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Abstract

Machine learning algorithms are useful for various predictions tasks, but they can
also learn how to discriminate, based on gender, race or some other sensitive attribute.
This realization gave rise to the field of fair machine learning, which aims to measure
and mitigate such algorithmic bias. This manuscript describes the implementation of the
fairadapt R-package, a causal inference pre-processing method, which, using the causal
graphical model, answers hypothetical questions of the form “What would my salary have
been, had I been of a different gender/race?”. Such counterfactual reasoning can help
eliminate discrimination and help justify fair decisions.
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1. Introduction

Machine learning algorithms are now used for decision-making in socially sensitive situations,
such as predicting credit-score ratings or recidivism during parole. Important early works
noted that algorithms are capable of learning societal biases, for example with respect to race
(Larson, Mattu, Kirchner, and Angwin 2016) or gender (Blau and Kahn 2003; Lambrecht
and Tucker 2019). This realization started an important debate in the machine learning
community about fairness of algorithms and their impact on decision-making.

The first step of fairness is defining and measuring discrimination. Some inuitive notions have
been statistically formalized in order to provide fairness metrics. For example, the notion of
demographic parity (Darlington 1971) requires the protected attribute A (gender/race/religion
etc.) to be independent of a constructed classifier or regressor Y. Another notion, termed
equality of odds (Hardt, Price, Srebro et al. 2016), requires the false positive and false neg-
ative rates of classifier Y between different groups (females and males for example), written
mathematically as V1A | Y. To this day, various different notions of fairness exist, which are
sometimes incompatible /(\Corbett—Davies and Goel 2018), meaning not of all of them can be

achieved for a predictor Y simultaneously. There is no consensus on which notion of fairness
is the correct one.

The discussion on algorithmic fairness is, however, not restricted to the machine learning
domain. There are many legal and philosophical aspects that have arisen. For example,
the legal distinction between disparate impact and disparate treatment (McGinley 2011) is
important for assessing fairness from a judicial point of view. This in turn emphasizes the
importance of the interpretation behind the decision-making process, which is often not the
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case with black-box machine learning algorithms. For this reason, research in fairness through
a causal inference lens has gained more attention.

There are several ways causal inference can help us understand and measure discrimination.
The first is counterfactual reasoning (Galles and Pearl 1998), which allows us to argue what
might have happened under different circumstances which did not occur. For example, we
might ask whether a female candidate would had been employed, had she been male? This
motivated another notion of fairness, termed counterfactual fairness (Kusner, Loftus, Russell,
and Silva 2017), which states that the decision made should stay the same, even if we hypothet-
ically changed someone’s race or gender (written succintly as Y (a) = Y (a’) in the potential
outcome notation). Further, important work has been done in order to decompose the parity
gap measure (used for assesing demographic parity), lP(}A/ =1|A=a)-— ]P(f/ =1|A=4d),
into the direct, indirect and spurious components. Lastly, the work of Kilbertus, Carulla,
Parascandolo, Hardt, Janzing, and Scholkopf (2017) introduces the so-called resolving vari-
ables, in order to relax the possibly prohibitively strong notion of demographic parity. This
manuscript describes the details of the fair data adaptation method (Plecko and Meinshausen
2020). The approach aims to combine the notions of counterfactual fairness and resolving
variables and to explicitly compute counterfactul values of individuals. The implementation
is available on CRAN as the fairadapt package.

We note that as of the day of writing of the manuscript, there are only 4 CRAN packages
related fair machine learning. The fairml package implements the non-convex method of
Komiyama, Takeda, Honda, and Shimao (2018). Packages fairness and fairmodels serve as
diagnostic tools for measuring algorithmic bias, together with an implementation of several
pre and post-processing methods for bias mitigation. However, the fairadapt package is the
only causal method. Even though many papers on the topic have been published, the fairness
domain is still lacking good quality implementations of the existing methods.

The rest of the manuscript is organized as follows. In Section 2 we describe the methodology
behind fairadapt, together with quickly reviewing some of the important concepts of causal
inference. In Section 3 we discuss the implementation details and guide the user as to how
to use the package. In Section 4 we illustrate the usage of fairadapt by using a large, real-
world dataset for a hypothetical fairness application. In Section 5 we explain some important
extensions, such as Semi-Markovian models and resolving variables.

2. Methodology

We start by describing the basic idea of fairadapt in a nutshell, followed by the precise
mathematical formulation.

2.1. Example: university admission

Consider the following example. Variable A is the protected attribute, in this case gender
(A = a corresponding to females, A = d’ to males). Let E be educational achievement
(measured for example by grades achieved in school) and T' the result of an admissions test
for further education. Let Y be the outcome of interest (final score) upon which admission
to further education is decided. Edges in the graph indicate how variables affect each other.
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Attribute A, gender, has a causal effect on variables F, T' and Y, and we wish to eliminate
this effect. For each individual with observed values (a, e, t,y) we want to find a mapping

(a,e,t,y) — (aUP) eUP) 1UP) 4/ (IP))

which finds the value the person would have obtained in a world where everyone is female.
Explicitly, for a male person with education value e, we give it the transformed value e(/?)
chosen such that

P(E>e|A=d)=PE >e'P) | A=aq).

The main idea is that the relative educational achievement within the subgroup would stay
the same if we changed someone’s gender. If you are male and you have a higher educational
achievement than 60% of all males in the dataset, we assume you would be better than 60% of
females had you been female!. After computing everyone’s education (in the ‘female’ world),
we continue by computing the transformed test score values T(fP). The approach is again
similar, but this time we condition on educational achievement. That is, a male with values
(E,T) = (e, t) is assigned a test score t/P) such that

P(T>t|E=eA=d)=P(T >t/P | E=¢cUP) A=nq),

where the value e/P) was obtained in the previous step. The step can be visualized as follows?

density
70% female

T|E=eA=ad 70% male

10% female

In the last step, the outcome variable Y needs to be adjusted. The adaptation is based on the
values of education and the test score. The transformed value y(/?) of Y = y would satisfy

PY>y|E=eT=tA=d)=PY >y | E=eUP 7 =1UP) A=0q). (1)

This way of counterfactual correction is known as recursive substitution (Pearl 2009, Chap-
ter 7).

!This assumption is empirically untestable, since it is impossible to observe both a female and a male
version of the same individual.

In the visualization, the test scores of male applicants have higher values. We emphasize this is in no
way a view implied by the authors, simply a currently observed societal bias in certain university admission
datasets.
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We next describe the approach from above formally. The reader who is not interested in the
mathematical detail is encouraged to go straight to Section 3. We start by introducing an
important causal inference concept, related to our discussion, namely the structural causal
model. A structural causal model (SCM) is a 4-tuple < V, U, F, P(u) >, where

o V={V1,...,V,} is the set of observed (endogeneous) variables
o U={Uy,...,U,} are latent (exogeneous) variables

o F = {fi,.., fn} is the set of functions determining V', v; + fi(pa(v;),u;), where
pa(V;) C V,U; C U are the functional arguments of f;

o P(u) is a distribution over the exogeneous variables U.

We note that any particular SCM is accompanied by a graphical model G (a directed acyclic
graph), which summarizes which functional arguments are necessary for computing the values
of each V; (that it is, how variables affect each other). We assume throughout, without loss
of generality, that

(i) fi(pa(vi),u;) is increasing in u; for every fixed pa(v;)

(ii) exogeneous variables U; are uniformly distributed on [0, 1]

We first discuss the so-called Markovian case in which all exogeneous variables U; are mutually
independent. Some relevant extensions, like the Semi-Markovian case (where U; variables
are allowed to have mutual dependencies) and the case of so called resolving variables, are
discussed in Section 5.

2.2. Basic formulation - Markovian SCMs

Suppose that Y taking values in R is an outcome of interest and A the protected attribute
taking two values a,a’. Our goal is to describe a pre-processing method which transform the
entire data V into its fair version V(). This is done by computing the counterfactual values
V(A = a) which would have been obtained by the individuals, had everyone had the same
protected attribute A = a.

More precisely, going back to the university admission example above, we want to “equate”
the distributions
Vi |pa(V;),A=aand V; | pa(V;),A =d'. (2)

In words, we want the distribution of V; to be the same for the female and male applicants,
for every variable V;. Since each function f; of the original SCM is reparametrized so that
fi(pa(v;),w;) is increasing in w; for every fixed pa(v;), and also that U; variables are uniformly
distributed on [0, 1]. Then the U; variables can be seen as the latent quantiles. Our algorithm
proceedes as follows:

The f; assignment functions of the SCM are of course unknown, but are learned non-parametrically
at each step. Notice that Algorithm 1 is computing the counterfactual values V(A = a) under
the do(A = a) intervention for each individual, while keeping the latent quantiles U fixed. In
the case of continuous variables, the latent quantiles U can be determined exactly, while for
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Input: V, causal graph G
set A < a for everyone
for V; € de(A) in topological order do
learn the assignment function V; « f;(pa(V;),U;)
infer the quantiles U; associated with the variable V;
transform the values of V; by using the quantile and the transformed parents
(obtained in previous steps) V;(/P) fi(pa(‘/;)(fp), Ui)
end

return V(P
Algorithm 1: FAIR DATA ADAPTATION

the discrete case, this is more subtle and described in detail in the original fair data adaptation
manuscript (Plecko and Meinshausen 2020, Section 5).

3. Implementation

The implementation is based on the main function fairadapt (), which returns an S3 object
of class "fairadapt". We list the most important arguments of the function and then show
how these should be specified:

e formula, argument of type formula specifies the dependent and explanatory variables
e adj.mat argument of type matrix encodes the adjacency matrix

e train.data, test.data of type data.frame

e prot.attr of type character is of length one and names the protected attribute.

R> uni.adj.mat <- array(0, dim = c(4, 4))
R> colnames(uni.adj.mat) <- rownames (uni.adj.mat) <-
+ c("gender", "edu", "test", "score")

R> uni.adj.mat["gender", c("edu", "test")] <-
+ uni.adj.mat["edu", c("test", "score")] <-
+ uni.adj.mat["test", "score"] <- 1L

R>

R> nsamp <- 200

R>

R> FA.basic <- fairadapt(score ~ .,

+ train.data = uni_admission[1:nsamp, ],

+ test.data = uni_admission[(nsamp+1):(2*nsamp), ],

+ adj.mat = uni.adj.mat, prot.attr = "gender", res.vars = NULL,
+ visualize.graph = F, quant.method = fairadapt:::rangerQuants)
R>

R> FA.basic

Fairadapt result

Call:
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score ~
Protected attribute: gender
Protected attribute levels: 0, 1
Number of training samples: 200
Number of test samples: 200
Number of independent variables: 3
Total variation (before adaptation): -0.6757414
Total variation (after adaptation): -0.07889245

The "fairadapt" S3 class has several associated generics and methods. For instance, print (FA.basic)
shows some information about the object call, such as number of variables, the protected at-

tribute and also the total variation before and after adaptation, defined as (Y denoting the
outcome variable)

EY |A=d—E[Y |[A=d]and E[YUP) | A=qa] —E[YUP) | 4 = 4],

respectively. The total variation, in the case of binary Y, corresponds to the parity gap.

3.1. Specifying the graphical model

The fairadapt supposes the underlying graphical model G is known. The model is specified
by the adjacency matrix. For example, suppose we take the causal graph G of the university
admission example above. For such a graph, we construct the adjacency matrix and the graph
with the GraphModel () convenience function that builds on top of the igraph package

R> toy.graph <- graphModel (uni.adj.mat)
R> plot(toy.graph, vertex.size = 40, vertex.label.cex = 0.5,
+ vertex.label.color = "black")

3.2. Quantile learning step
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Random Forests = Neural Networks Linear Regression

R-package ranger mcqrnn quantreg
quant .method rangerQuants mcqgrnnQuants linearQuants
complexity O(nplogn) O(npnepochs) O(p®n)
2-layer fully "br" method of
default parameters ntrees = 500 connected Barrodale and
miry = \/p feed-forward Roberts used for
network fitting
T(200,4) 0.4 sec 89 sec 0.3 sec
T(500,4) 0.9 sec 202 sec 0.5 sec

Table 1: Summary table of different quantile regression methods. n is the number of samples,
p number of covariates, nepochs Number of training epochs for the NN. T'(n,4) denotes the
runtime of different methods on the university admission dataset, with n training and testing
samples.

We describe the training step using the fairadapt() function. The fairadapt() function
can be used in two slightly distinct ways. The first option is by specifying training and testing
data at the same time. The data adaptation is then applied to the combination of train and
test data, in order to learn the latent quantiles as precisely as possible (with the exception of
label Y which is unavailable on the test set). The second option is use only the train.data
argument when calling fairadapt(), after which the predict() function can be used to
adapt test data at a later stage.

We note that train.data and test.data need to have column names which appear in the
names of the adjacency matrix colnames(adj.mat). The protected attribute A is given as a
character vector prot.attr of length one.

The quantile learning step in Algorithm 1 can be done using three different methods:

o Quantile Regression Forests (Meinshausen 2006)
o Non-crossing quantile neural networks (Cannon 2018)

o Linear Quantile Regression (Koenker and Hallock 2001)

The summary of the various differences between the methods is given in Table 1.

The choice of quantile learning method is done by specifying the quant.method argument,
which is of class function and constructs the quantile regression object. For more details and
an example, see 7rangerQuants. Together with the quant.method constructor, S3-dispatch
is used for inferring the quantiles. This allows the user to specify their own quantile learning
methods easily.

We quickly discuss the quantile learning methods included in the package. Using the linear
quantile method is the fastest option. However, it cannot handle the non-parametric case.
For a non-parametric approach and mixed data, the RF approach is well-suited. The neural
network approach is, comparatively, substantially slower than the forest/linear case and does
not scale well to large sample sizes. Generally, we recommend using the forest based approach,
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because of the non-parametric nature and computational speed. However, we note that for
smaller sample sizes, the neural network approach might in fact be the best option.

3.3. Fair-twin inspection

The university admission example presented in Section 2 demonstrates how we can compute
counterfactual values for an individual while preserving their relative educational achievement.
In particular, for a male student with values (a,e,t,y), we compute his “fair-twin” values
(a(fp), elfp) ¢(fp) y(fp)) - the values the student would have obtained, had he been female. To
explicitly compare a person to their hypothetical fair-twin, we use the fairTwins () function,
applied to an object of class "fairadapt":

R> fairTwins(FA.basic, train.id = seq.int(1L, 5L, 1L))

gender score score_adapted edu edu_adapted test
1 1 1.9501728 1.34359000 1.3499572 0.69580978 1.617739679
2 0 -2.3502495  -2.35024955 -1.9779234 -1.97792341 -3.121796235
3 1 0.6285619 -0.04234933 0.6263626 -0.29744386 0.530034686
4 1 0.7064857 0.13173095 0.8142112 -0.02637841 0.004573003
5 1 0.3678313 0.23076887 1.8415242 0.90893547 1.193677123
test_adapted
1 0.5555573
2 -3.1217962
3 -0.5822567
4 -0.7973851
5 0.3267990

In this example, we compute the values in a “female” world. Therefore, for female applicants,
the values stay the same, while for male applicants the values are adapted, as can be seen
from the output.

4. Illustration

Here we describe an example of a possible real-world use of fairadapt. Suppose that after
a legislative change the US government has decided to adjust the salary of all of its female
employees in order to remove both disparate treatment and disparate impact effects. To
this end, the government wants to compute the counterfactual salary values of all female
employees, that is the salaries that female employees would obtain, had they been male.

To do this, the government is using the from the 2018 American Community Survey by the
US Census Bureau. We load the pre-processed version of the dataset:

R> dat <- gov_census
R> print(head(dat))

sex age race hispanic_origin citizenship nativity marital family_size
1: male 64 black no 1 native married 2
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2: female 54 white no 1 native married 3

3: male 38 black no 1 native married 3

4: female 41 asian no 1 native married 3

5: female 40 white no 1 native married 4

6: female 46 white no 1 native divorced 3
children education_level english_level salary hours_worked weeks_worked

1: 0 20 0 43000 56 49

2: 1 20 0 45000 42 49

3: 1 24 0 99000 50 49

4: 1 24 0 63000 50 49

5: 2 21 0 45200 40 49

6: 1 18 0 28000 40 49
occupation industry economic_region

1: 13-1081 928P Southeast

2: 29-2061 6231 Southeast

3: 25-1000 611M1 Southeast

4: 25-1000 611M1 Southeast

5: 27-1010 611M1 Southeast

6: 43-6014 6111 Southeast

R> # group the columns

R> prot.attr <- "sex"

R> dmgraph <- c("age", "race", "hispanic_origin", "citizenship", "nativity",
+  "economic_region")

R> fam <- c("marital", "family_size", "children")

R> edu <- c("education_level", "english_level")

R> work <- c("hours_worked", "weeks_worked", "occupation", "industry")

R> out <- "salary"

The hypothesized causal graph for the dataset is given in Figure 1. We construct the causal
graph and the confounding matrix:

R> col.names <- c(prot.attr, dmgraph, fam, edu, work, out)

R>

R> adj.mat <- cfd.mat <- array(0, dim = c(length(col.names), length(col.names)))
R> colnames(adj.mat) <- rownames(adj.mat) <-

+  colnames(cfd.mat) <- rownames(cfd.mat) <-

+ col.names

R> adj.mat[prot.attr, c(fam, edu, work, out)] <-

+ adj.mat[dmgraph, c(fam, edu, work, out)] <-

+ adj.mat[fam, c(edu, work, out)] <-

+ adj.mat[edu, c(work, out)] <-

+ adj.mat[work, out] <-

+ cfd.mat[prot.attr, dmgraph] <- cfd.mat[dmgraph, prot.attr] <- 1L

R> census.graph <- graphModel(adj.mat, cfd.mat)
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Figure 1: The causal graph for the Government-Census dataset. D are demographic features,
A is gender, F' is marital and family information, F education, W work-related information,
Y the salary, which is also the outcome of interest.

R> plot(census.graph, vertex.size = 20, vertex.label.cex = 0.5,
+  vertex.label.color = "black")
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Before applying fairadapt (), we first log-transform the salaries and look at the densities by
gender group

R> # log-transform the salaries
R> dat$salary <- log(dat$salary)
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R>

R> # plot density before adaptation

R> nsamples <- 2000

R>

R> ggplot(dat[1:nsamples], aes(x = salary, fill = sex)) +
+ geom_density(alpha = 0.4) + theme_minimal() +

+ ggtitle("Salary density by gender")

Salary density by gender

0.8

0.6
= sex
‘D 0.4
GCJ |:| female
© I:‘ male

0.2

0.0

6 8 10 12
salary

There is a clear shift between the two genders, meaning that male employees are currently
treated better than female employees. However, there could be differences in salary which
are not due to gender inequality, but have to do with the economic region in which the
employee works. This needs to be accounted for as well, i.e. the difference between economic
regions is not to be removed. To solve the problem, the US governemnt applies fairadapt:

R> FA.govcensus <- fairadapt(salary ~ ., train.data = dat[1:nsamples],
+ adj.mat = adj.mat, prot.attr = prot.attr,
+ visualize.graph = F)

After applying the adaptation, we inspect whether the problem has improved. The densities
after adaptation can be plotted using the autoplot () function:

R> autoplot(FA.govcensus, when = "after") +
+ ggtitle("Adapted salary density by gender")
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Adapted salary density by gender
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If we obtain additional testing data, and wish to adapt it as well, we can use the predict ()
function:

R> new.test <- dat[seq.int(nsamples + 1L, nsamples + 10L, 1L)]
R> adapt.test <- predict(FA.govcensus, newdata = new.test)
R> head(adapt.test)

sex age race hispanic_origin citizenship nativity marital family_size

1: female 52 white no 1 native married 3

2: female 31 white no 1 native married 5

3: female 53 white no 1 native married 2

4: female 53 black no 1 native married 2

5: female 23 white no 1 native married 2

6: female 49 white yes 1  native married 7
children education_level english_level salary hours_worked weeks_worked

1: 1 21 0 11.91839 40 49

2: 3 22 0 10.77896 40 49

3: 0 22 0 11.40756 40 49

4: 0 21 0 11.28978 40 49

5: 0 22 0 10.46310 15 49

6: 4 22 0 10.69194 40 49
occupation industry economic_region

1: 13-1082 92M2 Southeast

2: 25-2020 6111 Southeast

3: 25-2050 51912 Southeast

4: 11-91XX 928P Southeast

5: 43-9XXX 928110P2 Southeast

6: 25-2020 6111 Southeast

Finally, we can do fair-twin inspection using the fairTwins() function, to see how feature
values of individual employees have changed:
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R> inspect.cols <- c("sex", "age", "education_level", "salary")
R> fairTwins(FA.govcensus, train.id = 1:5, cols = inspect.cols)

sex age age_adapted education_level education_level_adapted salary

1 male 64 64 20 20 10.66896

2 female 54 54 20 20 10.71442

3 male 38 38 24 24 11.50288

4 female 41 41 24 24 11.05089

5 female 40 40 21 21 10.71885
salary_adapted

1 10.49035

2 10.71442

3 11.60824

4 11.05089

5 10.71885

The values are unchanged for the female individuals. Note that age does not change for
any individual, since it is not a descendant of A. However, variables education_level and
salary do change for males, as they are descendants of A.

The variable hours_worked is also a descendant of A. However, one might argue that this
variable should not be adapted in the procedure, that is, that it should remain the same, even
if we hypothetically change the person’s gender. This is the idea behind resolving variables,
introduced in the next section.

5. Extensions

5.1. Adding resolving variables

Kilbertus et al. (2017) discuss that in some situations the protected attribute A can affect vari-
ables in a non-discriminatory way. For instance, in the Berkeley admissions dataset (Bickel,
Hammel, and O’Connell 1975) we observe that females often apply for departments with lower
admission rates and consequently have a lower admission probability. However, we perhaps
would not wish to account for this difference in the adaptation procedure if we were to argue
that department choice is a choice everybody is free to make. This motivated the following
reasoning, found in Kilbertus et al. (2017). A variable R is called resolving if

(i) R € de(A), where de(A) are the descendants of A in the causal graph G

(ii) the causal effect of A on R is considered to be non-discriminatory

In presence of resolving variables, we compute the counterfactual under a more complicated
intervention do(A = a, R = R(a’)). The potential outcome value V(A = a, R = R(d’)) is
obtained by setting A = a and computing the counterfactual while keeping the values of
resolving variables to those they attained naturally. This is a nested counterfactual and the
difference in Algorithm 1 is simply that resolving variables R are skipped over in the for-
loop. We run the following code to compute the fair adaptation with the variable test being
resolving in the uni_admission dataset
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R> FA.resolving <- fairadapt(score ~ .,
+ train.data = uni_admission[1:nsamp, ],
+ test.data = uni_admission[(nsamp+1):(2*nsamp), 1,

+ adj.mat = uni.adj.mat, prot.attr = "gender", res.vars = "test',
+ visualize.graph = F)
R>

R> FA.resolving

Fairadapt result

Call:

score ~
Protected attribute: gender
Protected attribute levels: 0, 1
Resolving variables: test
Number of training samples: 200
Number of test samples: 200
Number of independent variables: 3
Total variation (before adaptation): -0.6757414
Total variation (after adaptation):  -0.3893239

We note that the total variation in this case is larger than in the FA.basic example from
Section 3, with no resolvers. The intuitive reasoning here is that resolving variables allow for
some discrimination, so we expect to see a larger total variation between the groups. Finally,
we can visualize the graph

R> plot(graphModel (uni.adj.mat, res.vars = "test"),
+ vertex.size = 40, vertex.label.cex = 0.5,

+ vertex.label.color = "black")
G%HH’
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which shows a different color for the resolving variable test. The resolving variables are
red-colored in order to be distinguished from other variables.

5.2. Semi-Markovian and topological ordering variant

In Section 2 we were concerned with the Markovian case, which assumes that all exogeneous
variables U; are mutually independent. However, in practice this need not be the case. If there
are mutual dependencies between the U;s, we are dealing with a so-called Semi-Markovian
model. These dependencies between latent variables are represented by dashed, bidirected
arrows in the causal diagram. In the university admission example, suppose we had that
Utest M. Uscore, meaning that latent variables corresponding to variable test and final score are
correlated. Then the graphical model would be represented as

There is an important difference in the adaptation procedure for Semi-Markovian case: when
inferring the latent quantiles U; of variable V;, in the Markovian case, only the direct parents
pa(V;) are needed. In the Semi-Markovian case, due to correlation of latent variables, using
only the pa(V;) can lead to biased estimates of the U;. Instead, the set of direct parents needs
to be extended, described in detail in (Tian and Pearl 2002). We briefly sketch the argument.
Let the C-components be a partition of the set V', such that each C' — component contains a
set of variables which are mutually connect by bidirected arrows. Let C'(V;) denote the whole
C-component of variable V;. We then define the set of extended parents

Pa(V;) := (C(Vi) Upa(C(V7))) Nan(Vi),

where an(V;) are the ancestors of V;. The adaptation procedure in the Semi-Markovian case
remains the same as in Algorithm 1, with the difference that the set of direct parents pa(V;)
is replaced by Pa(V;) at each step.

To include the bidirected confounding arcs in the adaptation, we use the cfd.mat argument
of type matrix such that

e cfd.mat has the same dimension, column and row names as adj.mat
e cfd.mat is symmetric and setting cfd.mat["Vi", "Vj"] <- cfd.mat["Vj", "Vi"]
<- 1L indicates that there is a bidirected edge between variables V; and V.

Alternatively, instead of using the extended parent set Pa(V;), we can use the “largest possi-
ble” set of parents, namely the ancestors an(V;). This approach is implemented, and the user
only needs to specify the topological ordering. This is done by specifying the top.ord argu-
ment which is a character vector, containing the correct ordering of the names appearing in
names (train.data).

The following code runs the adaptation in the Semi-Markovian case:

R> uni.cfd.mat <- array(0, dim = c(4, 4))
R> colnames(uni.cfd.mat) <- rownames(uni.cfd.mat) <- colnames(uni.adj.mat)

15
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R>
R> uni.cfd.mat["test", "score"] <- uni.cfd.mat["score", "test"] <- 1L
R> FA.semimarkov <- fairadapt(score ~ .,

+ train.data = uni_admission[1:nsamp, ],

+ test.data = uni_admission[(nsamp+1): (2*nsamp), ],

+ adj.mat = uni.adj.mat, cfd.mat = uni.cfd.mat, prot.attr = "gender",
+ visualize.graph = F)

We visualize the graph that was used for the adaptation.

R> plot(FA.semimarkov, graph = T, vertex.size = 40,
+ vertex.label.cex = 0.5, vertex.label.color = "black")

Densities after adaptation

0.30
|

0.20
1

Density

0.10
1

0.00
|

5.3. Questions of identifiability

So far, we have not discussed whether it is always possible to do the counterfactual inference
described in the paper. In the causal literature, an intervention is identifiable if it can be
computed uniquely using the data and the assumptions encoded in the graphical model G.
The important result by Tian and Pearl (2002) states that an intervention do(X = z) on a
singleton variable X is identifiable if and only if there is no bidirected path between X and
ch(X). Therefore, the intervention is identifiable if

o the model is Markovian
o the model is Semi-Markovian and
— there is no bidirected path between A and ch(A), and
— there is no bidirected path between R; and ch(R;) for any resolving variable R;.

Based on this, the fairadapt () function sometimes returns a error, if the specified interven-
tion is not possible to compute. One additional limitation is that fairadapt currently does
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not support front-door identification (Pearl 2009, Chapter 3), but we hope to include this in
a future version.
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