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Abstract

Like any statistical modeling procedure, results from both exploratory and
confirmatory factor analysis are vulnerable to disproportionate influence
from unusual or outlying cases. Because the common factor model is a
type of multiple regression model, concepts from regression case diagnos-
tics can be applied to factor analysis. However, extant factor analysis soft-
ware does not implement these case diagnostic methods. In this paper, we
briefly review these methods and present a new R package called faoutlier
(Chalmers, 2011) that implements a number of case diagnostic measures,
including Mahalanobis distance, factor model-based outliers, likelihood dis-
tance, and generalized Cook’s distance, as well as a forward search procedure.

Keywords: exploratory factor analysis, confirmatory factor analysis, outliers,
influence, forward search, R

Like any statistical modeling procedure, results from both exploratory factor analysis
(EFA) and confirmatory factor analysis (CFA) are vulnerable to disproportionate influence
from unusual or outlying cases. Nonetheless, the importance of data screening is often ig-
nored or misconstrued in empirical research articles utilizing factor analysis. Perhaps some
researchers have an overly indiscriminate impression that, as a large sample procedure,
factor analysis is generally “robust” to the influence of unusual observations, or they may
simply be unaware of this issue. Additionally, popular software packages for either EFA
or CFA tend not to have built-in routines for examining outliers and potentially influential
cases in the same sense that such routines are commonly available in ordinary regression
modeling procedures. Nonetheless, as we describe below, principles from regression model-
ing diagnostics apply analogously to factor analysis. Thus, the purposes of this paper are
to provide a brief review of case-diagnostic methods for factor analysis and to present an
R (R Core Team, 2014) package called faoutlier (Chalmers, 2011) that implements these
methods. faoutlier contains functions for calculating robust Mahalanobis distance statis-
tics, case-level residuals, generalized Cook’s distance, and likelihood distance, as well as a
forward-search algorithm, each of which is described below. By making this set of comput-
erized functions readily accessible to researchers in a freely available package, we hope that
screening data for outlying and highly influential observations will become a more common
practice in factor analysis.
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Given its rapid rise in popularity, we assume that the reader has a basic famil-
iarity with data analysis using the freely available statistical computing environment R;
if not, there are numerous introductory books (e.g., Dalgaard, 2008) and web guides
(e.g., Revelle, 2007) available. To use the faoutlier package in R, it must first be in-
stalled (using install.packages(’faoutlier’)) and loaded (using library(faoutlier)
or require(faoutlier)). The faoutlier package comes with two data sets, holzinger
and holzinger.outlier, which we use below to illustrate the package’s functions. The
nine-variable holzinger data consist of N = 101 simulated cases which were sampled from
a standardized multivariate normal distribution. The generating correlation matrix for
these simulated data matches a correlation matrix in Browne, Cudeck, Tateneni, and Mels
(2008) based on data due to Holzinger that was published in Harman (1960). A three-factor
EFA model fits both the original correlation matrix and our simulated data very well. The
holzinger.outlier data were created by replacing the first case from holzinger with a
case that equaled the original case with Z = 2 added to its values for five of the observed
variables and Z = 2 subtracted from the other four observed variables. This case then
shows up as an influential outlier in subsequent analyses. See Flora, LaBrish, and Chalmers
(2012) for further detail and factor analyses of both data sets.

The Common Factor Model

Thurstone (1947) common factor model is the basis for modern EFA and CFA (Mac-
Callum, 2009); Lawley and Maxwell (1963) showed that it can be expressed as a linear
model with observed variables as dependent variables and factors as predictors:

y;j = AL+ Xame + .o+ A + €5, (1)

where y; is the jth observed variable from a battery of p observed variables, 7 is the kth
of m common factors, A; is the regression coefficient, or factor loading, relating factor k to
y;, and j is the residual, or unique factor, for y;. In matrix form the model is:

y =An+e, (2)

where y is a vector of the p observed variables, A is a p X m matrix of factor loadings, n
is a vector of m common factors, and € is a vector of unique factors. As with the general
linear model, the residuals are assumed to be independent of the predictors; that is, all
unique factors are uncorrelated with the common factors. Additionally, the unique factors
are assumed uncorrelated with each other (although this assumption may be relaxed in
CFA).

Jorsekog (1969) showed how the traditional EFA model can be constrained to produce
a “restricted solution” that is commonly understood as the CFA model in the structural
equation modeling (SEM) literature. Specifically, in the EFA model, the elements of A are
all freely estimated; that is, each of the m factors has an estimated relationship (i.e., factor
loading) with every observed variable. Factor rotation is then used to aid interpretation.
But in the CFA model, depending on a priori hypotheses, many of the elements of A are
constrained to equal zero, often so that each observed variable is determined by one and only
one factor. Thus, EFA and CFA are variants of the same general model and the methods
we present below apply equivalently to both.
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In practice, parameter estimation proceeds by fitting either a model-implied covari-
ance matrix, Xy, to the sample covariance matrix, S, among observed variables, or by
fitting a model-implied correlation matrix, Py, to the sample correlation matrix, R. The
model-implied covariance structure is

Y= APA + 0O, (3)

where 3y is the predicted p X p population covariance matrix for the observed variables, ® is
the m x m interfactor covariance matrix, and © is the p X p matrix unique factor covariance
matrix that often contains only diagonal elements (i.e., the unique factor variances). The
correlation structure is then

Py = A*®*AY + O, (4)

where Py is the predicted correlation matrix and, in that a correlation matrix is simply a
re-scaled covariance matrix, we can view A*, ®* and ©* as re-scaled versions of A, P,
and O, respectively. There is an historical tendency to conduct EFA using correlations and
CFA using covariances, but of course it is possible to use either covariances or correlations
for both EFA and CFA (see Bentler, 2007; Cudeck, 1989, on the analysis of correlations
vs. covariances). Because the common factors are unobserved and thus have an arbitrary
scale, it is conventional to define them as standardized (i.e., with variance equal to one),
thereby establishing ® as the interfactor correlation matrix. This convention imposes nec-
essary identification restrictions that allow the model parameters to be estimated (although
alternative restrictions are possible, such as the marker variable approach often used with
CFA). In addition to constraining the factor variances, EFA requires a diagonal ©®, with
the unique factor variances along the diagonal.

The goal of model estimation is thus to find the parameter estimates that optimize the
match of the predicted covariance or correlation matrix to the observed sample covariance or
correlation matrix. An historically popular EFA estimation method is “principal axis factor
analysis,” which obtains factor loading estimates from the eigenstructure of a matrix formed
by R— ©. But given modern computing capabilities, we agree with MacCallum (2009) that
factor models should instead be estimated using an iterative algorithm to minimize a model
fitting function, such as the ordinary (or unweighted) least squares (OLS) or maximum
likelihood (ML) functions. The functions in faoutlier utilize ML estimation for both EFA
and CFA.

Case-level diagnostics for factor analysis of continuous variables

Univariate plots and bivariate scatterplots of raw data can be effective for identifying
outlying cases which can have distorting effects on the results of a factor analysis. Although
it is always wise to graph one’s data, relying on scatterplots alone for identification of
outliers is not foolproof, especially when there is a large number of variables, as often
occurs in applications of factor analysis. Additionally, cases that appear to be outliers in
a scatterplot might not actually be influential in that they produce distorted or otherwise
misleading factor analysis results; conversely, certain influential cases might not be apparent
in a traditional bivariate scatterplot.
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Outlying status

An important property of statistics such as Mahalanobis distance (MD) is that they
are based on the full multivariate distribution of observed variables, and as such can uncover
outlying observations that may not easily appear as outliers in a univariate distribution or
bivariate scatterplot. The MD for a given observation can be measured with

MD; = (y; —¥)'S ' yi - ¥) (5)

where y; is the vector of observed variable scores for case ¢, y is the vector of observed
variable means, and S is the sample covariance matrix. However, this MD measure is itself
sensitive to outliers, in that any potential outlying case is included in the calculation of y
and S. Thus, robust Mahalanobis distance measures are based on estimates of y and S
which are resistant to outliers. faoutlier includes a function robustMD() which uses the
MASS package to calculate MD using the traditional product-moment estimates of y and
S as well as two robust MD measures, namely the minimum volume ellipsoid (MVE) and
minimum covariance determinant (MCD) methods for obtaining robust MDs (see Venables
& Ripley, 2002).
Commands to produce MD values from the holzinger data are:

data(holzinger)
MD <- robustMD(holzinger)

By default, robustMD () produces MVE-based MDs. MCD-based or non-robust, clas-
sical MDs can be obtained with the method argument, specifically robustMD (data, method
= ’mcd’) or robustMD(data, method = ’classical’). Because factor analysis is typi-
cally conducted with large samples, it is tedious and error-prone to inspect a simple list of
numeric values of MDs. Thus, it is preferable to plot the results; the command plot (MD)
will create an index plot of the MDs from the MD object created above (see left panel of Fig-
ure 1). This plot shows that there are no extremely aberrant MD values from holzinger,
although Case 76 seems somewhat outlying. Because holzinger was generated from a mul-
tivariate normal distribution we do not expect any extreme MDs, but in practice the data
generation process is unknown and subjective judgment is needed to determine whether a
MD is extreme enough to warrant concern. Assessing influence (see below) can aid that
judgment. When we repeat the above commands using the holzinger.outlier data set,
the single extreme outlying case, Case 1 with M D ~ 150, is obvious (see right panel of
Figure 1; note the different scale of its y-axis).

These MD statistics are model-free measures of case-level outlying status in that they
are calculated without regard to the actual factor analysis model. As such, they provide no
conclusive evidence as to whether an extreme observation is likely to have an excessive effect
on the fit of a model to data or on the estimates of a model’s parameters (but see Yuan
& Zhong, 2008, for factor model-based MD measures). Thus, it is also important to assess
model-based outliers and the influence of cases on model fit and parameter estimation.

Factor model outliers. Because the common factor model is a linear regression
model (Equation 2), many of the well-known concepts about regression diagnostics gener-
alize to factor analysis. Regression diagnostics are a set of methods that can be used to
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holzinger.outlier (right panel) data sets. Note different y-axis scales for the two
panels.

reveal aspects of the data that are problematic for a model that has been fitted to that
data (e.g., Fox, 1991, 2008). Many data characteristics that are problematic for ordinary
multiple regression are also problematic for factor analysis; the trick is that in the common
factor model, the predictors (the factors) are unobserved.

In that regression (and hence factor analysis) is a procedure for modeling a dependent
variable conditional on one or more predictors, a regression outlier is a case whose dependent
variable value is unusual relative to its predicted, or modeled, value given its scores on the
predictors (Fox, 2008). Thus, regression outliers are cases with large residuals. The factor
analysis analog to a regression outlier is a case whose value for a particular observed variable
is extremely different from its predicted value given its scores on the factors. In other words,
cases with large (absolute) values for one or more unique factors, that is, scores on residual
terms in €, are factor model outliers. Equation 2 obviously defines the residuals as

e=y— An. (6)
But because the factor scores (i.e., scores on latent variables in 7) are unobserved and cannot
be calculated precisely, so too the residuals cannot be calculated precisely, even with known
population factor loadings, A. Thus, to obtain estimates of the residuals, €, it is necessary
first to estimate the factor scores, 1, which themselves must be based on sample estimates
of A and ©. Bollen and Arminger (1991) show how a least-squares regression method for
estimating factor scores can be applied to obtain é. As implied by Equation 6, the estimated
residuals € are unstandardized, in that they are in the metric of the observed variables, y.
Bollen and Arminger thus present multiple formulas to convert unstandardized residuals
into standardized residuals.
faoutlier includes a function obs.resid() which calculates both unstandardized
and standardized factor-model residuals. This function calculates residuals from either an
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Figure 2. Standar(;ized factor model residuals for holzin;er (left panel) and

holzinger.outlier (right panel) data sets from a three-factor EFA model. Note different
y-axis scales for the two panels.

EFA model, in which case it is necessary to indicate the number of factors, or a CFA model,
in which case it is necessary to indicate the model specification using syntax based on either
the sem (Fox, Nie, & Byrnes, 2012), lavaan (Rosseel, 2012), or OpenMx (Boker et al., 2011)
packages. The first argument of obs.resid() names the data, while the second argument
gives either the number of factors for the EFA model or a model specification for CFA.

Now, because each case has a residual for every observed variable, it can be especially
valuable to plot the residuals rather than attempting to inspect a list of individual numeric
values. The commands to calculate and subsequently plot the residuals of the holzinger
data from a three-factor EFA model are:

nfact <- 3
residsl <- obs.resid(holzinger, nfact)
plot(residsl, restype = 'std_res')

Figure 2 illustrates the standardized residuals; unstandardized residuals can be plot-
ted using the argument restype = ’res’ in the plot command above. Because the data
were drawn from a standard normal distribution conforming to a known population model,
these residuals themselves are approximately normally distributed with no extreme out-
liers. When we repeat the commands above using the holzinger.outlier data, Case 1 is
a clear factor model outlier for variables 2 and 5 in particular (see right panel of Figure 2;
again note the different scale). We can also obtain a general multivariate statistic computed
by summing the squared standardized residual values over each variable with the option
restype = ’obs’ (this is the default option). This statistic may be useful since it has more
power for detecting multivariate outliers than the univariate counterparts.

Suppose that instead a three-factor CFA model is to be fitted to holzinger such
that the first three observed variables have freely estimated loadings on the first factor,
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the next three variables load on the second factor, and the last three variables load on the
third factor, with all other potential factor loadings constrained to zero (i.e., each observed
variable loads on only one factor) while the factors are freely intercorrelated. Using syntax
of the sem package and the holzinger variable names, we can assign this model specification
to an object called CFAmodel as below (see Fox et al., 2012):

CFAmodel <- specifyModel()
F1 -> Remndrs, lamilil
F1 -> SntComp, lam21
F1 -> WrdMean, lam31
F2 -> MissNum, lam4l
F2 -> MxdArit, lamb2
F2 -> 0ddWrds, lam62
F3 -> Boots, lam73
F3 -> Gloves, 1lam83
F3 -> Hatchts, 1am93
F1 <-> F1, NA, 1
F2 <-> F2, NA, 1
F3 <-> F3, NA, 1

We then calculate and plot standardized residuals from this three-factor CFA model by
again using the obs.resid () function:

residsl <- obs.resid(holzinger, CFAmodel)
plot(residsl, restype = 'std_res')

An additional benefit when fitting a CFA model is that the ML estimation method
used is full-information, meaning that cases with missing data can be included in the analysis
and even evaluated as to whether they are influential outliers given their valid responses. By
default in faoutlier, all functions have an na.rm = TRUE option which can be over-written
to FALSE when the incomplete cases are of interest.

Although the holzinger data do not contain any notable outliers from this three-
factor CFA model, it is important to recognize that the presence of outliers or influential
observations can be indicative of model misspecification (Pek & MacCallum, 2011). Here,
although a three-factor EFA model fits the holzinger data very well, this three-factor CFA
model does not actually have a good fit (RMSEA = .175; CFI = .85) because constraining
the secondary loadings from the EFA model to zero for the CFA model is overly restrictive
(see van Prooijen & van der Kloot, 2001).

Influence

Just as in ordinary regression analysis, in the context of factor analysis an outlying
case (or set of cases) may or may not have considerable influence on modeling results (see
Flora et al., 2012; Pek & MacCallum, 2011; Yuan & Zhong, 2008). Case influence refers
to the extent that an individual case (or a set of cases) impacts modeling results and can
exert itself with respect to overall model fit or estimates of individual parameters. In
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regression analysis, it is well-known that cases with extreme values of predictors but small
residuals (so-called “good leverage points”) have little impact on the estimated values of
regression coefficients but also lead to an increased precision of estimation (in the sense
of reduced standard error); conversely, a case with a large residual but small leverage will
have little influence on the parameter estimates (although it decreases precision). Although
leverage is not directly observable in factor analysis because the predictors are unobserved
these phenomena occur analogously (see Yuan & Zhong, 2008). Thus, perhaps more than
considering outlying status of cases, it is important to assess case influence on factor analysis
results. Influence is most commonly measured with deletion statistics, which measure the
change in a particular statistic that occurs when a particular case is deleted from the sample.
Another approach to determining influence is through a forward search algorithm. Below,
we describe the deletion statistics and forward search algorithm implemented in faoutlier.

Likelihood distance. When a model is estimated with maximum likelihood, the
influence of an individual case on overall model fit can be measured with likelihood distance
(LD; see Pek & MacCallum, 2011, for details). This measure is defined as

LD; = 2[L(0) - L(dy)]

where L(é) is the log-likelihood of the data given the vector of parameter estimates 0

A

obtained with the original, complete sample and L(f;)) is the log-likelihood of the data

given the vector of parameter estimates é(i) obtained with case i deleted from the sample.
A positive LD value for a given case i indicates that its removal leads to worse model
fit, whereas a negative value indicates that removal of case ¢ improves fit. Note that this
definition is closely related to the goodness of fit (GOF) difference in x? values (Pek &
MacCallum, 2011), where Ax? = XQ(é(i)) — x2(f). Again, we can see that if a model
estimated without case ¢ fits the data better than with that case included, then a negative
Ax? value will occur.

The GOF distances for the holzinger data with a three-factor EFA model may be
calculated and plotted using the GOF () function in faoutlier as follows:

GOFresult <- GOF(holzinger, nfact)
plot (GOFresult)

As before, the first argument of the function names the data to be modeled, while the
second argument names either the number of factors for an EFA model or the name of a
model specification object for a CFA model (e.g., the CFAmodel object defined above). Fig-
ure 3 shows index plots of the likelihood distances from the three-factor EFA model for both
holzinger and the holzinger.outlier data. It is clear that while none of the observations
in holzinger has an excessive influence on model fit, the first case in holzinger.outlier
has a very strong deleterious influence on fit.

Generalized Cook’s distance. Whereas LD measures the influence of a case on
model fit, case influence on a set of parameter estimates from a factor analysis model can be
measured with generalized Cook’s Distance (9CD; Pek & MacCallum, 2011). This measure
is defined as

gOD; = (0 — é(i)),(VAR(é(i)))_l(é - é(i)) (7)
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Figure 3. GOF distances for holzinger (left panel) and holzinger.outlier (right panel)
data sets from a three-factor EFA model.

where § and é(i) are as above and VAR(é(i)) is the estimated asymptotic variance-covariance
matrix of the parameter estimates obtained with case ¢ deleted. Like MD, ¢gCD is in a
squared metric with values close to zero indicating little case influence on parameter esti-
mates and those far from zero indicating strong influence on parameter estimates.

The gCD() function in faoutlier calculates gCD case influence values for either an
EFA model or a CFA model. As with the previous functions, the data set is the function’s
first argument while the model specification (either EFA or CFA) is the second object, as
shown below for calculating gCD values for the holzinger data with a three-factor EFA
model and subsequently plotting them:

gCDresult <- gCD(holzinger, nfact)
plot (gCDresult)

When these commands are repeated with the holzinger.outlier data, an extreme
case does appear (see right panel of Figure 4). However, with this particular EFA example,
the extreme gCD occurs for the legitimate Case 37 rather than Case 1, which was the arti-
ficially perturbed case. This result occurs because of the rotational indeterminacy property
of EFA and how the model is optimized. In EFA, a factor’s coefficients are unique only up
to a linear transformation, and because of that models are estimated by focusing only on
the optimization of the communalities (one minus the diagonal of ®* in Equation 6) rather
than the A, ®, and ® matrices directly. Once optimal communalities are obtained, a sub-
sequent extraction method is used to obtain an arbitrary orientation for the initial factor
loadings (Gorsuch, 1983). An unfortunate consequence of this feature is that individual
cases can affect an entire solution in EFA since communality values are estimated based on
the full correlation (or covariance) matrix, whereas in CFA a case’s overall influence can be
isolated and only affect certain elements in the model implied covariance matrix (i.e., Xp).



FAOUTLIER PACKAGE 10

Thus, although the set of gCDs reveals that there is an extremely influential case, it may
not identify the correct case when an EFA model is fitted to the data. When we instead fit
the three-factor CFA model specified above to holzinger.outlier, the gCDs calculated
with the gCD() function (i.e., gCD(holzinger.outlier, CFAmodel)) do correctly identify
Case 1 as having extreme influence (see the bottom of Figure 4).

Forward search. Because deletion statistics LD and gCD are calculated by delet-
ing only a single case i from the complete data set, they are susceptible to masking errors,
which occur when an influential case is not identified as such because it is located in multi-
variate space close to one or more similarly influential cases. Alternatively, a forward search
algorithm can be used to identify groups of influential cases. faoutlier implements the
forward search procedure outlined by Mavridis and Moustaki (2008). Below we describe this
method briefly; see Mavridis and Moustaki for complete details and additional examples.

First, an optimal working subset of the data of initial size n4 is selected from the full
sample of size n and the factor analysis model is fitted to these cases. This initial working
set is optimal in the sense that the chosen cases combine to maximize the log-likelihood of
the data given the model (although other criteria are possible). Next, the search iterates
forward in that cases are added, one at a time, to the working set according to one or more
criteria, such as contribution to the likelihood function, minimum Mahalanobis distance,
or minimum model-implied residuals from the working set. At iteration I, the cases are
ordered according to their closeness to working set, and the (ng + I) cases closest to the
working set are selected to form a new working set. Note that a given observation in a
previous working set (including the initial set) is not necessarily included in subsequent
working sets; observations may enter and leave the working set at each step of the process.
However, at the end of the process, all cases have been included in the working set. At
this point, a “forward plot” of a given statistic by iteration number depicts how distant
the observations added toward the end of the search are from the well-fitting observations
included at the beginning of the search. For example, if the likelihood ratio goodness of
fit statistic for the model is calculated for each iteration (i.e., for each working set), a case
or group of cases contributing strongly to model misfit will appear in this plot as outliers
above the final iteration or iterations.

Forward search is implemented in faoutlier with the forward.search() function.
In the same manner as the other functions described above, it is necessary to supply as
arguments the data to be analyzed and an EFA or CFA model specification. For example,
to conduct a forward search with the holzinger data for three-factor EFA model and
generate the subsequent forward plot, the syntax is

FS <- forward.search(holzinger, nfact)
plot(FS, stat = 'RMR')

By default, the initial size of the working set is 40% of the full sample, and
forward.search() will fit the model to 1000 subsamples of size .4n to find an optimal
initial working set. These defaults may be overridden with the p.base and n.subsets ar-
guments, respectively. For example, to specify a 50% working set with 2000 subsets consid-
ered for the initial working set, the function call would be forward.search(data, model,
n.subsets = 2000, p.base = .5). Additionally, across iterations forward.search()
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Figure 5. Forward search method for holzinger (left panel) and holzinger.outlier
(right panel) data sets from a three-factor EFA model.

adds cases according to their contribution to the likelihood function and the minimum
robust MD from the working set. This default can be overridden with the criteria argu-
ment; for example, to iterate only according to minimized residuals, the function call would
be forward.search(data, model, criteria = ’res’).

Figure 5 presents forward plots with the root mean squared residual (RMR) statistic
for the holzinger and holzinger.outlier data with the three-factor EFA model. With
the holzinger data, one can see that the RMR statistic gradually increases as cases are
added across iterations, but with the addition of the last few iterations the model fit does
not change dramatically. But with the holzinger.outlier data, one can see that the
final iteration is associated with a substantial, outlying increase in the RMR statistic; this
increase is caused by the addition of the non-random outlying data point to the working
set.

Discussion

The R package faoutlier provides a suite of functions for detecting multivariate
outliers in a data set to be factor analyzed (i.e., robust MD), and more importantly, for
identifying factor model outliers (i.e., Bollen & Arminger, 1991, residuals) and influential
observations using either case-deletion statistics (i.e., LD for model fit and ¢gCD for parame-
ter estimates) or a forward-search method. As with any parametric procedure, the presence
of outliers and influential cases can have serious consequences for factor analytic results. As
described above, because factor analysis is the regression of observed variables on factors,
principles and procedures from multiple regression case diagnostics can be applied. Unfor-
tunately, extant factor analysis software does not include such procedures. To remedy this
shortcoming, use of faoutlier in concert with other R packages for factor analysis, such
as psych (Revelle, 2012) for EFA and sem for CFA, facilitates a thorough analysis that
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includes the use of diagnostics for the discovery of outlying or influential cases.

Upon finding outlying or otherwise influential cases, it is important to attempt to
identify their source. If such cases are due to researcher or participant error, then they
should be corrected or removed. Otherwise, contrary to common practice, methodologists
generally recommend that outliers and influential cases not be deleted from the data (e.g.,
Bollen & Arminger, 1991; Pek & MacCallum, 2011; Yuan & Zhong, 2008). Instead, robust
procedures that minimize the excessive influence of extreme cases are recommended; one
such approach is to factor analyze a MCD estimated covariance matrix (Pison, Rousseeuw,
Filzmoser, & Croux, 2003), which can be calculated with the R package MASS. Additionally,
it is important to recognize that when a model is poorly specified (e.g., the wrong number
of factors has been extracted), it is likely that many cases in a sample would be flagged as
influential, but when there are only a few bad cases, the model may be consistent with the
major regularities in the data except for these cases (Pek & MacCallum, 2011).

In closing, we wish to point out that many of the functions in faoutlier are not
limited to factor analysis, and will work with any structural equation model object specified
using syntax of the sem, lavaan, or OpenMx package. This generality reflects the theme
that disproportionally influential observations can arise in any modeling procedure, and
thus it is prudent to utilize diagnostic procedures as a matter of routine.
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