Fleaflicker: Basics

In this vignette, I’ll walk through how to get started with a basic dynasty value analysis on Fleaflicker.

We’ll start by loading the packages:

  library(ffscrapr)
  library(dplyr)
  library(tidyr)

In Fleaflicker, you can find the league ID by looking in the URL - it’s the number immediately after /league/ in this example URL: https://www.fleaflicker.com/nfl/leagues/312861.

Let’s set up a connection to this league:

aaa <- fleaflicker_connect(season = 2020, league_id = 312861)

aaa
#> <Fleaflicker connection 2020_312861>
#> List of 4
#>  $ platform  : chr "Fleaflicker"
#>  $ season    : chr "2020"
#>  $ user_email: NULL
#>  $ league_id : chr "312861"
#>  - attr(*, "class")= chr "flea_conn"

I’ve done this with the fleaflicker_connect() function, although you can also do this from the ff_connect() call - they are equivalent. Most if not all of the remaining functions after this point are prefixed with “ff_”.

Cool! Let’s have a quick look at what this league is like.


aaa_summary <- ff_league(aaa)

str(aaa_summary)
#> tibble [1 x 14] (S3: tbl_df/tbl/data.frame)
#>  $ league_id      : chr "312861"
#>  $ league_name    : chr "Avid Auctioneers Alliance"
#>  $ league_type    : chr "dynasty"
#>  $ franchise_count: num 12
#>  $ qb_type        : chr "2QB/SF"
#>  $ idp            : logi FALSE
#>  $ scoring_flags  : chr "0.5_ppr, PP1D"
#>  $ best_ball      : logi FALSE
#>  $ salary_cap     : logi FALSE
#>  $ player_copies  : num 1
#>  $ qb_count       : chr "1-2"
#>  $ roster_size    : int 28
#>  $ league_depth   : num 336
#>  $ keeper_count   : int 28

Okay, so it’s the Avid Auctioneers Alliance, it’s a 2QB league with 12 teams, half ppr scoring, and rosters about 340 players.

Let’s grab the rosters now.

aaa_rosters <- ff_rosters(aaa)

head(aaa_rosters)
#> # A tibble: 6 x 7
#>   franchise_id franchise_name player_id player_name  pos   team  sportradar_id  
#>          <int> <chr>              <int> <chr>        <chr> <chr> <chr>          
#> 1      1578553 Running Bear       12032 Carson Wentz QB    PHI   e9a5c16b-4472-~
#> 2      1578553 Running Bear        7378 Cam Newton   QB    NE    214e55e4-a089-~
#> 3      1578553 Running Bear       15622 Joshua Kell~ RB    LAC   62542e04-3c44-~
#> 4      1578553 Running Bear       13358 Matt Breida  RB    MIA   6249d2c0-75dc-~
#> 5      1578553 Running Bear        7369 A.J. Green   WR    CIN   c9701373-23f6-~
#> 6      1578553 Running Bear       13782 Anthony Mil~ WR    CHI   bfaedf99-7618-~

Values

Cool! Let’s pull in some additional context by adding DynastyProcess player values.

player_values <- dp_values("values-players.csv")

# The values are stored by fantasypros ID since that's where the data comes from. 
# To join it to our rosters, we'll need playerID mappings.

player_ids <- dp_playerids() %>% 
  select(sportradar_id,fantasypros_id) %>% 
  filter(!is.na(sportradar_id),!is.na(fantasypros_id))

# We'll be joining it onto rosters, so we can trim down the values dataframe
# to just IDs, age, and values

player_values <- player_values %>% 
  left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>% 
  select(sportradar_id,age,ecr_1qb,ecr_pos,value_1qb)

# ff_rosters() will return the sportradar_id, which we can then match to our player values!

aaa_values <- aaa_rosters %>% 
  left_join(player_values, by = c("sportradar_id"="sportradar_id")) %>% 
  arrange(franchise_id,desc(value_1qb))

head(aaa_values)
#> # A tibble: 6 x 11
#>   franchise_id franchise_name player_id player_name pos   team  sportradar_id
#>          <int> <chr>              <int> <chr>       <chr> <chr> <chr>        
#> 1      1578553 Running Bear       12926 Chris Godw~ WR    TB    baa61bb5-f8d~
#> 2      1578553 Running Bear       13325 Austin Eke~ RB    LAC   e5b8c439-a48~
#> 3      1578553 Running Bear       15531 Brandon Ai~ WR    SF    c90471cc-fa6~
#> 4      1578553 Running Bear        9338 Robert Woo~ WR    LAR   618bedee-925~
#> 5      1578553 Running Bear       12159 Dak Presco~ QB    DAL   86197778-8d4~
#> 6      1578553 Running Bear       13788 Michael Ga~ WR    DAL   9e174ff2-ca0~
#> # ... with 4 more variables: age <dbl>, ecr_1qb <dbl>, ecr_pos <dbl>,
#> #   value_1qb <int>

Let’s do some team summaries now!

value_summary <- aaa_values %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
  ungroup() %>% 
  group_by(franchise_id,franchise_name) %>% 
  mutate(team_value = sum(total_value)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = pos, values_from = total_value) %>% 
  arrange(desc(team_value)) %>% 
  select(franchise_id,franchise_name,team_value,QB,RB,WR,TE)

value_summary
#> # A tibble: 12 x 7
#>    franchise_id franchise_name      team_value    QB    RB    WR    TE
#>           <int> <chr>                    <int> <int> <int> <int> <int>
#>  1      1581722 syd12nyjets's Team       48060  2613 10345 32145  2957
#>  2      1581803 ZachFarni's Team         42087  2541 15444 23829   273
#>  3      1581753 fede_mndz's Team         40964  1148 19125 19268  1423
#>  4      1581988 The DK Crew              39948  2400  6715 24508  6274
#>  5      1582416 Ray Jay Team             36365  1275 14130 12758  8202
#>  6      1581719 Jmuthers's Team          36001  2776  8409 16309  8507
#>  7      1582423 The Verblanders          35787  4648 11973 17760  1406
#>  8      1581721 Mjenkyns2004's Team      35776  8558  5081 20460  1677
#>  9      1581720 brosene's Team           34480  4717 16136  9645  3982
#> 10      1581718 AlexG5386's Team         33817  3847 18268  8552  3150
#> 11      1581726 SCJaguars's Team         33206  1143 14405 16988   670
#> 12      1578553 Running Bear             29398  3719  5888 16899  2892

So with that, we’ve got a team summary of values! I like applying some context, so let’s turn these into percentages - this helps normalise it to your league environment.

value_summary_pct <- value_summary %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)

value_summary_pct
#> # A tibble: 12 x 7
#>    franchise_id franchise_name      team_value    QB    RB    WR    TE
#>           <int> <chr>                    <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1      1581722 syd12nyjets's Team       0.108 0.066 0.071 0.147 0.071
#>  2      1581803 ZachFarni's Team         0.094 0.065 0.106 0.109 0.007
#>  3      1581753 fede_mndz's Team         0.092 0.029 0.131 0.088 0.034
#>  4      1581988 The DK Crew              0.09  0.061 0.046 0.112 0.151
#>  5      1582416 Ray Jay Team             0.082 0.032 0.097 0.058 0.198
#>  6      1581719 Jmuthers's Team          0.081 0.07  0.058 0.074 0.205
#>  7      1582423 The Verblanders          0.08  0.118 0.082 0.081 0.034
#>  8      1581721 Mjenkyns2004's Team      0.08  0.217 0.035 0.093 0.04 
#>  9      1581720 brosene's Team           0.077 0.12  0.111 0.044 0.096
#> 10      1581718 AlexG5386's Team         0.076 0.098 0.125 0.039 0.076
#> 11      1581726 SCJaguars's Team         0.074 0.029 0.099 0.078 0.016
#> 12      1578553 Running Bear             0.066 0.094 0.04  0.077 0.07

Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.

Age

Another question you might ask: what is the average age of any given team?

I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team - including who might be looking to offload an older veteran!

age_summary <- aaa_values %>% 
  filter(pos %in% c("QB","RB","WR","TE")) %>% 
  group_by(franchise_id,pos) %>% 
  mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>% 
  ungroup() %>% 
  mutate(weighted_age = age*value_1qb/position_value,
         weighted_age = round(weighted_age, 1)) %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(count = n(),
            age = sum(weighted_age,na.rm = TRUE)) %>% 
  pivot_wider(names_from = pos,
              values_from = c(age,count))

age_summary
#> # A tibble: 12 x 10
#> # Groups:   franchise_id, franchise_name [12]
#>    franchise_id franchise_name age_QB age_RB age_TE age_WR count_QB count_RB
#>           <int> <chr>           <dbl>  <dbl>  <dbl>  <dbl>    <int>    <int>
#>  1      1578553 Running Bear     28     25.7   25.6   25.6        6        6
#>  2      1581718 AlexG5386's T~   31.3   24.4   28.1   26.1        3       12
#>  3      1581719 Jmuthers's Te~   25.3   24.4   26.4   28.6        5        8
#>  4      1581720 brosene's Team   27     25.5   24.7   27          6       10
#>  5      1581721 Mjenkyns2004'~   25.4   25     27.5   26.1        5        9
#>  6      1581722 syd12nyjets's~   24.6   22.1   25.2   22.5        5        7
#>  7      1581726 SCJaguars's T~   23.7   25     32.7   24          5        7
#>  8      1581753 fede_mndz's T~   33.9   24.3   25     27.6        6       12
#>  9      1581803 ZachFarni's T~   27.7   21.9   25.1   24          5        9
#> 10      1581988 The DK Crew      27     22.9   25.4   25.3        4        6
#> 11      1582416 Ray Jay Team     29.9   25.9   30     26.6        4        8
#> 12      1582423 The Verblande~   24.3   25     25.7   27.9        4        8
#> # ... with 2 more variables: count_TE <int>, count_WR <int>

Next steps

In this vignette, I’ve used only a few functions: ff_connect, ff_league, ff_rosters, and dp_values. Now that you’ve gotten this far, why not check out some of the other possibilities?