385
.03210381
.04689992
.05484168
.05191810
.04664762
.03512537
.03512537

1
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.00
.46
.04
.04
.08
.28
.78
.78

% failures Reject HO

0

O O O O O oo
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upper_limit P_value % failures Reject HO

.004765196
.007599628
.0156272234
.018845519
.018244891
.016045693
.012007289
.012007289

O OO O O O O o

.00
.42
.02
.04
.02
.10
.30
.30

0

O O O O O O O
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Interesting to see is that the permuted data for scale = 1 does not have any error bars. This is also
visible in the summary table. This is because all permutations are similar to the observed data. The
minimum distance between two geographical locations is much larger than 1, so the permutation always
result in the assigning the observed pairs together.

4 Concluding remarks

The FGPT is a spatially resticted permutation technique, which has the ability to separate various sources of
spatial autocorrelation, given they act on different spatial levels and the study area is suffiently large. The
FGPT package offers functions to perform spatially restricted permutations, calulate statistics for permuted
dataset and functions to test for correlations or distances given spatial autocorrelation and to summary and
plot the results. The method is free of assumptions regarding the spatial scale at which spatial processes
occur. Therefore it is very suitable for systems in which there is no extensive knowledge on the scale of
spatial processes and can be used to study for instance animal or plant populations that show genotypic
or phenotypic variation in space.
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