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Abstract

This introduction to the R package fdANOVA is a (slightly) modified version of Górecki
T and Smaga  L (2017). “fdANOVA: An R Software Package for Analysis of Variance for
Univariate and Multivariate Functional Data.” (under review).

Functional data, i.e., observations represented by curves or functions, frequently arise
in various fields. The theory and practice of statistical methods for such data is referred to
as functional data analysis (FDA) which is one of major research fields in statistics. The
practical use of FDA methods is made possible thanks to availability of specialized and
usually free software. In particular, a number of R packages is devoted to these methods.
In the paper, we introduce a new R package fdANOVA which provides an access to a
broad range of global analysis of variance methods for univariate and multivariate func-
tional data. The implemented testing procedures are briefly overviewed and illustrated by
examples on a well known functional data set. To reduce the computation time, parallel
implementation is developed and its efficiency is empirically evaluated. Since some of the
implemented tests have not been compared in terms of size control and power yet, appro-
priate simulations are also conducted. Their results can help in choosing proper testing
procedures in practice.

Keywords: analysis of variance, functional data, fdANOVA, R.

1. Introduction

In recent years considerable attention has been devoted to analysis of so called functional
data. The functional data are represented by functions or curves which are observations of a
random variable (or random variables) taken over a continuous interval or in large discretiza-
tion of it. Sets of functional observations are peculiar examples of the high-dimensional data
where the number of variables significantly exceeds the number of observations. Such data
are often gathered automatically due to advances in modern technology, including comput-
ing environments. The functional data are naturally collected in agricultural sciences, be-
havioral sciences, chemometrics, economics, medicine, meteorology, spectroscopy, and many
others. The main purpose of functional data analysis (FDA) is to provide tools for statis-
tically describing and modelling sets of functions or curves. The monographs by Ramsay
and Silverman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Zhang
(2013) present a broad perspective of the FDA solutions. The following problems for func-
tional data are commonly studied (see also the review papers of Cuevas 2014; Wang, Chiou,
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and Müller 2016): analysis of variance (Faraway 1997; Cuevas, Febrero, and Fraiman 2004;
Shen and Faraway 2004; Zhang and Chen 2007; Cuesta-Albertos and Febrero-Bande 2010;
Zhang 2011, 2013; Zhang and Liang 2014; Górecki and Smaga 2015; Zhang, Cheng, Tseng,
and Wu 2016), canonical correlation analysis (Krzyśko and Waszak 2013; Keser and Kocakoç
2015), classification (James and Hastie 2001; Delaigle and Hall 2012, 2013; Chang, Chen,
and Ogden 2014), cluster analysis (Giacofci, Lambert-Lacroix, Marot, and Picard 2013; Cof-
fey, Hinde, and Holian 2014; Yamamoto and Terada 2014), outlier detection (Febrero-Bande,
Galeano, and González-Manteiga 2008), principal component analysis (Boente, Barrera, and
Tyler 2014; Fremdt, Horváth, Kokoszka, and Steinebach 2014), regression analysis (Chen,
Hall, and Müller 2011; Hilgert, Mas, and Verzelen 2013; Morris 2015; Robbiano, Saumard,
and Curé 2015; Peng, Zhou, and Tang 2016), repeated measures analysis (Mart́ınez-Camblor
and Corral 2011; Smaga 2017), simultaneous confidence bands (Degras 2011; Cao, Yang, and
Todem 2012; Ma, Yang, and Carroll 2012). The above references concern the univariate
functional data. However, some methods have their multivariate counterparts, e.g., analy-
sis of variance (Górecki and Smaga 2017a), canonical correlation analysis (Górecki, Krzyśko,
Waszak, and Wo lyński 2016a), classification (Górecki, Krzyśko, and Wo lyński 2015; Górecki
et al. 2016a; Górecki, Krzyśko, and Wo lyński 2016b), cluster analysis (Tokushige, Yadohisa,
and Inada 2007; Jacques and Preda 2014; Park and Ahn 2016), linear regression and predic-
tion (Chiou, Yang, and Chen 2016; Krzyśko and Smaga 2017), principal component analysis
(Berrendero, Justel, and Svarc 2011; Chiou, Chen, and Yang 2014), statistical modelling
(Chiou and Müller 2014). Some examples of applications of functional data analysis can be
found in Ogden, Miller, Takezawa, and Ninomiya (2002), Pfeiffer, Bura, Smith, and Rut-
ter (2002), Rossi, Wang, and Ramsay (2002), Jank and Shmueli (2006), Febrero-Bande et al.

(2008), Bobelyn, Serban, Nicu, Lammertyn, Nicolai, and Saeys (2010), Tarŕıo-Saavedra, Naya,
Francisco-Fernández, Artiaga, and Lopez-Beceiro (2011) and Long, Li, Wang, and Cheng
(2012).

Many methods for functional data analysis have been already implemented in the R software
(R Core Team 2017). The packages fda (Ramsay, Hooker, and Graves 2009; Ramsay, Wick-
ham, Graves, and Hooker 2014) and fda.usc (Febrero-Bande and Oviedo de la Fuente 2012)
are the biggest and probably the most commonly used ones. The first package includes the
techniques for functional data in the Hilbert space L2(I) of square integrable functions over an
interval I = [a, b]. On the other hand, in the second one, many of the methods implemented do
not need such assumption and use only the values of functions evaluated on a grid of discretiza-
tion points (also non-equally spaced). There is also a broad range of R packages containing
solutions for more particular functional data problems: Widely used principal components
analysis for functional data implemented in the packages fda and fda.usc is also available in
fdapace (Dai, Hadjipantelis, Ji, Müller, and Wang 2016), fpca (Peng and Paul 2011), fdasrvf
(Tucker 2017) and MFPCA (Happ 2017; Happ and Greven 2016) ones. For classification
and cluster analysis, the packages classiFunc (Maierhofer 2017), fdakma (Parodi, Patriarca,
Sangalli, Secchi, Vantini, and Vitelli 2015), Funclustering (Soueidatt and *. 2014), funcy (Yas-
souridis 2016) and GPFDA (Shi and Cheng 2014) can be used. In the packages fdaPDE (Lila,
Sangalli, Ramsay, and Formaggia 2016), FDboost (Brockhaus, Scheipl, Hothorn, and Greven
2015; Brockhaus and Rügamer 2016), flars (Cheng and Shi 2016), funreg (Dziak and Shiyko
2016) and refund (Goldsmith, Scheipl, Huang, Wrobel, Gellar, Harezlak, McLean, Swihart,
Xiao, Crainiceanu, and Reiss 2016), a lot of work was done to develop the regression analysis
for functional data. The packages freqdom (Hormann and Kidzinski 2015), ftsa (Shang 2013;
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Hyndman and Shang 2016), ftsspec (Tavakoli 2015) and pcdpca (Kidzinski, Jouzdani, and
Kokoszka 2016) provide implementation of various methods of functional time series analysis.
Methods for the robust analysis of univariate and multivariate functional data are provided
in the roahd package (Tarabelloni, Arribas-Gil, Ieva, Paganoni, and Romo 2017). Interval
testing procedures for functional data in different frameworks (i.e., one or two-population
frameworks, functional linear models) are implemented in the fdatest package (Pini and Van-
tini 2015). The functional data analysis in mixed model framework is implemented in the
package fdaMixed (Markussen 2014). The functional observations can be visualized by many
of plots implemented in the following packages GOplot (Walter, Sanchez-Cabo, and Ricote
2015), rainbow (Shang and Hyndman 2016) and refund.shiny (Wrobel and Goldsmith 2016).
The packages fds (Shang and Hyndman 2013) and mfds (Górecki and Smaga 2017b) contain
some interesting functional data sets.

Despite so many R packages for functional data analysis, a broad range of test for a widely
applicable analysis of variance problem for functional data was implemented very recently
in the package fdANOVA. Earlier, only the testing procedures of Cuevas et al. (2004) and
Cuesta-Albertos and Febrero-Bande (2010) were available in the package fda.usc. The pack-
age fdANOVA is available from the Comprehensive R Archive Network at http://CRAN.

R-project.org/package=fdANOVA. It is the aim of this package to provide a few functions
implementing most of known analysis of variance tests for univariate and multivariate func-
tional data. Most of them are based on bootstrap, permutations or projections, which may be
time-consuming. For this reason, the package also contains parallel implementations which
enable to reduce the computation time significantly, which is shown in empirical evaluation.
Additionally, in this paper, some tests or their implementation versions are compared in
terms of size control and power by simulation studies. Those comparisons were not presented
anywhere else.

The rest of the paper is organized in the following manner. In Section 2, the problems of
the analysis of variance for univariate and multivariate functional data are introduced. A
review of most of the known solutions of these problems is also presented there. Some of the
testing procedures are slightly generalized. Since it was not easy task to implement many
different tests in a few functions, their usage may also be not easy at first. Thus, Section 3
contains a detailed description of (eventual) preparation of data and package functionality as
well as a package demonstration on commonly used real data set. A series of experiments
evaluating efficiency of parallel implementation is presented in Section 4. Simulation studies
comparing some of the implemented tests in terms of size control and power are depicted
in Section 5. Finally, Section 6 concludes the paper and notes on future extensions of the
fdANOVA package.

2. Analysis of variance for functional data

In this section, we briefly describe most of the known testing procedures for the analysis of
variance problem for functional data in the univariate and multivariate cases. All of them are
implemented in the package fdANOVA.

2.1. Univariate case

We consider the l groups of independent random functions Xij(t), i = 1, . . . , l, j = 1, . . . , ni

http://CRAN.R-project.org/package=fdANOVA
http://CRAN.R-project.org/package=fdANOVA
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defined over a closed and bounded interval I = [a, b]. Let n = n1+ · · ·+nl. These groups may
differ in mean functions, i.e., we assume that Xij(t), j = 1, . . . , ni are stochastic processes
with mean function µi(t), t ∈ I and covariance function γ(s, t), s, t ∈ I, for i = 1, . . . , l. Of
interest is to test the following null hypothesis

H0 : µ1(t) = · · · = µl(t), t ∈ I. (1)

The alternative is the negation of the null hypothesis. The problem of testing this hypothesis
is known as the one-way analysis of variance problem for functional data (FANOVA).

Many of the tests for (1) are based on the pointwise F test statistic (Ramsay and Silverman
2005) given by the formula

Fn(t) =
SSRn(t)/(l − 1)

SSEn(t)/(n− l)
,

where

SSRn(t) =
l

∑

i=1

ni(X̄i(t) − X̄(t))2, SSEn(t) =
l

∑

i=1

ni
∑

j=1

(Xij(t) − X̄i(t))
2

are the pointwise between-subject and within-subject variations respectively, and X̄(t) =
(1/n)

∑l
i=1

∑ni

j=1Xij(t) and X̄i(t) = (1/ni)
∑ni

j=1Xij(t), i = 1, . . . , l, are respectively the
sample grand mean function and the sample group mean functions.

Faraway (1997) and Zhang and Chen (2007) proposed to use only the pointwise between-
subject variation and considered the test statistic

∫

I SSRn(t)dt. Tests based on it are called
the L2-norm-based tests. The distribution of this test statistic can be approximated by that
of βχ2

d and comparing the first two moments of these random variables. The parameters β
and d were estimated by the naive and biased-reduced methods (see, for instance, Górecki
and Smaga 2015, for more detail). Thus we have the L2-norm-based tests with the naive and
biased-reduced methods of estimation of these parameters (the L2N and L2B tests for short).
In case of non-Gaussian samples or small sample sizes, the bootstrap L2-norm-based test is
also considered (the L2b tests for short).

A bit different L2-norm-based test was proposed by Cuevas et al. (2004). Namely, they
considered

∑

1≤i<j≤l ni
∫

I(X̄i(t) − X̄j(t))
2dt as a test statistic and approximated its null dis-

tribution by a parametric bootstrap method via re-sampling the Gaussian processes involved
in the limit random expression of their test statistic under H0. Cuevas et al. (2004) inves-
tigated two testing procedures (the CH and CS tests for short) under homoscedastic and
heteroscedastic cases. The tests differ in estimating the covariance functions.

Following test, which uses both the pointwise between-subject and within-subject variations,
is known as the F -type test. More precisely, the test statistic is of the form

∫

I SSRn(t)dt/(l − 1)
∫

I SSEn(t)dt/(n− l)
. (2)

Tests of this type were considered by Shen and Faraway (2004) and Zhang (2011). The
null distribution of the above test statistic is approximated by F(l−1)κ,(n−l)κ distribution and
depending on the method of estimation of parameter κ, the F -type tests based on naive and
biased-reduced methods of estimation are considered (the FN and FB tests for short). For the
same reasons as for L2-norm-based test, the Fb test is also investigated, i.e., the bootstrap
F -type test.
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The following testing procedure, which also uses the test statistic (2), is the slightly mod-
ified procedure proposed by Górecki and Smaga (2015). Assume that Xij ∈ L2(I), i =
1, . . . , l, j = 1, . . . , ni, where L2(I) is a Hilbert space consisting of square integrable functions
on I, equipped with the inner product of the form 〈f, g〉 =

∫

I f(t)g(t)dt. We represent the
functional observations by a finite number of basis functions ϕm ∈ L2(I),m = 1, . . . , i.e.,

Xij(t) =

K
∑

m=1

cijmϕm(t), t ∈ I, (3)

where cijm, m = 1, . . . ,K, are random variables such that Var(cijm) <∞ and K is sufficiently
large (see Ramsay and Silverman 2005, for more details about basis function representation).
By the results of Górecki et al. (2015), the commonly used least squares method (see, for
example, Krzyśko and Waszak 2013) seems to be one of the best for estimation of coefficients
cijm, so we use only that method for this purpose. The value of K can be selected for each
observation Xij(t) using certain information criterion, e.g., BIC, eBIC, AIC or AICc. From
the values of K corresponding to all observations a modal, minimum, maximum or mean value
is selected as the common value for all processes Xij(t). By using (3) and easy modifications
of the results obtained by Górecki and Smaga (2015), we proved that the test statistic (2) is
equal to

(a− b)/(l − 1)

(c− a)/(n− l)
, (4)

where

a =

l
∑

i=1

1

ni
1⊤ni

C⊤
i JϕCi1ni

, b =
1

n

l
∑

i=1

l
∑

j=1

1⊤ni
C⊤

i JϕCj1nj
, c =

l
∑

i=1

trace(C⊤
i JϕCi),

1a is the a× 1 vector of ones, Ci = (cijm)j=1,...,ni;m=1,...,K are K × ni matrices of coefficients,
i = 1, . . . , l, and Jϕ :=

∫

I ϕ(t)ϕ⊤(t)dt is the K ×K cross product matrix corresponding to
the vector ϕ(t) = (ϕ1(t), . . . , ϕK(t))⊤. So the statistic (2) can be calculated based only on
the coefficients cijm and the matrix Jϕ, which can be approximated by using the function
inprod from the R package fda (Ramsay et al. 2009, 2014) (For orthonormal basis, Jϕ is
the identity matrix.). Moreover, observe that any permutation of the observations leaves the
values of the sums b and c unchanged. For this reason, Górecki and Smaga (2015) considered
the permutation test based on (4). We refer to this test as the FP test. Simulation studies of
Górecki and Smaga (2015) suggest that the FP test has better finite sample properties than
the F -type and L2-norm-based tests. Moreover, for short functional data (i.e., observed on
a short grid of design time points) it may also be better than the GPF test described in the
following paragraph.

In the above test statistics, SSRn(t) and SSEn(t) were integrated separately. However, by the
simulation results of Górecki and Smaga (2015), it follows that for example integrating the
whole quotient SSRn(t)/SSEn(t) is more powerful in many situations. Such test statistic of
the form

∫

I Fn(t)dt was considered by Zhang and Liang (2014). They proposed the globalizing
pointwise F test (the GPF test) based on this test statistic and critical value approximated
similarly as for the L2-norm-based test. Although integration seems to a natural operation
on Fn(t) or its part, in some situations other using of Fn(t) may be better in the sense of
power, as was shown by Zhang et al. (2016). Instead of integral of Fn(t), they used simply
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supt∈I Fn(t) as a test statistic and simulated the critical value of the resulting Fmaxb test via
bootstrapping. By intensive simulation studies, Zhang et al. (2016) found that the Fmaxb
(resp. GPF) test generally has higher power than the GPF (resp. Fmaxb) test when the
functional data are moderately or highly (resp. less) correlated.

A different approach to test the null hypothesis (1) was proposed by Cuesta-Albertos and
Febrero-Bande (2010). Their tests are based on the analysis of randomly chosen projections.
Suppose that µi, i = 1, . . . , l belong to a separable Hilbert space H endowed with a scalar
product 〈·, ·〉, and ξ is a Gaussian distribution on this space and each of its one-dimensional
projections is nondegenerate. Let h be a vector chosen randomly from H using the distribution
ξ. When the null hypothesis H0 holds, then we can easily observe that for every h ∈ H, the
following null hypothesis

Hh
0 : 〈µ1, h〉 = · · · = 〈µl, h〉 (5)

also holds. Moreover, Cuesta-Albertos and Febrero-Bande (2010) showed that for ξ-almost
every h, Hh

0 fails, in case of failing of H0. Therefore, a testing procedure for Hh
0 can be

used to test H0. Assuming that Xij ∈ L2(I), i = 1, . . . , l, j = 1, . . . , ni, Cuesta-Albertos and
Febrero-Bande (2010) propose the following testing procedure, in which k random projections
are used:

1. Choose, with Gaussian distribution, functions hr ∈ L2(I), r = 1, . . . , k.

2. Compute the projections P r
ij =

∫

I Xij(t)hr(t)dt/
(∫

I h
2
r(t)dt

)1/2
for i = 1, . . . , l, j =

1, . . . , ni, r = 1, . . . , k.

3. For each r ∈ {1, . . . , k}, apply the appropriate ANOVA test for P r
ij , i = 1, . . . , l, j =

1, . . . , ni. Let p1, . . . , pr denote the resulting p values.

4. Compute the final p value for H0 by the formula inf{kp(r)/r, r = 1, . . . , k}, where
p(1) ≤ · · · ≤ p(k) are the ordered p values obtained in step 3.

The tests based on the above procedure are referred to as the test based on random projections.
Cuesta-Albertos and Febrero-Bande (2010) suggested to use k near 30, which was confirmed
by the results of Górecki and Smaga (2017a). However, in the case of unconvincing results of
the test, we should use a higher number of projections. We also have to choose a Gaussian
distribution and ANOVA test appearing in steps 1 and 3 of the above procedure, respectively.
We can do this in many ways and some of them are implemented in the package fdANOVA

(see Section 3). In step 4, we can also use other final p values instead of Benjamini and
Hochberg procedure (Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001), as for
example Bonferroni correction. However, according to our experience, the test with corrected
p value given in step 4 behaves best under finite samples, so we use only it.

Most of the above testing procedures were compared via simulations in the papers of Górecki
and Smaga (2015) and Zhang et al. (2016). As mentioned above, the GPF and Fmaxb
tests seem to perform best among the tests considered in these articles. However, they were
not compared with the testing procedure of Cuesta-Albertos and Febrero-Bande (2010). Such
comparison of the finite sample behavior of these tests is given in Section 5. Different variants
of the projection method proposed by Cuesta-Albertos and Febrero-Bande (2010) are also
investigated there.
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2.2. Multivariate case

Now, we study the multivariate version of the ANOVA problem for functional data as well
as extensions of certain methods presented in the last section to this problem. The results of
this section were mainly obtained by Górecki and Smaga (2017a).

Instead of single functions, we consider independent vectors of random functions Xij(t) =
(Xij1(t), . . . , Xijp(t))

⊤ ∈ SPp(µi,Γ), i = 1, . . . , l, j = 1, . . . , ni defined over the interval I,
where SPp(µ,Γ) is a set of p-dimensional stochastic processes with mean vector µ(t), t ∈ I
and covariance function Γ(s, t), s, t ∈ I. In the multivariate analysis of variance problem for
functional data (FMANOVA), we have to test the null hypothesis as follows:

H0 : µ1(t) = · · · = µl(t), t ∈ I. (6)

The first (permutation) tests are based on a basis function representation of the components of
the vectors Xij(t), i = 1, . . . , l, j = 1, . . . , ni, similarly as in the FP test. For this purpose, we
assume that Xij belong to Lp

2(I) – a Hilbert space of p-dimensional vectors of square integrable
functions on the interval I, equipped with the inner product: 〈x,y〉 =

∫

I x
⊤(t)y(t)dt. Hence

we can represent the components of Xij(t) in a similar way as in (3). Then the vectors are
represented as follows

Xij(t) =







cij1
...

cijp






ϕ(t) = cijϕ(t), (7)

where cijm = (cijm1, . . . , cijmKm
, 0, . . . , 0) ∈ RKM , ϕ(t) = (ϕ1(t), . . . , ϕKM (t))⊤, t ∈ I and

i = 1, . . . , l, j = 1, . . . , ni, m = 1, . . . , p, KM = max{K1, . . . ,Kp}. The coefficients in cij
and values of Km are estimated separately for each feature by using the same methods as
described in Section 2.1. Similarly to MANOVA (see Anderson 2003), the following matrices
were used in constructing test statistics for FMANOVA problem:

E =

l
∑

i=1

ni
∑

j=1

∫

I

(

Xij(t) − X̄i(t)
) (

Xij(t) − X̄i(t)
)⊤
dt,

H =

l
∑

i=1

ni

∫

I

(

X̄i(t) − X̄(t)
) (

X̄i(t) − X̄(t)
)⊤
dt,

where X̄i(t) = (1/ni)
∑ni

j=1Xij(t), i = 1, . . . , l and X̄(t) = (1/n)
∑l

i=1

∑ni

j=1Xij(t), t ∈ I.
Modifying the results of Górecki and Smaga (2017a), we showed that these matrices can be
designated only by the coefficient matrices cij and appropriate cross product matrix, i.e.,
E = A−B and H = B−C, where

A =
l

∑

i=1

ni
∑

j=1

cijJϕc⊤ij , B =
l

∑

i=1

1

ni

ni
∑

j=1

ni
∑

m=1

cijJϕc⊤im, C =
1

n

l
∑

i=1

ni
∑

j=1

l
∑

t=1

nt
∑

u=1

cijJϕc⊤tu,

and Jϕ is the KM × KM cross product matrix corresponding to ϕ. The following test
statistics for (6) are constructed based on those appearing in MANOVA (Anderson 2003):
the Wilk’s lambda W = det(E)/ det(E + H), the Lawley-Hotelling trace LH = trace(HE−1),
the Pillai trace P = trace(H(H + E)−1), the Roy’s maximum root R = λmax(HE−1), where
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λmax(M) is the maximum eigenvalue of a matrix M. We consider the permutation testing
procedures based on these test statistics and refer to them as the W, LH, P and R tests,
respectively. Generally, we refer to them as the permutation tests based on a basis function
representation for the FMANOVA problem. A quite fast implementation of these permu-
tation tests was obtained by observing that the matrices A and C are not changed by any
permutation of the data.

The second group of testing procedures for (6) is based on random projections similarly as
in the FANOVA test based on random projections. Let a space H and a distribution ξ
be defined as in Section 2.1. Assume that µij ∈ H, where µij are the components of the
vectors µi, i = 1, . . . , l, j = 1, . . . , p. If the null hypothesis in (6) holds, then for every
H = (h1, . . . , hp)

⊤ ∈ H × · · · × H,

HH

0 : (〈µ11, h1〉, . . . , 〈µ1p, hp〉)⊤ = · · · = (〈µl1, h1〉, . . . , 〈µlp, hp〉)⊤ (8)

also holds, and further when H0 fails, for (ξ × · · · × ξ)-almost every H ∈ H × · · · × H, HH

0

also fails (see Theorem 2.2 in Górecki and Smaga 2017a). Thus, a test for the MANOVA
problem can be used to test the FMANOVA one by using it to test the null hypothesis (8).
For this reason, Górecki and Smaga (2017a) investigated the similar testing procedure based
on k random projection as described in Section 2.1, which the first three steps are now as
follows:

1. Choose, with Gaussian distribution, functions hmr ∈ L2(I), m = 1, . . . , p, r = 1, . . . , k.

2. Compute the projections P r
ijm =

∫

I Xijm(t)hmr(t)dt/
(∫

I h
2
mr(t)dt

)1/2
for i = 1, . . . , l,

j = 1, . . . , ni, m = 1, . . . , p, r = 1, . . . , k.

3. For each r ∈ {1, . . . , k}, apply the appropriate MANOVA test for Pr
ij = (P r

ij1, . . . , P
r
ijp)

⊤,
i = 1, . . . , l, j = 1, . . . , ni. Let p1, . . . , pr denote the resulting p values.

In step 3 of this procedure, the well-known MANOVA tests were applied, namely Wilk’s
lambda test (Wp test), the Lawley-Hotelling trace test (LHp test), the Pillai trace test (Pp
test) and Roy’s maximum root test (Rp test). Their permutation versions are also investi-
gated.

By the extensive Monte Carlo simulation studies of Górecki and Smaga (2017a), the perfor-
mance of the tests considered except the Rp test is very satisfactory under finite samples.
Unfortunately, the Rp test does not control the nominal type-I error level, and hence it can
not be recommended. The other testing procedures do not perform equally well, and there
is no single method performing best. As a supplement to those simulation studies, the finite
sample behavior of new variant of the tests based on random projections implemented in the
package fdANOVA is investigated in simulations of Section 5.

3. R implementation

In this section, we present the R package fdANOVA and illustrate the usage of it step by step
using certain real data set. First, however, we mention about the eventual preparation of the
functional data in the R program to use the functions of our package properly.



Tomasz Górecki,  Lukasz Smaga 9

3.1. Preparation of the data

In practice, functional samples are not continuously observed, i.e., each function is usually
observed on a grid of design time points. In our implementations of FANOVA and FMANOVA
tests in the R programming language, all functions are observed on a common grid of design
time points equally spaced in the interval I = [a, b]. In the case where the design time
points are different for different individual functions or not equally spaced in I, we follow the
methodology proposed by Zhang (2013). First, we have to reconstruct the functional samples
from the observed discrete functional samples using smoothing technique such as regression
splines, smoothing splines, P-splines or local polynomial smoothing (see Zhang 2013, Chapters
2-3). For this purpose, in R we can use the function smooth.spline from the stats package (R
Core Team 2017) or functions given in the packages splines (R Core Team 2017), bigsplines
(Helwig 2016), pspline (S original by Jim Ramsey. R port by Brian Ripley 2015) and locpol

(Ojeda Cabrera 2012). After that we discretize each individual function of the reconstructed
functional samples on a common grid of T time points equally spaced in I, and then the
implementations of the tests can be applied to discretized samples.

3.2. Package functionality

Now, we describe the implementation of the tests for analysis of variance problem for uni-
variate and multivariate functional data in the R package fdANOVA. As we will see many
of the implemented tests may be performed with different values of parameters. However,
by simulation and real data examples presented in the present and previous papers (see Sec-
tions 2 and 5), satisfactory results are usually obtained by using the default values of these
parameters. Nevertheless, when the results are unconvincing (e.g., the p values are close to
the significance level), we have the opportunity to use other options provided by the functions
of the package.

All tests for FANOVA problem presented in Section 2.1 are implemented in the function
fanova.tests:

R> library("fdANOVA")

R> str(fanova.tests)

function(x = NULL, group.label, test = "ALL", params = NULL,

parallel = FALSE, nslaves = NULL)

which is controlled by the following parameters:

❼ x – a T ×n matrix of data, whose each column is a discretized version of a function and
rows correspond to design time points. Its default values is NULL, since if the FP test
is only used, we can give a basis representation of the data instead of raw observations
(see the list paramFP below). For any of the other testing procedures, the raw data are
needed.

❼ group.label – a vector containing group labels.

❼ test – a kind of indicator which establishes a choice of FANOVA tests to be performed.
Its default value means that all testing procedures of Section 2.1 will be used. When
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we want to use only some tests, the parameter test is an appropriate subvector of the
following vector of tests’ labels:

c("FP", "CH", "CS", "L2N", "L2B", "L2b", "FN", "FB", "Fb", "GPF",

"Fmaxb", "TRP")

❼ params – a list of additional parameters for the FP, CH, CS, L2b, Fb, Fmaxb tests and
the test based on random projections. Its possible elements and their default values
are described below. The default value of this parameter means that these tests are
performed with their default values.

❼ parallel – a logical indicating whether to use parallelization.

❼ nslaves – if parallel = TRUE, a number of slaves. Its default value means that it will
be equal to a number of logical processes of a computer used.

The list params can contain all or a part of the elements paramFP, paramCH, paramCS,
paramL2b, paramFb, paramFmaxb and paramTRP for passing the parameters for the FP, CH,
CS, L2b, Fb, Fmaxb tests and the test based on random projections, respectively, to the
function fanova.tests. They are described as follows. The list

paramFP = list(int, B.FP = 1000, basis = c("Fourier", "b-spline", "own"),

own.basis, own.cross.prod.mat,

criterion = c("BIC", "eBIC", "AIC", "AICc", "NO"),

method = c("mode", "min", "max", "mean"),

minK = NULL, maxK = NULL, norder = 4, gamma.eBIC = 0.5)

contains the parameters of the FP test and their default values, where:

❼ int – a vector of two elements representing the interval I = [a, b]. When it is not
specified, it is determined by a number of design time points.

❼ B.FP – a number of permutation replicates.

❼ basis – a choice of basis of functions used in the basis function representation of the
data.

❼ own.basis – if basis = "own", a K×n matrix with columns containing the coefficients
of the basis function representation of the observations.

❼ own.cross.prod.mat – if basis = "own", a K×K cross product matrix corresponding
to a basis used to obtain the matrix own.basis.

❼ criterion – a choice of information criterion for selecting the optimum value of K.
criterion = "NO" means that K is equal to the parameter maxK defined below. By
(3), we have BIC(Xij) = T log(e⊤ijeij/T ) + K log T , eBIC(Xij) = T log(e⊤ijeij/T ) +

K[log T +2γ log(Kmax)], AIC(Xij) = T log(e⊤ijeij/T )+2K and AICc(Xij) = AIC(Xij)+

2K(K+1)/(n−K−1), where eij = (eij1, . . . , eijT )⊤, eijr = Xij(tr)−
∑K

m=1 ĉijmϕm(tr),
t1, . . . , tT are the design time points, γ ∈ [0, 1], Kmax is a maximum K considered and
log denotes the natural logarithm.
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❼ method – a choice of method for selecting the common value for all observations from
the values of K corresponding to all processes.

❼ minK (resp. maxK) – a minimum (resp. maximum) value of K. When basis =

"Fourier", they have to be odd numbers. If minK = NULL and maxK = NULL, we
take minK = 3 and maxK equal to the largest odd number smaller than the number of
design time points. If maxK is greater than or equal to the number of design time points,
maxK is taken as above. For basis = "b-spline", minK (resp. maxK) has to be greater
(resp. smaller) than or equal to norder defined below (resp. T ). If minK = NULL or
minK < norder and maxK = NULL or maxK > T , then we take minK = norder and
maxK = T .

❼ norder – if basis = "b-spline", an integer specifying the order of b-splines.

❼ gamma.eBIC – a γ ∈ [0, 1] parameter in the eBIC.

It should be noted that the AICc may choose the finale model with a number K of coefficients
close to a number of observations n, when Kmax is greater than n. Such selection usually
differs from choices suggested by other criterion, but it seems that this does not have much
impact on the results of testing.

For the CH and CS (resp. L2b, Fb and Fmaxb) tests, the parameters paramCH and paramCS

(resp. paramL2b, paramFb and paramFmaxb) denote the numbers of discretized artificial tra-
jectories for certain Gaussian processes (resp. bootstrap samples) used to approximate the
null distributions of their test statistics. The default value of each of these parameters is
10,000. The parameters of the test based on random projections and their default values are
contained in a list

paramTRP = list(k = 30, projection = c("GAUSS", "BM"),

permutation = FALSE, B.TRP = 10000)

where:

❼ k – a vector of numbers of projections.

❼ projection – a method of generating Gaussian processes in step 1 of the testing pro-
cedure based on random projections presented in Section 2. If projection = "GAUSS",
the Gaussian white noise is generated as in the function anova.RPm from the R pack-
age fda.usc (Febrero-Bande and Oviedo de la Fuente 2012). In the second case, the
Brownian motion is generated.

❼ permutation – a logical indicating whether to compute p values by permutation method.

❼ B.TRP – a number of permutation replicates.

To perform step 3 of the procedure based on random projections given in Section 2.1, in the
package, we use five testing procedures: the standard (paramTRP$permutation = FALSE) and
permutation (paramTRP$permutation = TRUE) tests based on ANOVA F test statistic and
ANOVA-type statistic (ATS) proposed by Brunner, Dette, and Munk (1997), as well as the
testing procedure based on Wald-type permutation statistic (WTPS) of Pauly, Brunner, and
Konietschke (2015).
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The function fanova.tests returns a list of the class fanovatests. This list contains the
values of the test statistics, the p values and the parameters used. The results for a given test
are given in a list (being an element of output list) named the same as the indicator of a test
in the vector test. Additional outputs as the chosen optimal length of basis expansion (the
FP test), the values of estimators used in approximations of null distributions of test statistics
(the L2N, L2B, FN, FB, GPF tests) and projections of the data (the test based on random
projections) are contained in appropriate lists. The projections of the data are contained in
a list of the length equal to length of vector k, whose i-th element is an n× k[i] matrix with
columns being projections of the data.

The permutation tests based on a basis function representation for FMANOVA problem, i.e.,
the W, LH, P and R tests are implemented in the function fmanova.ptbfr:

R> library("fdANOVA")

R> str(fmanova.ptbfr)

function(x = NULL, group.label, int, B = 1000,

parallel = FALSE, nslaves = NULL,

basis = c("Fourier", "b-spline", "own"),

own.basis, own.cross.prod.mat,

criterion = c("BIC", "eBIC", "AIC", "AICc", "NO"),

method = c("mode", "min", "max", "mean"),

minK = NULL, maxK = NULL, norder = 4, gamma.eBIC = 0.5)

The parameters group.label, int, B, parallel, nslaves, basis, norder and gamma.eBIC

are the same as in the function fanova.tests (B corresponds to B.FP). The other arguments
of fmanova.ptbfr are described as follows:

❼ x – a list of T × n matrices of data, whose each column is a discretized version of
a function and rows correspond to design time points. The mth element of this list
contains the data of mth feature, m = 1, . . . , p. Its default values is NULL, because
a basis representation of the data can be given instead of raw observations (see the
parameter own.basis below).

❼ own.basis – if basis = "own", a list of length p, whose elements are Km × n matrices
(m = 1, . . . , p) with columns containing the coefficients of the basis function represen-
tation of the observations.

❼ own.cross.prod.mat – if basis = "own", a KM × KM cross product matrix corre-
sponding to a basis used to obtain the list own.basis.

❼ criterion – a choice of information criterion for selecting the optimum value of Km,
m = 1, . . . , p. criterion = "NO" means that Km are equal to the parameter maxK

defined below.

❼ method – a choice of method for selecting the common value for all observations from
the values of Km corresponding to all processes.

❼ minK (resp. maxK) – a minimum (resp. maximum) value of Km. Further remarks about
these arguments are the same as for the function fanova.tests.
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The function fmanova.ptbfr returns a list of the class fmanovaptbfr containing the values of
the test statistics (W, LH, P, R), the p values (pvalueW, pvalueLH, pvalueP, pvalueR), chosen
optimal values of Km and the parameters used. This function uses the R package fda (Ramsay
et al. 2014).

The function fmanova.trp performs the testing procedures based on random projections for
FMANOVA problem (the Wp, LHp, Pp and Rp tests):

R> library("fdANOVA")

R> str(fmanova.trp)

function(x, group.label, k = 30, projection = c("GAUSS", "BM"),

permutation = FALSE, B = 1000,

parallel = FALSE, nslaves = NULL)

The first two parameters of this function as well as the arguments parallel, nslaves are
the same as in the function fmanova.ptbfr. The other ones have the same meaning as in
the parameter list paramTRP of the function fanova.tests (B corresponds to B.TRP). The
function fmanova.trp returns a list of class fmanovatrp containing the parameters and the
following elements (|k| denotes the length of vector k): pvalues – a 4× |k| matrix of p values
of the tests; data.projections – a list of length |k|, whose elements are lists of n×p matrices
of projections of the observations.

The executions of selecting the optimum length of basis expansion by some information cri-
terion, the bootstrap, permutation and projection loops are the most time consuming steps
of the testing procedures under consideration. To reduce the computational cost of the pro-
cedures, they are parallelized, when the parameter parallel is set to TRUE. The parallel
execution is handled by doParallel package (Revolution Analytics and Weston 2015). Some
details of the parallel implementation and its efficiency are discussed in Section 4.

In the package, the number of auxiliary functions are also contained. The p values of the
tests based on random projections for FANOVA problem against the number of projections
are visualized by the function plot.fanovatests using the package ggplot2 (Wickham 2009),
which is controlled by the following parameters: x – an fanovatests object, more precisely,
a result of the function fanova.tests for the standard tests based on random projections;
y – an fanovatests object, more precisely, a result of the function fanova.tests for the
permutation tests based on random projections. Similarly, the p values of the Wp, LHp, Pp
and Rp tests are plotted by the function plot.fmanovatrp. The arguments of this function are
as follows: x – an fmanovatrp object, more precisely, a result of the function fmanova.trp

for the standard tests; y – an fmanovatrp object, more precisely, a result of the function
fmanova.trp for the permutation tests; withoutRoy – a logical indicating whether to plot the
p values of the Rp test. We can use only one of the arguments x and y, or both simultaneously.

Using the package ggplot2 (Wickham 2009), the function plotFANOVA:

R> library("fdANOVA")

R> str(plotFANOVA)

function(x, group.label = NULL, int = NULL, separately = FALSE,

means = FALSE, smooth = FALSE, ...)
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produces a plot showing univariate functional observations with or without indication of
groups as well as mean functions of samples. The following parameters control this function:

❼ x – a T ×n matrix of data, whose each column is a discretized version of a function and
rows correspond to design time points.

❼ group.label – a character vector containing group labels. Its default value means that
all functional observations are drawn without division into groups.

❼ int – this parameter is the same as in the function fanova.tests.

❼ separately – a logical indicating how groups are drawn. If separately = FALSE,
groups are drawn on one plot by different colors. When separately = TRUE, they are
depicted in different panels.

❼ means – a logical indicating whether to plot only group mean functions.

❼ smooth – a logical indicating whether to plot reconstructed data via smoothing splines
instead of raw data.

The functions print.fanovatests, print.fmanovaptbfr and print.fmanovatrp print out
the p values and values of the test statistics for the implemented testing procedures. Addition-
ally, the functions summary.fanovatests, summary.fmanovaptbfr and summary.fmanovatrp

print out information about the data and parameters of the methods.

When calling the functions of the fdANOVA package, the software will check for presence of
the doBy, doParallel, ggplot2, fda, foreach, magic, MASS and parallel packages if necessary
(Hojsgaard and Halekoh 2016; Revolution Analytics and Weston 2015; Wickham 2009; Ram-
say et al. 2014; Hankin 2005; Venables and Ripley 2002). If the required packages are not
installed, an error message will be displayed.

It is worth to mention that fifteen labeled multivariate functional data sets are available in the
mfds package (Górecki and Smaga 2017b), which is a kind of supplement to the fdANOVA

package. Table 1 depicts brief information about these data sets, i.e., numbers of variables,
design time points, groups and observations. The data sets were created from multivariate
time series data available in Chen, Keogh, Hu, Begum, Bagnall, Mueen, and Batista (2015),
Leeb, Lee, Keinrath, Scherer, Bischof, and Pfurtscheller (2007), Lichman (2013) and Olszewski
(2001) by extending all variables to the same length as in Rodriguez, Alonso, and Maestro
(2005). They originate from different domains, including handwriting recognition, medicine,
robotics, etc. The data sets can be used for illustrating and evaluating practical efficiency
of classification and statistical inference methods, etc. (see, for example, Górecki and Smaga
2015, 2017a). In Section 4, two of them are considered in experiments performed for evaluating
efficiency of parallel implementation in the package.

3.3. Package demonstration on real data example

In this section, we provide examples that illustrate how the functions of the R package
fdANOVA can be used to analyze real data. For this purpose, we use the popular gait data
set available in the fda package. This data set consists of the angles formed by the hip and
knee of each of 39 children over each child’s gait cycle. The simultaneous variations of the hip
and knee angles for children are observed at 20 equally spaced time points in [0.025, 0.975].
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Data sets #Variables #Time points #Groups #Observations

Arabic digits 13 93 10 8800
Australian language 22 136 95 2565
Character trajectories 3 205 20 2858
ECG 2 152 2 200
Graz 3 1152 2 140
Japanese vowels 12 29 9 640
Libras 2 45 15 360
Pen digits 2 8 10 10992
Robot failure LP1 6 15 4 88
Robot failure LP2 6 15 5 47
Robot failure LP3 6 15 4 47
Robot failure LP4 6 15 3 117
Robot failure LP5 6 15 5 164
uWaveGestureLibrary 3 315 8 4478
Wafer 6 198 2 1194

Table 1: Brief information about data sets available in the mfds package (Górecki and Smaga
2017b).

So, in this data set, we have two functional features, which we put in the list x.gait of length
two, as presented below.

R> library("fda")

R> gait.data.frame <- as.data.frame(gait)

R> x.gait <- vector("list", 2)

R> x.gait[[1]] <- as.matrix(gait.data.frame[, 1:39])

R> x.gait[[2]] <- as.matrix(gait.data.frame[, 40:78])

Similarly to Górecki and Smaga (2017a), for illustrative purposes, the functional observations
are divided into three samples. Namely, the first sample consists of the functions for the first
13 children, the second sample of the functions for the next 13 children, and the third sample
of the functions for the remaining children. The sample labels are contained in the vector
group.label.gait:

R> group.label.gait <- rep(1:3, each = 13)

We can plot the functional data by using the function plotFANOVA. For example, we plot the
observations for the first functional feature without (Figure 1 (a)) and with indication of the
samples (Figure 1 (b) and (c)) as well as the group mean functions (Figure 1 (d)).

R> library("fdANOVA")

R> plotFANOVA(x = x.gait[[1]], int = c(0.025, 0.975))

R> plotFANOVA(x = x.gait[[1]], group.label = as.character(group.label.gait),

+ int = c(0.025, 0.975))

R> plotFANOVA(x = x.gait[[1]], group.label = as.character(group.label.gait),

+ int = c(0.025, 0.975), separately = TRUE)
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Figure 1: The first functional feature of the gait data without (Panel (a)) and with indication
of the samples (Panels (b) and (c)). Panel (d) depicts the group mean functions.

R> plotFANOVA(x = x.gait[[1]], group.label = as.character(group.label.gait),

+ int = c(0.025, 0.975), means = TRUE)

From Figure 1, it seems that the mean functions of the three samples do not differ significantly.
To confirm this statistically, we use the FANOVA tests implemented in the fanova.tests

function. First, we use default values of the parameters of this function:

R> set.seed(123)

R> (fanova <- fanova.tests(x = x.gait[[1]], group.label = group.label.gait))

Analysis of Variance for Functional Data

FP test - permutation test based on a basis function representation

Test statistic = 1.468218 p-value = 0.208

CH test - L2-norm-based parametric bootstrap test for homoscedastic samples

Test statistic = 7911.385 p-value = 0.2282

CS test - L2-norm-based parametric bootstrap test for heteroscedastic samples

Test statistic = 7911.385 p-value = 0.1969

L2N test - L2-norm-based test with naive method of estimation

Test statistic = 2637.128 p-value = 0.2106562

L2B test - L2-norm-based test with bias-reduced method of estimation

Test statistic = 2637.128 p-value = 0.1957646

L2b test - L2-norm-based bootstrap test
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Test statistic = 2637.128 p-value = 0.2212

FN test - F-type test with naive method of estimation

Test statistic = 1.46698 p-value = 0.2226683

FB test - F-type test with bias-reduced method of estimation

Test statistic = 1.46698 p-value = 0.2198691

Fb test - F-type bootstrap test

Test statistic = 1.46698 p-value = 0.2705

GPF test - globalizing the pointwise F-test

Test statistic = 1.363179 p-value = 0.2691363

Fmaxb test - Fmax bootstrap test

Test statistic = 3.752671 p-value = 0.1887

TRP - tests based on k = 30 random projections

p-value ANOVA = 0.4082394

p-value ATS = 0.2994233

p-value WTPS = 0.3465

Besides of the p values displayed above, the list of matrices of projections of the data may
be of practical interest for the test based on random projections users. The reason for this
is that we can check the assumptions of the tests used in step 3 of the procedure based on
random projections (see Section 2.1), e.g., the normality assumptions of ANOVA F test. Such
inspection may result in choosing the appropriate test used in this step. This is especially
important when the tests based on random projections differ in their decisions.

R> fanova$TRP$data.projections

[[1]]

[,1] [,2] [,3] [,4] ... [,30]

[1,] 37.44057 -26.51193 17.28588 11.323063 ... 1.986230

[2,] 45.50439 -28.20233 21.76841 8.375763 ... 4.213405

[3,] 47.81353 -26.38955 22.49703 10.449332 ... 7.311809

...

[39,] 60.13816 -35.42660 27.27788 14.054984 ... 1.997130

As expected, neither FANOVA test rejects the null hypothesis. Now, we show how particular
tests can be chosen and how the parameters of these tests can be changed. For the FP
test, we use the predefined basis function representation of the data. For this purpose, we
expand the data in the b-spline basis by using the functions from the fda package. They
return the coefficients of expansion as well as the cross product matrix corresponding to the
basis functions. For control, we choose the GPF test, which does not need any additional
parameters. The Fmaxb test is performed by 1000 bootstrap samples. For the tests based on
random projections, 10 and 15 projections are generated by using the Brownian motion, and
p values are computed by the permutation method.



18 fdANOVA: Analysis of Variance for Functional Data in R

R> fbasis <- create.bspline.basis(rangeval = c(0.025, 0.975), 19, norder = 4)

R> own.basis <- Data2fd(seq(0.025, 0.975, len = 20), x.gait[[1]], fbasis)$coefs

R> own.cross.prod.mat <- inprod(fbasis, fbasis)

R> set.seed(123)

R> fanova.tests(x.gait[[1]], group.label.gait,

+ test = c("FP", "GPF", "Fmaxb", "TRP"),

+ params = list(paramFP = list(B.FP = 1000, basis = "own",

+ own.basis = own.basis,

+ own.cross.prod.mat =

+ own.cross.prod.mat),

+ paramFmaxb = 1000,

+ paramTRP = list(k = c(10, 15),

+ projection = "BM",

+ permutation = TRUE,

+ B.TRP = 1000)))

Analysis of Variance for Functional Data

FP test - permutation test based on a basis function representation

Test statistic = 1.468105 p-value = 0.199

GPF test - globalizing the pointwise F-test

Test statistic = 1.363179 p-value = 0.2691363

Fmaxb test - Fmax bootstrap test

Test statistic = 3.752671 p-value = 0.17

TRP - tests based on k = 10 random projections

p-value ANOVA = 0.26

p-value ATS = 0.259

p-value WTPS = 0.329

TRP - tests based on k = 15 random projections

p-value ANOVA = 0.252

p-value ATS = 0.249

p-value WTPS = 0.339

The above examples concern only the first functional feature of the gait data set. Similar
analysis can be performed for the second one. However, both features can be simultane-
ously investigated by using the FMANOVA tests desribed in Section 2.2. First, we consider
the permutation tests based on a basis function representation implemented in the function
fmanova.ptbfr. We apply this function to the whole data set specifying non-default values
of most of parameters. Here, we also show how use the function summary.fmanovaptbfr to
additionally obtain a summary of the data and test parameters. Observe that the results are
consistent with these obtained by FANOVA tests.

R> set.seed(123)

R> fmanova <- fmanova.ptbfr(x.gait, group.label.gait, int = c(0.025, 0.975),
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+ B = 5000, basis = "b-spline", criterion = "eBIC",

+ method = "mean", minK = 5, maxK = 20, norder = 4,

+ gamma.eBIC = 0.7)

R> summary(fmanova)

FMANOVA - Permutation Tests based on a Basis Function Representation

Data summary

Number of observations = 39

Number of features = 2

Number of time points = 20

Number of groups = 3

Group labels: 1 2 3

Group sizes: 13 13 13

Range of data = [0.025 , 0.975]

Testing results

W = 0.9077424 p-value = 0.5294

LH = 0.1003732 p-value = 0.524

P = 0.09340229 p-value = 0.5334

R = 0.08565056 p-value = 0.388

Parameters of test

Number of permutations = 5000

Basis: b-spline (norder = 4)

Criterion: eBIC (gamma.eBIC = 0.7)

Method: mean

Km = 20 20 KM = 20 minK = 5 maxK = 20

Finally, we apply the tests based on random projections for the FMANOVA problem in the
gait data set. In the following, these tests are performed with k = 1, 5, 10, 15, 20 projections
as well as standard and permutation methods. The resulting p values are visualized by the
plot.fmanovatrp function:

R> set.seed(123)

R> fmanova1 <- fmanova.trp(x.gait, group.label.gait, k = c(1, 5, 10, 15, 20))

R> fmanova2 <- fmanova.trp(x.gait, group.label.gait, k = c(1, 5, 10, 15, 20),

+ permutation = TRUE)

R> plot(x = fmanova1, y = fmanova2)

R> plot(x = fmanova1, y = fmanova2, withoutRoy = TRUE)

The obtained plots are shown in Figure 2. As we can observe, except the standard Rp test,
all testing procedures behave similarly and do not reject the null hypothesis. The standard
Rp test does not keep the pre-assigned type-I error rate as Górecki and Smaga (2017a) shown
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Figure 2: P values of the tests based on random projections for the FMANOVA problem in
the gait data set. The Wpp, LHpp, Ppp and Rpp tests are the permutation versions of the
Wp, LHp, Pp and Rp tests.

in simulations. More precisely, this test is usually too liberal, which explains that its p values
are much smaller than these of the other testing procedures. That is why the function has
option not to plot the p values of this test.

4. Efficiency of the parallel implementation

As we mentioned in Section 3.2, the functions of the fdANOVA package provide the option
of parallelization of the execution of the most time consuming steps of performing the test-
ing procedures. By default the parameter parallel is set to FALSE, which corresponds to
sequential version. This option should be used when the data set is not too large or we have
a single processor machine with one core, since the parallelization is very inefficient in such
cases. When it is possible or needed, we specify parallel = TRUE to perform parallel com-
putations using process forking based on the doParallel package (Revolution Analytics and
Weston 2015). We also have possibility of controlling a number of parallel tasks by setting the
parameter nslaves. This parameter is set to a number of logical processes of used computer
by default, which is an optimal choice. This parallel method can be performed on a single
logical machine only. Further information about parallel computing in R and its usage can
be found for example in Schmidberger, Morgan, Eddelbuettel, Yu, Tierney, and Mansmann
(2009) and Teisseyre, K lopotek, and Mielniczuk (2016).

In the remainder of this section, we discuss the results of experiments evaluating efficiency
of parallel implementation in the fdANOVA package. They were performed for one physical
computer with 14 cores (processor Intel(R) Xeon(R) E5-2690 v4 @ 2.6 GHz, 3.5 GHz all-
core turbo), 64 GB RAM, Windows 7 64-bit, R 3.3.3. We compared the execution time and
speedup of the sequential and parallel versions. The number of slaves was set to 2, 4, 8 and
14. The experiments were performed by using the Graz and uWaveGestureLibrary data sets
available in the mfds package (Górecki and Smaga 2017b). We present and discuss the results
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Figure 3: Execution time and speedup versus the number of slaves and the number of design
time points T obtained for the Graz data set (One slave refers to the sequential version.).

of the experiments based on these data sets and the FANOVA tests implemented via parallel
method in the function fanova.tests, i.e., the FP, CH, CS, L2b, Fb, Fmaxb tests and the
permutation test based on random projections. These tests were applied to the first features of
these data sets by using default values of parameters, i.e., 1000, 10,000 permutation replicates
for the FP test and the tests based on random projections, respectively, 10,000 bootstrap
samples and 30 projections. In the other settings, similar results have been obtained, and
therefore, they are omitted for space saving.

In the first experiment, the first feature of the Graz data set was considered. This data set
contains n = 140 functional observations, which were measured in T = 1152 design time
points and divided into two groups each of 70 observations. In this experiment, we studied
how the computational time and speedup depend on the number of design time points, i.e.,
we applied the tests to the truncated Graz data sets with T = 100, 400, 800, 1152 design
time points. The second experiment is based on the first feature of the uWaveGestureLibrary

data set, which contains n = 4478 functional observations measured in T = 315 design
time points and divided into eight samples of 559 or 560 observations. In this case, we
investigated how the computational time and speedup depend on the number of observations.
For this purpose, we considered the subsets of the uWaveGestureLibrary data set consisting of
n = 100, 400, 700, 1000 observations. Figures 3 and 4 depict the results of both experiments.

Observe that the parallel implementation results in satisfactory shortening the computational
time. The usage of two slaves has already made calculations much faster. The execution
time strictly decreases with increase of the number of slaves. The behavior of speedup also
seems to be satisfactory, although it is not linear as there are other sequentially executed
tasks in the functions. Nevertheless, for two and four slaves, the speedup is almost linear in
both experiments, i.e., it is close to the numbers of parallel tasks. From the first experiment,
however, it follows that the speedup for greater number of slaves may decrease with increase
of the number of design time points (Figure 3). Fortunately, the opposite usually holds when
the number of observations increases as in the second experiment (Figure 4). This can perhaps
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Figure 4: Execution time and speedup versus the number of slaves and the number of obser-
vations n obtained for the uWaveGestureLibrary data set (One slave refers to the sequential
version.).

be explained by that the parallel tasks are more concerned in functional observations than
their values in particular design time points. The implementation of the permutation tests
based on random projections seems to be the most time-consuming. When one wants to
perform this tests, it is recommended to use the parallel method even for not very large data
sets. However, when we only choose other testing procedures for analysis, the parallelization
should be used for larger data sets. Otherwise it may not make sense. Summarizing, the
parallel implementation enables to reduce the computation time significantly, when it is used
appropriately.

5. Simulation study

In this section, we consider simulation studies to compare the GPF, Fmaxb tests and the tests
based on random projections. For the last one, two methods of generating Gaussian processes
implemented in the fdANOVA package are considered. As a result, simulations indicate the
recommended tests for different scenarios.

The simulations scenarios were inspired by a Monte Carlo study in Zhang and Liang (2014)
and Zhang et al. (2016).

5.1. Simulation for FMANOVA tests

To compare the FMANOVA tests based on random projections with different methods of
generating Gaussian processes, we consider three groups of two-dimensional functional data
and two vectors n = (n1, n2, n3) of sample sizes n1 = (10, 10, 10) and n2 = (10, 20, 15). Dis-
crete functional samples are generated by using the model xprs(t) = ηpr(t) + vprs(t), t ∈ [0, 1],
p = 1, 2, r = 1, 2, 3, s = 1, . . . , nr. The mean group functions are as follows: η1r(t) =
c⊤1 (1, t, t2, t3)⊤ for r = 1, 2, η13(t) = (c1 + 2δu)⊤(1, t, t2, t3)⊤ and η2r(t) = c⊤2 (1, t, t2, t3)⊤
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for r = 1, 2, 3, where c1 = (1, 2.3, 3.4, 1.5)⊤, c2 = (2.2, 1.6, 1, 2.9)⊤. Thus, the differences
between appropriate group mean functions is controlled by δ, whose values are contained
in the tables of simulation results. Moreover, the direction of these differences is specified
by u = (1, 2, 3, 4)⊤/

√
30. For i.i.d. vprs(t) ∼ SP (0, γ), we take vprs(t) = b⊤

prsΨ(t), bprs =

(bprs,1, . . . , bprs,11)
⊤, bprs,w

d
=

√
λwyprs,w, w = 1, . . . , 11, where Ψ(t) = (ψ1(t), . . . , ψ11(t))

⊤ is
the orthonormal basis vector such that ψ1(t) = 1, ψ2ω(t) =

√
2 sin(2πωt) and ψ2ω+1(t) =√

2 cos(2πωt), ω = 1, . . . , 5, λw = 1.5ρw, ρ = 0.1, 0.3, 0.5, 0.7, 0.9, and yprs,w are indepen-
dent random variables, E(yprs,w) = 0, Var(yprs,w) = 1. The Gaussian (resp. non-Gaussian)
functional observations are obtained by considering yprs,w ∼ N(0, 1) (resp. yprs,w ∼ t4/

√
2).

Notice that γ(s, t) is of the form Ψ(s)⊤diag(λ1, . . . , λ11)Ψ(t) and the correlation increases
with decreasing ρ. The functions xprs(t) are assumed to be observed at the design time
points q/51, q = 1, . . . , 50. For δ = 0 (resp. δ 6= 0), the null hypothesis is true (resp. false)
and we investigate the size control (resp. power) of the tests. This model will be referred to
as FMANOVA model, and the simulation results obtained under it are depicted in Tables 2
and 3 in the Appendix A.

All testing procedures based on random projections for FMANOVA except the Rp test control
the nominal type-I error rate. They show a tendency of conservativity in most scenarios, but
this is natural for tests based on random projection as indicated by Cuesta-Albertos and
Febrero-Bande (2010) and Górecki and Smaga (2017a). The Pp (resp. LHp) test has the
most conservative (resp. liberal) character. The standard version of the Rp test tends to be
highly liberal for both methods of generating Gaussian processes. So, it is not comparable
with the other tests. The permutation versions of all tests seem to behave better than the
standard ones when the null hypothesis holds true, especially in the case of t distribution.

Since the standard Rp tests do not maintain the pre-assigned type-I error rate, we do not
compare their empirical powers with those of the other testing procedures. For completeness,
however, they are presented in tables containing the simulation results. With increasing
sample sizes, the empirical powers of the tests generally increase. Usually the LHp tests are
more powerful than the Wp tests, which outperform the Pp ones. The permutation version of
the LHp (resp. Wp or Pp) test has generally slightly smaller (resp. greater) empirical powers
than the standard one. In terms of power, the permutation Rp testing procedure behaves
similarly to the permutation Wp and LHp tests. Moreover, observe that the tests based on
random projections using Brownian motion have higher (resp. lower) empirical powers than
those using Gaussian white noise when the functional data are less (resp. highly) correlated,
i.e., ρ = 0.7, 0.9 (resp. ρ = 0.1, 0.3). For moderately correlated functional data (ρ = 0.5),
both methods of generating Gaussian processes behave very similar.

5.2. Simulation for FANOVA tests

The comparison of the GPF, Fmaxb tests and the tests based on random projections with
two methods of generating Gaussian processes is made by generating three discrete functional
samples by using the model xrs(t) = ηr(t) + vrs(t), t ∈ [0, 1], r = 1, 2, 3, s = 1, . . . , nr, where
the sample sizes are as in FMANOVA model and subject-effect functions vrs(t) are defined
in the analogous way as in that model. We consider ηr(t) = c⊤1 (1, t, t2, t3)⊤ for r = 1, 2 and
η3(t) = (c1 + 2δu)⊤(1, t, t2, t3)⊤, where c1, δ and u are as in FMANOVA model. This model
will be referred to as FANOVA model. The simulation results are given in Table 4 in the
Appendix A.



24 fdANOVA: Analysis of Variance for Functional Data in R

The GPF and Fmaxb tests keep the pre-assigned type-I error rate quite well, but the first
one may be slightly liberal. The empirical sizes of the tests based on random projections are
generally much lower than the nominal significance level. The tests based on ANOVA F test
statistic are usually more conservative than the other testing procedures based on random
projections. Observe also that the tests based on random projections and using ATS and
WTPS and Gaussian white noise may be slightly liberal for less correlated functional data.

The conclusions about the empirical power of the tests based on random projections under two
different methods of generating Gaussian processes are the same as in the multivariate case
(see the last paragraph of Section 5.1). For very highly correlated functional data (ρ = 0.1),
the tests based on random projections using Gaussian white noise are the most powerful.
When the functional data are a little less highly or moderately correlated (ρ = 0.3, 0.5), in
terms of power, the best testing procedure is the Fmaxb method. Finally, for less correlated
functional data (ρ = 0.7, 0.9), the GPF test and the tests based on random projections using
Brownian motion outperform the remaining ones. Thus, there is not one method, which
performs best, and the performance of the tests depends on the amount of correlation in
functional data. Moreover, the tests based on random projections using different ANOVA
methods do not perform equally well. It turns out that the tests based on random projections
using ANOVA F test statistic and ATS have the highest power for normally distributed data,
perfoming slightly better than those based on WTPS. The reason for this is that these testing
procedures are constructed under normality assumption, while the WTPS one is not. The
situation changes in case of t distribution. There the tests based on random projections using
WTPS are usually the best ones.

6. Conclusions and future work

Functional data analysis offers tools for solving statistical problems for high-dimensional data
considered as curves or functions. An R package fdANOVA implements a broad range of
the analysis of variance testing procedures for univariate and multivariate functional data.
The implemented tests are usually very different solutions to the FANOVA and FMANOVA
problems. Since their performance may depend on specifics of the functional observations,
the package gives the opportunity to choose the most appropriate test for specific real data.
The article presents the empirical evaluation of size control and power of some tests that were
not compared elsewhere, which, together with previous simulation results (see, for example,
Górecki and Smaga 2015, 2017a), may help in choosing appropriate procedures in practice.
All the time consuming parts of the package are parallelized, which makes it relatively fast,
given that most of the testing procedures are based on permutation, projection and resampling
methods.

When the testing procedures implemented in the fdANOVA package reject the null hypothesis
about equality of group mean functions, it would be of interest to check which mean functions
are significantly different and which are not. So, further developments of the package will
include the implementation of post hoc and constrast analysis for functional data. Such
testing procedures are considered, for instance, by Zhang (2013), who proposed the L2-norm-
based and F -type tests.
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Appendix A - Simulation results

The results of simulations described and discussed in Section 5 are depicted in Tables 2–4.

References

Anderson TW (2003). An Introduction to Multivariate Statistical Analysis. 3rd edition. John
Wiley & Sons, London.

Benjamini Y, Hochberg Y (1995). “Controlling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society B, 57,
289–300.

Benjamini Y, Yekutieli D (2001). “The Control of the False Discovery Rate in Multiple Testing
under Dependency.” The Annals of Statistics, 29, 1165–1188.

Berrendero JR, Justel A, Svarc M (2011). “Principal Components for Multivariate Functional
Data.” Computational Statistics & Data Analysis, 55, 2619–2634.

Bobelyn E, Serban AS, Nicu M, Lammertyn J, Nicolai BM, Saeys W (2010). “Postharvest
Quality of Apple Predicted by NIR-spectroscopy: Study of the Effect of Biological Variabil-
ity on Spectra and Model Performance.” Postharvest Biology and Technology, 55, 133–143.

Boente G, Barrera MS, Tyler DE (2014). “A Characterization of Elliptical Distributions and
Some Optimality Properties of Principal Components for Functional Data.” Journal of

Multivariate Analysis, 131, 254–264.
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GAUSS BM
Distribution n ρ V Wp LHp Pp Rp Wp LHp Pp Rp

N(0, 1) n1 0.1 s 2.6 3.1 1.8 12.0 3.2 3.5 2.7 12.0
p 3.0 2.5 2.7 2.3 3.1 3.2 3.1 3.4

0.3 s 2.5 4.0 1.5 13.4 2.8 3.1 2.5 11.4
p 3.7 3.6 3.8 3.1 2.7 2.6 3.2 2.3

0.5 s 3.1 5.1 1.7 16.5 3.0 3.2 2.2 11.4
p 4.3 3.8 4.7 3.7 3.1 2.6 3.3 2.5

0.7 s 4.1 6.1 2.6 18.5 2.7 4.0 2.1 11.5
p 4.9 4.3 5.6 4.9 2.8 2.8 3.1 2.7

0.9 s 4.6 7.2 2.7 21.4 3.5 4.2 2.0 11.3
p 6.3 5.9 5.9 6.3 3.2 2.7 3.3 2.5

n2 0.1 s 1.9 2.2 1.6 9.2 2.4 2.4 2.2 11.2
p 2.1 2.0 2.5 2.1 2.5 2.4 2.3 2.3

0.3 s 2.2 2.9 1.7 11.9 2.4 2.6 2.0 11.7
p 3.5 3.4 3.3 3.9 2.7 2.4 2.8 2.5

0.5 s 3.4 3.9 2.8 14.4 2.7 3.1 1.9 11.1
p 4.6 4.5 4.6 4.8 2.9 3.0 3.2 2.7

0.7 s 3.6 5.3 3.0 16.2 2.9 3.6 1.9 11.4
p 6.2 6.0 6.0 5.5 3.3 3.4 3.2 2.9

0.9 s 4.4 5.9 2.8 20.3 2.9 4.1 2.2 13.5
p 6.1 6.3 6.3 6.9 3.6 3.7 3.9 3.6

t4/
√

2 n1 0.1 s 2.9 3.5 2.2 10.3 2.5 3.1 1.9 9.2
p 3.7 3.9 3.7 3.8 3.3 3.0 3.1 3.3

0.3 s 3.5 4.2 2.4 12.3 2.4 2.8 1.7 9.9
p 4.6 4.2 5.6 3.7 3.1 3.2 3.3 3.1

0.5 s 3.7 4.9 2.5 14.9 2.6 3.1 1.9 9.3
p 5.8 5.8 5.8 4.5 3.5 3.6 3.4 3.6

0.7 s 3.8 5.8 1.9 16.4 2.9 3.5 2.1 9.7
p 6.1 6.6 6.7 6.2 3.6 3.9 4.0 3.8

0.9 s 3.2 5.9 2.0 18.1 3.0 4.2 2.3 11.0
p 5.3 5.6 5.8 6.4 4.1 4.6 3.9 5.0

n2 0.1 s 3.1 3.6 2.3 11.6 3.2 3.5 2.8 11.6
p 3.7 3.9 3.9 4.0 3.7 3.8 3.7 3.7

0.3 s 2.7 4.1 2.0 12.5 3.2 3.8 2.8 10.5
p 4.0 4.4 4.4 4.4 3.7 4.0 3.9 4.0

0.5 s 3.3 4.5 2.4 14.8 3.4 4.1 2.8 10.8
p 4.0 3.7 4.3 4.2 4.1 4.1 4.6 4.1

0.7 s 4.5 5.6 3.2 16.9 3.4 4.5 2.5 11.9
p 4.8 4.8 4.7 5.0 4.8 4.7 4.7 4.1

0.9 s 5.0 6.1 3.3 18.2 4.2 4.8 3.3 13.1
p 5.3 5.0 4.7 5.7 5.0 5.1 5.0 4.7

Table 2: Empirical sizes (as percentages) of the tests based on k = 30 random projections
obtained under FMANOVA model versus different methods of generating Gaussian processes
(GAUSS and BM). In the column “V”, “s” and “p” refer to the standard and permutation
versions of the tests, respectively. Moreover, δ = 0, M = 50, n1 = (10, 10, 10), n2 =
(10, 20, 15), nr = 1000, nperm = 1000 and α = 5%.
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GAUSS BM
Distribution n ρ δ V Wp LHp Pp Rp Wp LHp Pp Rp

N(0, 1) n1 0.1 0.12 s 53.2 58.3 43.6 74.4 22.9 27.8 18.5 46.6
p 54.1 54.8 51.8 55.0 24.4 24.8 23.6 25.6

0.3 0.30 s 43.2 50.8 33.9 70.0 27.4 32.6 23.2 55.6
p 45.3 46.2 42.4 45.9 29.7 29.8 29.0 30.1

0.5 0.45 s 33.5 39.6 22.8 62.2 31.2 34.5 25.7 58.9
p 35.1 36.7 34.0 36.0 32.6 32.9 32.0 33.2

0.7 0.80 s 51.9 60.0 39.4 80.2 62.0 67.1 55.6 86.1
p 53.0 52.8 50.8 52.5 64.6 65.6 63.1 67.1

0.9 1.20 s 56.4 65.2 41.0 86.1 87.2 89.5 82.2 96.6
p 55.7 56.7 53.9 57.2 88.5 89.1 86.8 88.8

n2 0.1 0.12 s 77.9 80.5 72.0 91.2 42.6 47.7 37.5 65.7
p 78.6 79.1 77.5 79.1 45.1 45.9 43.9 45.1

0.3 0.30 s 68.3 72.5 63.6 89.3 49.7 53.2 44.0 71.0
p 70.4 71.0 68.8 70.8 48.9 49.6 48.4 50.1

0.5 0.45 s 54.3 58.8 48.4 81.6 51.3 54.5 47.2 75.9
p 58.5 59.3 57.9 59.1 51.9 52.7 52.1 53.6

0.7 0.80 s 79.0 83.8 73.5 95.4 88.8 90.7 86.3 97.2
p 81.2 81.9 80.3 81.2 89.6 89.4 88.9 90.0

0.9 1.20 s 83.1 87.1 77.4 96.9 98.5 98.8 98.1 99.5
p 83.7 84.1 82.6 85.5 98.6 98.7 98.4 98.5

t4/
√

2 n1 0.1 0.12 s 57.2 62.9 47.9 77.7 26.7 31.4 20.1 48.8
p 61.4 61.2 58.0 62.0 28.5 29.7 26.9 30.4

0.3 0.30 s 45.8 51.5 34.2 72.4 30.9 35.7 25.0 54.6
p 51.7 51.6 48.8 52.0 35.1 35.2 33.9 35.4

0.5 0.45 s 33.5 40.5 24.9 65.5 34.1 38.0 28.5 59.5
p 41.6 42.2 39.4 41.3 38.1 38.0 37.6 38.9

0.7 0.80 s 57.6 64.6 45.1 83.5 68.0 72.3 60.0 86.6
p 61.4 62.0 58.7 62.4 69.8 70.8 69.0 70.3

0.9 1.20 s 61.4 68.7 47.5 86.5 88.3 90.5 83.2 96.8
p 63.8 65.3 61.4 65.4 89.5 89.8 88.3 89.5

n2 0.1 0.12 s 79.1 82.3 73.8 90.3 46.8 49.6 41.2 67.9
p 81.0 81.7 80.2 82.3 48.0 48.8 46.5 49.4

0.3 0.30 s 72.8 77.4 67.5 88.5 54.0 58.0 49.7 74.9
p 76.5 76.5 75.6 76.8 56.7 57.2 56.5 56.4

0.5 0.45 s 59.1 63.6 52.4 82.9 57.8 60.6 54.2 78.2
p 63.3 64.3 62.3 66.3 61.1 61.0 60.1 59.5

0.7 0.80 s 80.1 84.6 75.9 94.4 89.1 90.6 86.8 97.1
p 83.1 83.4 82.5 83.4 90.4 90.4 90.2 90.5

0.9 1.20 s 84.3 87.8 78.8 96.7 98.7 99.1 98.3 99.5
p 86.5 86.6 85.7 86.9 98.8 98.8 98.4 98.7

Table 3: Empirical powers (as percentages) of the tests based on k = 30 random projections
obtained under FMANOVA model versus different methods of generating Gaussian processes
(GAUSS and BM). In the column “V”, “s” and “p” refer to the standard and permutation
versions of the tests, respectively. Moreover, δ 6= 0, M = 50, n1 = (10, 10, 10), n2 =
(10, 20, 15), nr = 1000, nperm = 1000 and α = 5%.
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GAUSS BM
Distr. n ρ δ GPF Fmaxb ANOVA ATS WTPS ANOVA ATS WTPS

N(0, 1) n1 0.1 0 6.3 5.2 2.7 3.3 3.2 3.4 4.5 3.4
0.3 0 7.1 5.1 2.4 3.1 3.6 3.0 3.8 3.0
0.5 0 7.6 5.2 2.9 3.6 4.5 3.2 3.6 3.0
0.7 0 6.0 5.2 3.7 4.9 4.9 2.7 3.0 3.7
0.9 0 4.8 5.8 5.1 6.2 5.6 3.0 3.8 3.4
0.1 0.12 21.6 50.8 67.0 69.9 62.5 35.2 38.0 33.3
0.3 0.30 42.2 71.3 55.6 60.1 52.2 39.7 43.7 36.6
0.5 0.45 53.0 64.0 43.3 47.1 39.7 43.1 46.4 40.3
0.7 0.80 81.6 79.2 64.3 69.0 62.0 77.0 79.9 72.7
0.9 1.20 89.0 72.7 69.4 73.7 64.6 94.1 95.2 92.4

n2 0.1 0 5.8 4.9 3.5 4.6 3.5 3.4 4.5 3.2
0.3 0 6.3 5.3 4.3 4.7 3.6 3.1 4.4 3.0
0.5 0 7.1 4.8 5.1 5.3 4.0 3.5 4.3 3.3
0.7 0 6.5 5.5 4.2 6.8 6.4 2.7 3.4 3.7
0.9 0 5.9 6.7 4.7 6.9 4.9 4.5 5.2 3.6
0.1 0.12 31.0 75.0 85.3 82.8 82.3 57.0 53.5 52.1
0.3 0.30 59.2 93.4 80.8 77.5 75.7 60.4 59.3 58.2
0.5 0.45 71.3 89.0 69.8 66.5 63.7 65.2 62.8 61.7
0.7 0.80 95.2 96.0 87.5 84.8 84.0 94.1 93.1 92.3
0.9 1.20 98.9 93.4 91.9 89.2 88.1 99.2 98.9 98.8

t4
√

2
n1 0.1 0 5.7 3.7 2.1 2.1 2.6 2.6 2.6 3.3

0.3 0 5.4 3.9 1.8 2.0 3.7 1.9 2.5 3.3
0.5 0 4.7 3.7 2.0 2.2 3.2 1.7 2.0 2.7
0.7 0 4.3 3.5 2.3 3.4 4.2 2.0 2.6 2.9
0.9 0 3.4 3.6 3.5 4.6 5.3 2.0 2.6 2.8
0.1 0.12 25.6 58.9 72.9 73.5 74.5 40.3 42.1 42.1
0.3 0.30 45.3 74.6 58.9 61.3 60.9 43.0 44.0 46.1
0.5 0.45 54.2 68.7 48.9 50.6 51.1 46.0 46.9 49.1
0.7 0.80 82.6 80.5 69.8 73.2 70.0 80.2 81.2 81.5
0.9 1.20 87.8 74.5 73.7 74.1 73.2 93.2 93.0 93.8

n2 0.1 0 6.5 5.5 2.5 2.6 3.5 3.1 3.4 2.9
0.3 0 6.2 5.8 2.5 2.9 3.6 2.5 2.7 2.6
0.5 0 6.5 5.3 3.8 4.3 4.0 2.6 2.7 3.1
0.7 0 6.3 5.0 3.7 5.8 4.9 2.4 2.9 3.3
0.9 0 5.9 5.9 4.5 6.1 5.3 2.2 3.1 3.6
0.1 0.12 34.6 76.0 86.7 83.3 85.7 58.5 52.0 57.9
0.3 0.30 62.9 92.3 84.4 79.7 83.5 67.2 63.8 65.9
0.5 0.45 72.9 89.6 73.6 69.9 73.6 69.9 66.8 71.2
0.7 0.80 94.9 96.4 89.6 86.1 89.0 94.4 92.5 94.6
0.9 1.20 98.1 94.7 91.6 89.1 90.6 99.2 98.0 99.1

Table 4: Empirical sizes (δ = 0) and powers (δ 6= 0), as percentages, of the GPF and Fmaxb
tests and the tests based on k = 30 random projections with two methods of generating
Gaussian processes (GAUSS and BM) obtained under FANOVA model. Moreover, M = 50,
n1 = (10, 10, 10), n2 = (10, 20, 15), nr = 1000, nboot = 10,000, nperm = 1000 and α = 5%.
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Górecki T, Krzyśko M, Wo lyński W (2015). “Classification Problem Based on Regression
Models for Multidimensional Functional Data.” Statistics in Transition New Series, 16,
97–110.
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