Flexible Generation of E-Learning Exams in R:
Moodle Quizzes, OLAT Assessments, and Beyond

Achim Zeileis Nikolaus Umlauf Friedrich Leisch
Universitat Innsbruck Universitat Innsbruck Universitat fiir
Bodenkultur Wien

Abstract

The capabilities of the package exams for automatic generation of (statistical) exams in
R are extended by adding support for learning management systems: As in earlier versions
of the package exam generation is still based on separate Sweave files for each exercise —
but rather than just producing different types of PDF output files, the package can now
render the same exercises into a wide variety of output formats. These include HTML
(with various options for displaying mathematical content) and XML specifications for
online exams in learning management systems such as Moodle or OLAT. This flexibility
is accomplished by a new modular and extensible design of the package that allows for
reading all weaved exercises into R and managing associated supplementary files (such as
graphics or data files). The manuscript discusses the readily available user interfaces, the
design of the underlying infrastructure, and how new functionality can be built on top of
the existing tools.

Keywords: exams, e-learning, multiple choice, arithmetic problems, Sweave, R, KTEX, HTML,
XML, IMS QTI, Moodle, OLAT.

1. Introduction

The design for version 1 of the exams package was conceived seven years ago (in 2006) when
the original authors (Griin and Zeileis 2009) were involved in a redesign of the introductory
statistics lecture at WU Wirtschaftsuniversitidt Wien. Back then the main goal was to be
able to produce exams along with associated self-study materials as PDF (portable document
format) files. Thus, the main focus was still on printable materials for classic classroom
exams. Although e-learning systems started to become available more easily back at that
time, they were still not very widely used and, more importantly, rather few easy-to-use
standards for specifying e-learning exams were available (e.g., WU Wien used a partially self-
developed e-learning system based on .LRN, see Blesius, Moreno-Ger, Neumann, Raffenne,
Gonzalez Boticario, and Delgado Kloos 2007).

However, since 2006 the situation has clearly changed: E-learning systems are now abundant
with many universities offering one (ore more) e-learning system(s) in which all students
are readily registered. Consequently, many lecturers routinely offer online exams (or tests,
quizzes, assessments) for large-lecture courses — either as self-study materials or as (part of)
the main assessment of the course.

2 Flexible Generation of E-Learning Exams in R

Among the more popular choices of learning management systems are the open-source sys-
tems Moodle, developed by Dougiamas et al. (2012) and supported by a large world-wide
user community, or OLAT (for online learning and training), developed by Universitét Ziirich
(2012),! or the commercial Blackboard system, developed by (Blackboard Inc. 2010). Stan-
dards for specifying and exchanging e-learning exams/assessements have also emerged (see
Agea, Crespo Garcia, Delgado Kloos, Gutiérrez, Leony, and Pardo 2009, for an overview).
While Moodle relies on its own Moodle XML format, OLAT and Blackboard employ cer-
tain subsets of the international QTT (question & test interoperability) standard, version 1.2,
maintained by the IMS Global Learning Consortium, Inc. (2012). The successor formats are
QTT 2.0 and the current QTT 2.1 which is for example employed in the ONYX testsuite (BPS
Bildungsportal Sachsen GmbH 2012) that also offers interfaces to OLAT and Blackboard.

Therefore, although the PDF exams produced by version 1 of the exams package as intro-
duced by Griin and Zeileis (2009) are still useful for many types of courses, it would also
be highly desirable to have support for generating e-learning exams from the same pool of
exercises. In fact, this became an apparent need when the authors of the present manuscript
took over new large-lecture statistics and mathematics courses at their respective institutions
(Universitédt Innsbruck and Universitit fiir Bodenkultur Wien, respectively). For example,
the new “Mathematics 101” lecture at Universitdt Innsbruck is currently attended by about
1,600 students (mostly first-year business and economics students) and accompanied by bi-
weekly online exams conducted in the university’s OLAT learning management system. This
was a strong incentive to start developing version 2 of the exams package that is presented
here and offers an extensible toolbox for generating e-learning exams, including easy-to-use
functions for Moodle quizzes and OLAT assessments.

The new version of the exams package for the R system for statistical computing (R Devel-
opment Core Team 2012) is now available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=exams. As prior versions of exams it employs ideas
and technologies from literate programming and reproducible research (see e.g., Knuth 1992;
de Leeuw 2001; Leisch and Rossini 2003) by using Sweave () (Leisch 2002) to combine data-
generating processes (DGPs) in R with corresponding questions/solutions in IATEX (Knuth
1984; Lamport 1994). But in addition to producing exams in PDF format, the new version of
exams includes extensible tools for generating other output formats without having to modify
the pool of exercises. Thus, the design principles of the exams package are only somewhat
extended compared to version 1:

e Each exercise template (also called “exercise” for short) is a single Sweave file (.Rnw)
interweaving R code for data generation and IXTEX code for describing question and
solution.

e Exams can be generated by randomly drawing different versions of exercises from a pool
of such Sweave exercise templates. The resulting exams can be rendered into various
formats including PDF, HTML, Moodle XML, or QTTI 1.2 (for OLAT).

e Because exercises are separate standalone files maintenance is simple. Large teams can
work jointly on the pool of exercises in a multi-author and cross-platform setting because
each team member can independently develop and edit a single exercise.

! Note that the OLAT project was forked recently and now some of the core contributors develop OpenOLAT
(frentix GmbH 2012). Essentially all discussion of OLAT in this manuscript also applies to OpenOLAT in the
current version.

http://CRAN.R-project.org/package=exams

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

In the remainder of this paper we illustrate in Section 2 how to use both the old and new exam-
generating functions that are readily available in the package. Subsequently, we provide details
about the design underyling the toolbox for the new infrastructure in Section 3. Furthermore,
Section 4 provides details on how to extend this toolbox, e.g., to other e-learning environments
or exam servers. Finally, a discussion in Section 5 concludes the paper.

2. Using the exams package

In this section we provide an overview of the most important user interfaces provided by the
exams package. First, the format of the exercise Sweave files is reviewed along with the old
(version 1) exams() function. Subsequently, the new (version 2) functions are introduced:
exams2pdf () and exams2html () produce one PDF or HTML file for each exam, respectively.
In case of just a single exam, this is shown interactively in a viewer/browser. exams2moodle ()
and exams2qtil2() generate Moodle and QTI 1.2 exams, i.e., just a single XML or ZIP file,
respectively, which can be easily uploaded into Moodle and OLAT.

2.1. Version 1: PDF exams() from Sweave exercises

Exercise templates (or just “exercises” for short) are essentially separate standard Sweave files
(Leisch 2012a,b). They are composed of the following elements:

¢ R code chunks (as usual within <<>>= and @) for random data generation.

e Question and solution descriptions contained in IXTEX environments of corresponding
names. Both can contain R code chunks again or include data via \Sexpr{}.

e Metainformation about the exercise type (numeric, multiple choice, .. .), its correct solu-
tion etc. All metainformation commands are in IATEX style but are actually commented
out and hidden in the final output file.

The underlying ideas are eplained in more detail by Griin and Zeileis (2009) and Section 3
provides more technical details. Here, we focus on an illustration how to generate different
output formats form such exercises.

In Figure 1, the Sweave file for a simple exercise asking students to compute a one-sample
t test statistic is shown for illustration (as already used by Griin and Zeileis 2009). The R
chunk for the DGP, the question and solution environments, and the metainformation can
be easily distinguished. The KTEX file resulting from an Sweave () call is shown in Figure 2,
and Figure 3 shows the final compiled PDF output generated by

R> library("exams")
R> set.seed(1090)
R> exams("tstat.Rnw")

Here, the exams () function looks for the exercise template tstat.Rnw first in the local working
directory and then within the installed exams package where this file is provided. Then it
copies the exercise .Rnw to a temporary directory, calls Sweave () to generate the .tex, and
includes this in the default I¥TEX template for exams before producing the .pdf. As, by
default, just a single .pdf exam is produced and no output directory is specified, a PDF
viewer pops up and displays the resulting exam (as in Figure 3).

4 Flexible Generation of E-Learning Exams in R

<<echo=FALSE, results=hide>>=

DATA GENERATION

n <- sample(120:250, 1)

mu <- sample(c(125, 200, 250, 500, 1000), 1)

y <- rnorm(n, mean = mu * runif(l, min = 0.9, max = 1.1),
sd = mu * runif(1, min = 0.02, max = 0.06))

QUESTION/ANSWER GENERATION

Mean <- round(mean(y), digits = 1)

Var <- round(var(y), digits = 2)

tstat <- round((Mean - mu)/sqrt(Var/mn), digits = 3)
@

\begin{question}
A machine fills milk into \Sexpr{mu}ml packages. It is suspected that the
machine is not working correctly and that the amount of milk filled differs
from the setpoint $\mu_0 = \Sexpr{mu}$. A sample of \Sexpr{n} packages
filled by the machine are collected. The sample mean \bar{y} is equal to
\Sexpr{Mean} and the sample variance $s"2_{n-1}$ is equal to
\Sexpr{Var}.

Test the hypothesis that the amount filled corresponds on average to the
setpoint. What is the absolute value of the t test statistic?
\end{question}

\begin{solution}
The t test statistic is calculated by:
\begin{egnarray*}
t & = & \frac{\bar y - \mu_O}{\sqrt{\frac{s"2_{n-1}}{n}}}
\frac{\Sexpr{Mean} - \Sexpr{mu}}{\sqrt{\frac{\Sexpr{Var}}{\Sexpr{n}}}}
\Sexpr{tstat}.
\end{eqnarray*}
The absolute value of the t test statistic is thus equal to
$\Sexpr{format (abs(tstat), nsmall = 3)}$.

\end{solution}

%% META-INFORMATION

%% \extype{num}

%% \exsolution{\Sexpr{format(abs(tstat), nsmall = 3)}}
%% \exname{t statistic}

%% \extol{0.01}

Figure 1: A simple Sweave exercise: tstat.Rnw.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

\begin{question}
A machine fills milk into 500ml packages. It is suspected that the
machine is not working correctly and that the amount of milk filled differs
from the setpoint $\mu_O = 500$. A sample of 2263 packages
filled by the machine are collected. The sample mean \bar{y} is equal to
$517.2% and the sample variance $s”2_{n-1}$ is equal to
$262.56%.

Test the hypothesis that the amount filled corresponds on average to the
setpoint. What is the absolute value of the t test statistic?
\end{question}

\begin{solution}
The t“test statistic is calculated by:
\begin{eqnarrayx*}
t & = & \frac{\bar y - \mu_O}{\sqrt{\frac{s"2_{n-1}}{n}}}
\frac{517.2 - 500}{\sqrt{\frac{262.56}{2263}}}
15.958.
\end{eqgnarray*}
The absolute value of the t test statistic is thus equal to
$15.958%.
\end{solution}

%% META-INFORMATION

%% \extype{num}

%% \exsolution{15.958}
%% \exname{t statistic}
%% \extol{0.01}

Figure 2: ITEX output of Sweave ("tstat.Rnw").

While applying exams () to just a single exercise is very useful while writing/programming
an exercise, a full exam will typically encompass several different exercises. Also, it may
require suppressing the solutions, including a title page with a questionnaire form, etc. The
former can be achieved by supplying a (list of) vector(s) of exercises while the latter can be
accomodated by using different templates:

R> myexam <- list(

+ "boxplots",

c("confint", "ttest'", "tstat'),
c("anova", "regression"),
"scatterplot"”,

"relfreq")

+ + + +

6 Flexible Generation of E-Learning Exams in R

1. Problem
A machine fills milk into 500ml packages. It is suspected that the machine is not working
correctly and that the amount of milk filled differs from the setpoint pg = 500. A sample
of 226 packages filled by the machine are collected. The sample mean ¥ is equal to 517.2

and the sample variance s2_; is equal to 262.56.

Test the hypothesis that the amount filled corresponds on average to the setpoint. What
is the absolute value of the ¢ test statistic?

Solution
The t test statistic is calculated by:

J—po 517.2 — 500

2 262.56
2 226

t = = 15.958.

The absolute value of the t test statistic is thus equal to 15.958.

Figure 3: Display of a tstat exercise as PDF via exams () (or exams2pdf ()).

Exam 1 - Iceweasel

File Edit View History Bookmarks Tools Help

|:: Exam 1 |‘ % | v
|1 file:///tmp/Rtmpu2tVTG/file88930b2c808/plain1.html v @ [:23v Q @i
Exam 1
1. Question

A machine fills milk into 500ml packages. It is suspected that the machine is not working correctly and that the
amount of milk filed differs from the setpoint g, = 500. A sample of 226 packages filled by the machine are

collected. The sample mean v is equal to 517.2 and the sample variance .s';_J is equal to 262 .56,
Test the hypothesis that the amount filled corresponds on average to the setpoint. What is the absolute value of
the t test statistic?

Solution
The t test statistic is calculated by

Vo _517.2-500 o oo

s2_ N/zez.ss
n 226

The absolute value of the t test statistic is thus equal to 15.958.

Figure 4: Display of a tstat exercise as HTML via exams2html (). MathML is employed
for mathematic equations, as rendered by a Firefox browser.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

Argument Description

file A (list of) character vector(s) specifying the (base) names of the Sweave ex-
ercise files.

n The number of exams to be generated from the list of exercises. Default: 1.

nsamp The number of exercise files sampled from each list element of file. Default:
One for each list element.

dir Path to output directory. Default: Single PDF or HTML files are shown

directly in a viewer/browser (i.e., exams/exams2pdf/exams2html with n =
1). In all other cases the current working directory is used.

edir Path to the directory in which the exercises in file are stored. Default:
Working directory (or within the exams installation).

tdir Path to a temporary directory in which Sweave () is carried out. Default: New
tempdir ().

sdir Path to the directory in which supplementary files (e.g., graphics or data files)
are stored (except for exams()). Default: New tempdir().

name Name prefix for the resulting exam files.

template Character specifying the (base) names of a IWTEX, HTML, or XML file tem-
plate for the exam (except for exams2moodle()). Default: A function-specific
template provided within the exams installation.

Table 1: Common arguments of the main user interfaces for generating exams: exams(),
exams2pdf (), exams2html (), exams2moodle(), exams2qtil2(). The first group of argu-
ments pertains to the specification of the exam(s), the second group to the handling of in-
put/temporary /output directories, and the last group to name and setup for the resulting
files. For further function-specific arguments and more details/examples, see the correspond-
ing manual pages.

R> odir <- tempfile()
R> set.seed(1090)
R> x1 <- exams(myexam, n = 3, dir = odir, template = c("exam", "solution"))

The myexam list contains five exercises: the first one is always boxplots.Rnw while the second
exercise is randomly drawn from confint.Rnw, ttest.Rnw, tstat.Rnw, and so on for the
remaining exercises. Then, exams() is used to draw n = 5 random exams and produce one
exam and one solution PDF for each. (All involved .Rnw files and .tex templates are provided
in the installed exams package.) The resulting output files are stored along with the extracted
metainformation in the output directory:

R> dir(odir)

[1] "examl.pdf" "exam?2.pdf" "exam3.pdf" "metainfo.rda"
[5] "solutionl.pdf" "solution2.pdf" "solution3.pdf"

More details on usage and customization of this function are provided by Griin and Zeileis
(2009). An overview of the most important arguments that are also shared by the version 2
interfaces is given in Table 1.

8 Flexible Generation of E-Learning Exams in R

2.2. Version 2: Producing PDF, HTML, or XML for Moodle or OLAT

The new infrastructure added to the exams package on the road to version 2 is providing more
flexibility and enables a much broader variety of output formats while keeping the specification
of the exercise templates fully backward compatible and only slightly extended. While the
design of the underlying workhorse functions is rather different (see Section 3), the new user
interfaces are very similar to the old one, sharing most of its arguments (see Table 1). Hence,
for users of the previous version of the package, it is easy and straightforward to adapt to the
new facilities.

Producing PDF documents: exams2pdf ()

The function exams2pdf () is simply a proof-of-concept reimplementation of exams() using
the new extensible infrastructure of the exams package. For the user virtually nothing changes:

R> set.seed(1090)
R> exams2pdf ("tstat.Rnw")

pops up the same PDF as shown in Figure 3. The main difference is that unlike exams ()
the function exams2pdf () returns not only the metainformation from the exercise but addi-
tionally also the IATEX code for the question and solution environments as well as paths to
supplementary materials (such as graphics or data files). Section 3 explains the structure of
the return values in more detail and illustrates how this can be used.?

Producing HT'ML documents: exams2html ()

As a first step towards including exams generated from Sweave files into e-learning exams,
it is typically necessary to be able to generate an HTML version of the exams. Hence,
the function exams2html () is designed analogously to exams() /exams2pdf () but produces
HTML files. In case of just a single generated exam, this is displayed in a browser using base
R’s browseURL() function®. Again, this is particularly useful while writing/programming a
new exercise template. For example,

R> set.seed(1090)
R> exams2html ("tstat.Rnw")

generates the HTML file shown in Figure 4 which corresponds directly to the PDF file from
Figure 3. Note that for properly viewing the formulas in this HTML file, a browser with
MathML support is required. This is discussed in more detail in Section 3.4. Here, Iceweasel
is used — Debian’s rebranding of the Firefox browser which has native MathML support.

To transform the IXTEX questions/solutions to something that a web browser can render, three
options are available: translation of the IXTEX to (1) plain HTML, (2) HTML plus MathML
for mathematical formulas (default), or conversion of the corresponding PDF to (3) HTML
with one embedded raster images for the whole question and solution, respectively. The

2To obtain the same type of return value as from the exams() function, exams_metainfo(exams2zyz(...))
can be used.

3In RStudio (RStudio Team 2012), versions prior to 0.97.133, the "browser" option is set to a function that
cannot browse local HTML files on some platforms. Recent versions of RStudio have resolved this problem
and 7exams2html also provides workarounds for older RStudio versions.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch 9

former two options are considerably faster and more elegant — they just require the R package
tth (Hutchinson, Leisch, and Zeileis 2012) that makes the ‘TEX-to-HTML’ converter TtH
(Hutchinson 2012) easily available in R. Also, by default, the base64enc package (Urbanek
2012) is employed for embedding graphics in Base64 encoding. More details on this approach
are provided in Section 3.4.

The HTML files produced with approaches (1) and (2) can also easily contain hyperlinks to
supplementary files. For example, if the R code in the Sweave file generates a file mydata.rda,
say, then simply including \url{mydata.rda} in the question/solution will result in a suitable
hyperlink. The supplementary data files for each random replication of the exercise is managed
fully automatically and a copy of the data is created in an (exam-specific) sub-directory of
the output directory. Run exams2html ("boxhist.Rnw") for such an example.

Just like exams () /exams2pdf (), exams2html () can also generate multiple replications of ran-
domly drawn exams via exams2html (myexam, n = 3, dir = odir). Also multiple versions
of the same replications can be generated by providing several templates, e.g., for show-
ing/suppressing solutions.

Producing Moodle XML: exams2moodle ()

To incorporate exams generated from Sweave exercises into learning management systems,
such as Moodle, two building blocks are typically required: (1) questions/solutions are avail-
able in plain text or HTML format, and (2) questions/solutions can be embedded along with
the metainformation about the possible and correct solutions into some exam description for-
mat. (1) can be accomplished as outlined in the previous subsection for exams2html () and
for Moodle (2) requires embedding everything into Moodle XML format. Both steps can be
easily carried out using the exams2moodle () function:

R> set.seed(1090)
R> exams2moodle(myexam, n = 3, dir = odir)

This draws the same three random exams from the myexam list that were already generated
in PDF format above. The output file, stored again in odir, is a single XML file.

R> dir(odir)

[1] "examl.pdf" "exam?2.pdf" "exam3.pdf" "metainfo.rda"
[5] "moodlequiz.xml" "solutionl.pdf" "solution2.pdf" "solution3.pdf"

This XML file moodlequiz.xml can be easily imported into a Moodle quiz and then further
customized: First, the XML file is imported into the question bank in Moodle. Then, all
replications of each exercise can be added as “random” questions into a quiz (and potentially
further customized). Figure 5 shows the first random draw of the boxplots exercise in the
resulting Moodle quiz (again rendered by a Firefox browser).

The corresponding solutions are displayed upon completion of the exam in Moodle. As
before, selected supplementary files are automatically managed and can easily be included
using \url{} in the underlying I¥TEX code. To be able to include all these supplements in a
single XML file, Base64 encoding is employed for all supplements. See the manual page for
the list of all supported supplement file formats.

10 Flexible Generation of E-Learning Exams in R

File Edit Wiew History Bookmarks Tools Help

| TrJss Quiz £ ¥
%o [T 138.232.202.120/mod/quiz/attempt. php?attempt=2 v @[3~ Q) @

You are lagged in as Hikalaus Umlauf (Logour) [7]

R exams course
Home » Rexams » 20 November - 26 Movemnber » JSS Quiz » Preview

Quiz navigation Question 1 In Figure the distributions of a variable given by two samples (A und B) are represented by parallel boxplots. Which of

E 3[4 Notyet answered the following statements are correct? (Comment. The statements are either about correct or clearly wrong.)

Marked out of 1.00
Finish attempt i
. _ W Flag question _—

4 Edit question

-15

Navigation =10

L - 08

-20
I

Home

My home
Site pages
My profile
Current course)

-25

Rexams
Participants
Reports
General

1 S S
6 @

ra

20 Movember -
MNovember T T

15S Quiz A B
@ Info

Results

Figure 1: Parallel hoxplots

w

27 November - Select one or more

LRRRMART CJa. The location of bath distributions is about the same.
4 December - 10 O
December LIb. Both distributions contain no outliers

11 December - 17 Ce. the spread in sample Ais clearly bigger than in B

i

December Clel. The skewness of both samples is similar.

18 December - 24 ~

December LJe. Distribution A is about symmetric

35 Decgmber— 31 [~

Figure 5: Display of exercise 1 (boxplots) from myexam in Moodle (as rendered by a Firefox
browser).

Producing QTI 1.2 XML (for OLAT): exams2qtil2()

The generation of QTI 1.2 assessments (for OLAT) proceeds essentially in the same way as
for the Moodle quizzes, by default using ttm for transformation of the text to HTML?*. The
same three random draws of exams from myexam can be prepared in QTI 1.2 format via:

R> set.seed(1090)
R> exams2qtil2(myexam, n = 3, dir = odir)

This produces a single ZIP file qti.zip, again written to odir.

R> dir(odir)

[1] "examl.pdf" "exam2.pdf" "exam3.pdf" "metainfo.rda"
[5] "moodlequiz.xml" "qtil2.zip" "solutionl.pdf" "solution2.pdf"
[9] "solution3.pdf"

4Tt may be of interest to OLAT users that we experienced problems with the display of MathML matrices in
OLAT. The columns were not separated by spaces and we have not been able to adapt our OLAT installation
to avoide this problem. Hence, if we want to display matrices in OLAT, we generate them with extra empty
columns. The cholesky exercise template has code that can automatically do this, if enabled.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch 11

File Edit View History Bookmarks Tools Help
J“OLAT- OLAT: Course templat... il + 5

& (@ 138.232.202.96:8080/0LAT-LMS-7.6.0,0/auth/1%3A6%3/ ~ @] -8 DuckDuckGo Q| i
) Home |40 Groups =2 Leaming resources |d Group administration | User management | administation | ! gui_dema | OLAT: Course... B
" qtil2 | Finish test |
Actual score: 015
qiil2
1. Exercise 2= Still 1 attempts).
1.1. Question o
2. Eyercise Question
2.1. Question o
3. Exerclse In Figure the distiibutions of avariable given by two samples (Aund B) are represented by parallel boxplots. Which of the
i a following statements are comect? (Comment: The statements are sither about comeet or clearly wrong.)
4 Exercise
1
41 ti =]
Question = B ‘
5 Exercise ¥]
5.1 Question -
[=]
L ——
T
i
§4 L]
i
S -
- 0
? 1
1
o 1
8 S E—
T T
A B

Figure 1: Parallel boxplats.

[T a. The location of both distributions is about the same.
["] b. Both distributions contain no outliers

[T] c. Thespread insample Als clearly biggerthan in B.
[] d. The skewness of bath samples is similar

[T] e. Distribution Ais about symmetric.

| Save answer |

Figure 6: Display of exercise 1 (boxplots) from myexam in OLAT (as rendered by a Firefox
browser).

The ZIP file can again be easily imported into an OLAT test configuration where further cus-
tomization can be performed®. The first boxplots exercise from the exam generated above
is shown in OLAT in Figure 6 (again as rendered by a Firefox browser). The corresponding
solutions are displayed in OLAT immediately after incorrectly completing an individual exer-
cise. The display of solutions can also be suppressed completely by setting solutionswitch
= FALSE in exams2qti12().%

SWhile customization of the features of the overall assessment was always possible for us, OLAT typically
did not allow for modification of the individual exercise items. We were not able to track down which part of
the QTT 1.2 XML specification causes this.

5In our e-learning exams, we typically employ these default settings (i.e., maxattemps = 1 and
solutionswitch = TRUE). Alternatively, we give the students an unlimited number of attempts to solve an
exercise (maxattempts = Inf) but then suppress solutions completely (solutionswitch = FALSE) because oth-
erwise the correct solution would be displayed after the first incorrect attempt.

12 Flexible Generation of E-Learning Exams in R

The main difference of the generated ZIP file for QTI 1.2, compared to the Moodle XML
output, is that in addition to the qti.xml file further supplementary files can be included.
Hence, supplements in all potential formats can be easily included and uploaded in one go
into OLAT. Therefore, by default, Base64 is employed only for graphics but not for other files
(such as data sets etc.) and can optionally also be disabled if desired.

The QTT 1.2 standard allows for rather fine control of the properties of the exercises (also
known as items in QTT 1.2) and the exams (also known as assessments). Hence, exams2qti12()
provides a variety of options for controlling the appearance of exam/exercises, see 7exams2qtil2
for details. Also, the underlying XML template could be adapted and extended.

3. Design

All the new exams2zyz () interfaces for generating exams in different formats (with currently
zyz € {pdf, html, moodle, qtil2}) are built by combining the modular building blocks pro-
vided by version 2 of exams. The approach is that the Sweave exercises are first weaved to
KTEX, read into R, potentially transformed (e.g., to HTML), and then written to suitable out-
put file formats. Different customizable driver functions (or even driver-generating functions)
for performing the weave/read/transform/write steps are available in exams. Internally, all
the exams2xyz () interfaces choose certain drivers and then call the new function xexams ()
(for extensible exams) that handles all temporary files/directories and suitably executes the
drivers. In the following subsections, all these building blocks are introduced in detail.

3.1. Extended specification of exercises

As discussed in Section 2 and illustrated in Figure 1, each exercise is simply an Sweave file
containing R code for data generation, question/solution environments with ITEX text,
and metainformation about the type of exercise and the correct solution etc. This design was
introduced by Griin and Zeileis (2009) but is slightly extended in the new version to provide
some more options for the generation of e-learning exams. See Table 2 for an overview for a
list of exercise types and corresponding metainformation commands.

Each exercise must specify at least an \extype{} and an \exsolution{} and should typically
also have a short \exname{}. There are now five different extypes. Two types that have a
single question and answer:

e num for questions with a numeric answer, e.g., \exsolution{1.23}.

e string for questions with a (short) text answer, e.g., \exsolution{median}.
Three types have a list of questions (or statements):

e mchoice for multiple-choice questions where each element of the question/statement
can either be true or false, e.g., \exsolution{01011}.

e schoice for single-choice questions where exactly one of the questions/statements is
true and all others are false, e.g., \exsolution{010003}.

e cloze for a combination of questions/statements with num, string, or mchoice answers.
Thus, each element of the question has either a numeric, short text, or single/multiple-

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch
Command Description
\extype{} Specification of the type of exercise (required): num for questions with

a numeric answer, mchoice for questions with multiple-choice answers,
schoice for questions with single-choice answers (i.e., multiple-choice
with exactly one correct solution), string for questions with a (short)
text answer, or cloze for cloze solutions (i.e., combinations of the

above).
\exname{} Short name/description (to be used for printing within R).
\extitle{} Pretty longer title (for Moodle).
\exsection{} Section of the exercise (for Moodle, with slashes for subsections as in
a URL).
\exversion{} Version of the exercise.

\exsolution{} Correct solution (required). It must contain a numeric solution for
num, a string of zeros/ones for mchoice/schoice, or a character string
of string. For cloze a combination of these can be specified, e.g.,
\exsolution{1.23|001|median}.

\extolerance{} Tolerance limits (of length 1 or 2) for num solutions. If unspecified the
tolerance is 0. For length 2 (not supported in Moodle), the lower and
upper tolerance can be specified separately.

\exclozetype{} List of types for the elements of a cloze exercise, e.g.,
\exclozetype{num|mchoice|string} for the example above.

\expoints{} Points for correct solution. Default is 1.

Table 2: Overview of metainformation commands in exercises. The commands in the first
section allow for a general description, those in the second section for question/answer spec-
ification. Only extype and exsolution are always required (but exname is recommended
additionally for nice printing in R).

choice answer, e.g., \exsolution{1.23|001|median}. To specify the individual cloze
types, a clozetype has to be given, e.g., \exclozetype{num|mchoice|string}.

The types schoice and cloze have been newly introduced. The purpose of the former is
mainly to allow for different processing of options (e.g., for assigning points to correct/wrong
results) between mchoice and schoice. The cloze type was introduced because both Moodle
and QTT 1.2 have support for it (albeit in slightly different ways, for details see below).

For the three types with lists of questions (mchoice, schoice, cloze), the question and
solution environments should each contain at the end an answerlist environment. In
the question this should list an \item for each question/statement and in the solution
the corresponding answers/explanations can be provided. The answerlist environment can
either be written as usual “by hand” or by using the answerlist () function provided by the
exams package. For illustration, we set up a multiple-choice question with three statements
about Switzerland. First, we generate an answerlist with statements for the question.

R> qu <- c("Zurich is the capital of Switzerland.",

+ "Italian is an official language in Switzerland.",
+ "Switzerland is part of the European Union (EU).")
R> answerlist(qu)

13

14 Flexible Generation of E-Learning Exams in R

\begin{answerlist}
\item Zurich is the capital of Switzerland.
\item Italian is an official language in Switzerland.
\item Switzerland is part of the European Union (EU).
\end{answerlist}

Then the corresponding answerlist for the solution is set up.

R> sol <- c(FALSE, TRUE, FALSE)

R> ex <- c("The capital of Switzerland is Bern.",

+ "The official languages are: German, French, Italian, Romansh.",
+ "Switzerland is part of the Schengen Area but not the EU.")

R> answerlist(ifelse(sol, "True", "False"), ex)

\begin{answerlist}
\item False. The capital of Switzerland is Bern.
\item True. The official languages are: German, French, Italian, Romansh.
\item False. Switzerland is part of the Schengen Area but not the EU.
\end{answerlist}

For more examples see the exercise files in the inst/exercises directoy of the exams source
package. There are various multiple-choice questions with and without figures and/or ver-
batim R output (e.g., anova, boxplots, cholesky, amoung others). The files tstat and
tstat? illustrate how the same type of exercise can be coded as a num or schoice question,
respectively. The cloze type is employed in boxhist. See also Table 3 in the appendix for
an overview.

3.2. The xexams() wrapper function

To avoid recoding certain tedious tasks — such as copying/reading files and handling temporary
directories — for each of the user interfaces introduced in Section 2, the new exams package
provides a modular and extensible framework for building new exam-generating functions.
This framework is tied together by the xexams() function which is typically not called by
users directly but forms the basis for all new exams2zyz interfaces.

To accomplish this, xexams () also takes the arguments listed in Table 1 (except name and
template), draws exams from the exercise file list, and does all the necessary file/directory
handling. Furthermore, it takes a driver argument that needs to be a list of four functions
driver = list(sweave, read, transform, write). These are utilized as follows:

1. Weawve: For each of the selected exercise files (within all n exams) driver$sweave (file)
is run to weave the .Rnw file into a .tex file. If sweave = NULL (the default), the
standard Sweave () function is used. If sweave = list(...) is a list, e.g., list (pdf
= FALSE, png = TRUE), this is passed as arguments to Sweave ().

2. Read: Each resulting .tex file is read into R using driver$read(file). By default
(read = NULL), the function read_exercise() is used (see below), resulting in a list of
character vectors with the IATEX code for question/solution plus metainformation.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch 15

list(## of 'exams', length: n
list(## of 'exercises', length: k
list(## of exercise content, length: 6

question,

questionlist,

solution,

solutionlist,

metainfo,

supplements

Figure 7: Structure of the return value of xexams (), when used with the default read driver
read_exercises().

3. Transform: Each of these exercise-wise list objects can subsequently be transformed by
driver$transform(object) which can be leveraged for transformations from IKTEX to
HTML etc. By default (transform = NULL), no transformation is applied.

4. Write: The (possibly transformed) lists of exercises, read into R for each exam ob-
ject, can be written out to one ore more files per exam in an output directory via
driver$write(object, dir, info = list(id, n)). By default (write = NULL), no
files are written.

After performing each of the driver functions, xexams () returns invisibly a nested list object
(currently unclassed) as illustrated in Figure 7. It is a list of exams (of length n), each of
which is a list of ezercises (whose length depends on the length of file and nsamp), each of
which is a list (whose length/contents depends on driver$read). When used with the default
read_exercise(), each exercise is a list of length 6 containing the question/solution texts,
metainformation, and paths to supplementary files. These will be introduced in more detail
in the next section.

All of the interfaces introduced in Section 2 employ the standard Sweave () function for the
weaving step (possibly with custom arguments) and the read_exercise() function for the
reading step. They mainly differ in the transformation and writing step. exams2pdf () needs
no transformation and the writer first sets up a .tex file for each exam, calls texi2dvi (pdf
= TRUE), and then copies the resulting .pdf file to the output dir. exams2html() on the
other hand uses a TEX-to-HTML transformation and the writer then sets up a .html file for
each exam and copies it to the output dir. Finally, exams2moodle() and exams2qtil2()
both also use a transformation to HTML but have no writer. The reason for this is that they
do not write one file per exam (i.e., with only one replication per exercise) but rather need
to produce XML files that include all different replications of each exercise. Hence, they take
the list returned by xexams () and process it subsequently in different ways. The details for
all these steps are explained in the subsequent subsections.

16 Flexible Generation of E-Learning Exams in R

3.3. The read driver: read_exercise() and read_metainfo()

The function read_exercise() reads the weaved exercises, i.e., files like that shown in Fig-
ure 2. It simply extracts the text lines from the question and solution environments and
stores them in vectors of the same name. If these environments contain answerlist en-
vironments, these are extracted and stored separately in questionlist and solutionlist
vectors, respectively. Finally, the metainformation is extracted using read_metainfo () which
not only stores character vectors but also transforms them to suitable types (depending on
the extype) and performs some sanity checks. The resulting metainformation is a list with
elements essentially corresponding to the commands from Table 2.

For illustration, we run xexams() to select the same three exams as used in the Moodle
and OLAT examples above. However, using the default driver specification, xexams () just
performs the weaving and reading steps (and has no transformation or writing step):

R> set.seed(1090)
R> x <- xexams(myexam, n = 3)

The resulting object is a nested list as shown in Figure 7 with 3 exams of 5 exercises each
(drawn from the myexam list). Using x[[1]1[[j]], the j-th exercise of the i-th exam can
be accessed. Here, we explore the first exercise (boxplots, a multiple-choice question) from
the first exam that is also shown in Figures 5 and 6. Its general question text (in IWTEX) is
printed below — it requires a graphic which is stored in a supplementary file in a temporary
directory.

R> writeLines(x[[1]][[1]]$question)

In Figure™\ref{fig:ch06-boxplots} the distributions of a variable
given by two samples (A und B) are represented by parallel boxplots.
Which of the following statements are correct? \emph{(Comment: The
Statements are either about correct or clearly wrong.)}

\setkeys{Gin}{width=0.7\textwidth}

\begin{figure} [htb!]

\begin{center}

\includegraphics{boxplots-002}
\caption{\label{fig:chO6-boxplots} Parallel boxplots.}
\end{center}

\end{figure}

R> x[[1]][[1]]$supplements

boxplots-002.pdf
"/tmp/RtmpCGLsgF/file3£347b7b5b6e/examl/exercisel/boxplots-002.pdf"
attr(,"dir")
[1] "/tmp/RtmpCGLsgF/file3£347b7b5b6e/examl/exercisel™

The corresponding list of statements about the graphic is stored separately. It is shown below
along with the most important metainformation elements.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

R> x[[1]][[1]]$questionlist

[1] "The location of both distributions is about the same."
[2] "Both distributions contain no outliers."

[3] "The spread in sample A is clearly bigger than in B."
[4] "The skewness of both samples is similar."

[5] "Distribution A is about symmetric."

R> x[[1]][[1]]$metainfo[c("file", "type", "solution")]

$file
[1] "boxplots"

$type
[1] "mchoice"

$solution
[1] TRUE TRUE FALSE TRUE TRUE

In summary, xexams () combined with the default readers is relatively straightforward to use
in other progams (such as the exams2zyz functions). The return value is somewhat “raw” as
it is not classed and has no dedicated methods for subsetting etc. However, we refrained from
using a more elaborate structure as this function is not meant to be called by end-users while
we expected other developers to find the current structure sufficiently simple to use in their
programs.

3.4. BETEX-to-HTML transform driver generator

When embedding statistical/mathematical exercises into web pages or learning management
systems, the exercises’ INTEX text — typically containing mathematical notation — has to be
transformed in some way so that it can be rendered by a browser. Until relatively recently,
this posed the notorious problem of how to display the mathematical formulas and often the
only good answer was to embed raster images of the formulas. However, this situation has
clearly changed (see e.g., Vismor 2012) and there are now various convenient options: e.g.,
using the mathematical markup language MathML (W3C 2010; Wikipedia 2012) or keeping
KTEX formulas in the web page and embedding some JavaScript for rendering them.

Especially the display of MathML in web pages has become very easy: Firefox long had
native support for it and for the Microsoft Internet Explorer the MathPlayer plugin (Design
Science 2012b) has long been available. More recently, other major browsers like Google
Chrome, Opera, or Safari also added support for MathML (see Vismor 2012, Section 1.2).
Furthermore, MathJax (Design Science 2012a), an open-source JavaScript engine, can be used
to render MathML (or BTEX) formulas on a server rather than in the local browser.

Therefore, the new exams package offers functionality for automatically transforming the
KTEX exercises to HTML within R and by default employs MathML for all mathematical nota-
tion (e.g., as demonstrated in Figure 4). More specifically, the package provides the driver gen-
erator make_exercise_transform_html (). It returns a function suitable for plug-in into the

17

18 Flexible Generation of E-Learning Exams in R

transform driver in xexams () which then replaces the IATEX code in question/questionlist
and solution/solutionlist with HTML code. For illustration, we set up a particular func-
tion trafo() below and apply it to the first exercise in the first exam within the object x
that we had considered before:

R> trafo <- make_exercise_transform_html (converter = "ttm", base64 = FALSE)
R> writeLines (trafo(x[[1]][[1]])$question)

In Figure the distributions of a variable

given by two samples (A und B) are represented by parallel boxplots.
Which of the following statements are correct? (Comment: The
statements are either about correct or clearly wrong.)

<div class="p"><!----></div>
<div class="p"><!----></div>

<div style="text-align:center">
<div style="text-align:center">Figure 1:

 Parallel boxplots.</div>

</div>

<div class="p"><!----></div>

It can be seen that the resulting exercise employs HTML text, e.g., uses instead of \emph
or instead of \includegraphics.”

Internally, make_exercise_transform_html () can leverage three different converters: ttm
(default), tth, or tex2image. The former two come from the R package tth (Hutchinson
et al. 2012) and internally call the two C functions tth (TgX to HTML) and ttm (TEX
to HTML/MathML) taken from the TtH suite of Hutchinson (2012). The last option,
tex2image, is a function provided by the exams package itself. It proceeds by first run-
ning texi2dvi(pdf = TRUE) from the base R package tools and subsequently converting the
resulting PDF to a raster image in a system() call to ImageMagick’s convert function (Im-
ageMagick Studio LLC 2012). Thus, for this function ImageMagick is assumed to be installed
and in the search path. All three converters have their benefits and drawbacks:

e tth is typically preferable if there is no or only very simple mathematical notation. The
resulting HTML can then be rendered in any modern browser.

e ttm is preferable if there is some moderately complicated mathematical notation (e.g.,
fractions or equation arrays etc.). As argued above this can still be easily displayed in
suitable browsers or by employing MathJax in the web page.

e tex2image is the “last resort” if neither of the two previous approaches work. For
example, if more complex IXTEX commands/packages need to be used which are not
supported by tth/ttm.

"It may be noteworthy to that the conversion (a) assumes the graphics to be in .png format and (b) does
not resolve the figure reference at the beginning of the text correctly. For (a), we just need to make sure that
the sweave driver in xexams() has png = TRUE (and pdf = FALSE) which is accounted for in exams2html()
etc. Issue (b), however, needs to be avoided by formulating the underlying .Rnw differently (or by tolerating
the missing number).

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch 19

To explore the differences of the results, the converters can also be called directly on character
strings containing IXTEX. Below we use two simple code lines for which tth() would probably
be sufficient:

R> tex <- c¢("This is \\textbf{bold} and this \\textit{italicl}.",
+ "Points on the unit circle: $x°2 + y~2 = 1$.")
R> ttm(tex)

[1] "This is bold and this <i>italic</i>."

[2] "Points on the unit circle: "

[3] "<math xmlns=\"http://www.w3.org/1998/Math/MathML\">"
[4] "<mrow>"

[6] "<msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow>"
[6] "</msup>"

[7] "<mo>+</mo>"

[8] "<msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow>"
[9] "</msup>"

[10] "<mo>=</mo><mn>1</mn></mrow></math>."

R> tth(tex)

[1] "This is bold and this <i>italic</i>."
[2] "Points on the unit circle: x² + y² = 1."

R> (tex2image(tex, dir = odir, show = FALSE))
[1] "/tmp/RtmpCGLsgF/file3£34441d2502/tex2image_1.png"

Note that tex2image(tex) returns the path to a raster image file which by default is also
shown directly in the browser.

Finally, our illustration of make_exercise_transform_html () also employed a second option,
base64 = FALSE, which still deserves more detailed explanation. After converting an exercise
from ITEX to HTML code (using either of the three converters above), the HTML code
may contain references to supplementary files (e.g., in tags). Optionally, by using
the default base64 = TRUE, these images can be embedded directly into the HT'ML code in
Base64 encoding (via the base64enc package in R, Urbanek 2012) and thus waiving the need
for having them as supplementary files.

3.5. PDF and HTML write driver generators

In the first three steps of xexams (), exams are randomly drawn and weaved, read into R, and
potentially transformed from IKTEX to HTML (or some other format). However, so far, no
output files have been generated. The original idea of Griin and Zeileis (2009) was to produce
one or more output files for each of the n generated exams. To do so in xexams() a write
driver can be specified. The package provides several generating functions for suitable drivers,
especially for generating PDF and HTML files. As before, the idea is to pass customization
options to the driver generator which can then be plugged into xexams ().

For PDF output files, the following driver generator is available:

20 Flexible Generation of E-Learning Exams in R

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>

<title>Exam ##id</title>
<style type="text/css">
body{font-family:Arial;}
</style>

</head>

<body>
<h2>Exam ##id</h2>

##\exinput{exercises}

</body>
</html>

Figure 8: Default HTML template file plain.html employed in make_exams_write_html ().
Elements marked by ## are being replaced in each replication of the exam.

make_exams_write_pdf (template = "plain", name = NULL,
inputs = NULL, header = list(Date = Sys.Date()), quiet = TRUE,
control = NULL)

This is employed in exams2pdf () and proceeds in the same way as described by Griin
and Zeileis (2009) for the exams() function. It includes the question/questionlist and
solution/solutionlist in a IATEX template, then runs texi2dvi(pdf = TRUE) from the
base tools package, and finally copies the resulting PDF files to a desired output directory.
The default plain.tex template is provided within the exams package and also more than
one template can be employed as illustrated in Section 2. Details about the remaining cus-
tomization arguments are provided on the manual page and in Griin and Zeileis (2009).

For HTML output files, a similar driver generator is available:

make_exams_write_html(template = "plain", name = NULL,
question = "<h4>Question</h4>", solution = "<h4>Solution</h4>",
mathjax = FALSE)

This is employed in exams2html () and is also based on a template. By default the plain.html
file is used that is provided within exams and shown in Figure 8. This contains placeholders
marked with ## that are to be replaced in each randomly drawn exam. The ##id is simply
replaced with a numeric ID (1,...,n) and ##\exinput{exercises} is replaced by an ordered
list () containing the question/solution. If the question and solution arguments to

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

make_exams_write_html () are character strings, these are added as titles in the list. Alter-
natively, either argument can also be set to FALSE which avoids inclusion of the corresponding
element of the exercise in the resulting HTML file.

As an additional convenience setting mathjax = TRUE includes the <script> tag for loading
the MathJax JavaScript. Then, MathJax (rather than the browser) handles the rendering of
the MathML formulas (if any) in the HTML file. To experiment with this option, one can
simply use examples like exams2html ("tstat", mathjax = TRUE).

3.6. Further functions for processing xexams return values

The interfaces exams2moodle () and exams2qtil12() work somewhat differently compared to
exams2pdf () and exams2html (). They produce a single XML file containing all n replications
of all exercises rather than separate files per exam. The reason is that learning management
systems such as Moodle or OLAT provide their own functionality for randomly drawing
questions from a pool stored in the system. Hence, exams2moodle () and exams2qti12() do
not really select n separate exams but supply a set of n replications (either from identical or
differing templates) that can be uploaded into the systems’ question pools.

Therefore, both interfaces do call xexams() with the standard weave/read drivers and the
HTML transformer introduced above but without a write driver. Instead, the whole R list of
exercise replications returned by xexams () is processed subsequently in one go and embedded
into a suitable XML file. For the Moodle interface, the function has the following arguments:

exams2moodle(file, n = 1L, nsamp NULL, dir,
name = NULL, edir = NULL, tdir NULL, sdir = NULL,
quiet = TRUE, resolution = 100, width = 4, height = 4,
iname = TRUE, stitle = NULL, testid = FALSE,
num = NULL, mchoice = NULL, schoice = mchoice, string = NULL,
cloze = NULL, zip = FALSE, ...)

Thus, in addition to the usual arguments from the first two lines (see Table 1), the third line
has those arguments passed to Sweave, and lines 4-6 have the arguments responsible for the
XML formatting. These are employed in the following steps:

e A character vector with the XML code for the <moodlequiz> is generated.

e For each question a title text is included (in suitable XML tags), where iname/stitle/te
can be used for the fine-tunging.

e The XML code for each question/exercise is inserted. It is generated by the transforma-
tion functions num, mchoice, schoice, string, and cloze. For example, if x [[1]1] [[j]]
is a multiple-choice exercise, then mchoice(x[[11][[j1]) is employed to generate the
XML character string.

Thus, users can supply custom functions that handle the XML question generation. By
default, the package has a flexible generator make_question_moodle23() that returns a
suitable function. Analogously to other generators employed previously, this can be easily
adapted. For example, the user could set mchoice = list(solution = FALSE, shuffle
= TRUE) and then the mchoice XML driver would be make_question_moodle23(solution

21

stid

22 Flexible Generation of E-Learning Exams in R

= FALSE, shuffle = TRUE). Thus, while only a single generator function is available, one
can easily set different argument lists for numeric or multiple-choice exercises etc. See the
corresponding manual page for an overview of the fine-control options.

The approach take in exams2qtil12() is essentially analogous to that of the Moodle inter-
face. It also has separate num, mchoice, schoice, string, and cloze XML transformation
functions, each of which is by default generated by make_itembody_qtil2() (as exercises are
called items in OLAT), possibly supplying further arguments for customization.

exams2qtil2(file, n = 1L, nsamp = NULL, dir,
template = "qtil2", name NULL, edir NULL, tdir = NULL, sdir = NULL,
quiet = TRUE, resolution 100, width = 4, height = 4,
num = NULL, mchoice = NULL, schoice = mchoice, string = NULL,
cloze = NULL, duration = NULL, stitle = "Exercise", ititle = "Question",

adescription = "Please solve the following exercises.",
sdescription = "Please answer the following question.",
maxattempts = 1, cutvalue = 0, solutionswitch = TRUE, zip = TRUE, ...)

make_itembody_qtil2(rtiming = FALSE, shuffle = FALSE, rshuffle = shuffle,
minnumber = NULL, maxnumber = NULL, defaultval = NULL, minvalue = NULL,
maxvalue = NULL, cutvalue = NULL, enumerate = TRUE, digits = 2,
tolerance = is.null(digits), maxchars = 12)

For details about the arguments see 7exams2qtil2. The main difference between the Moodle
XML and QTI 1.2 XML specifications is that the former just provides some control over
the individual exercises (or questions, items) whereas the latter also has control options for
the whole exam (or assessment). Therefore, the XML specification is somewhat more com-
plex. Hence, exams2qtil12() also takes a template argument that is by default set to the
qtil2.xml file provided within exams. The template must contain exactly one <section>
with exactly one <item> with a placeholder ##ItemBody. Then, exams2qtil2() reads the
template, replicates the <section> for each exercise, replicates the <item> n times within
each <section>, and then inserts the ##ItemBody with the XML transformation functions
for num, mchoice, etc.

One detail of the QTI 1.2 interfaces should be briefly explained: Although the QTI 1.2
XML standard supports numeric exercises/items through its <response_num> tag, this is
not fully implemented in all QTI-based learning management systems. Namely, OLAT has
no official support for this type of exercises. Hence, exams2qtil12() by default uses the
following workaround: If the digits argument is some finite value (default: 2), the correct
numeric solution is formatted to a character string with digits decimal places. Then, the
correct solution is entered as a string solution (<response_str>) which means that answers
entered in the system will only be recognized as correct if they exactly match the correct
string (e.g., 111.1 would not be recognized as correct if the string 111.10 with digits = 2
is used). Alternatively, one can set num = list(digits = NULL) in exams2qti12() so that
<response_num> will be used in the XML code. This has the inteded effect that the solution
is recognized as numeric and the corresponding tolerance is employed, however it also has
the uninteded side effect that correct solutions are not displayed in the final results page of
the exam. Hence, we have set digits = 2 by default but we hope that future releases of
OLAT are improved to also fully support digits = NULL.

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

In summary, most end users should just have to call the main interfaces exams2moodle() or
exams2qtil12() and customize by setting options for num, mchoice, etc. as some list(...).
If this is not sufficient, though, the users could program their own XML transformation
functions for num, mchoice, etc. And finally, for QTT 1.2, a different template could be used.

4. Extending the exams toolbox and writing new drivers

In some cases it is not sufficient to use the arguments of the existing exams2xyz () functions or
to provide alternative templates to them. In particular, when a completely different output
format is required (e.g., a different XML format), it might be necessary to develop new drivers
for the xexams () toolbox. One example for such a situation is the software product that is
currently employed for generating printed large-lecture exams at Universitit Innsbruck. This
allows for

e specification of (static) single/multiple-choice exercises in a browser interface,

¢ production of so-called “scrambled” PDF exams from it (where the static questions and
solutions are simply shuffled),

e optical character recognition (OCR) of scans from the exams’ title pages,

e computation of the points/marks achieved by the students.

Although, the exams package can also generate PDF exams directly, an interface to this exam
server is desirable because it can handle the OCR automatically and the students can easily
log into the exam server to see their personal results and inspect their exam scan.

Fortunately, this so-called LOPS exam server (developed by a spin-off company of WU Wien)
also employs an XML specification for importing/exporting its exams. Therefore, it was easily
possible for us to establish a new exams2lops() interface that produces one ZIP file for each
exam, including the XML plus supplementary graphics. A corresponding write driver gener-
ator make_exams_write_lops() is also supplied in the package. Its details are not discussed
here because the XML format adopted is specific to this WU-developed software which is not
widely used. The exams2lops () interface then essentially proceeds in the following manner:

htmltransform <- make_exercise_transform_html(converter = "tex2image",
base64 = FALSE)
lopswrite <- make_exams_write_lops(...)
xexams(file, n, nsamp, driver = list(
sweave = list(quiet = TRUE, pdf = FALSE, png = TRUE, ...),
read = NULL,
transform = htmltransform,
write = lopswrite),

)

First, an HTML transform driver is set up which uses the "tex2image" converter because
the LOPS server does not support MathML. Then, it sets up the custom write driver using
a couple of extra arguments (...) whose details are suppressed here for simplicity. Finally,
xexams () is called with (1) the default sweave driver Sweave () with options set to producing

23

24 Flexible Generation of E-Learning Exams in R

PNG but not PDF graphics, (2) the default read driver, (3) the tex2image-based TEX-to-
HTML transform driver, (4) the custom write driver.

Of course, the part that involves a certain amount of coding is to program the write driver
(or driver generator, as here). However, the building blocks for the weave/read/transform
steps can be easily recycled. Also, if readers of this manuscript need to code their own driver
generator, we recommend to use the drivers from the exams package for inspiration. Last
but not least, the exams package is hosted and R-Forge (Theufil and Zeileis 2009) and also
provides a forum for support and discussions of e-learning exams in R at http://R-Forge.
R-project.org/forum/?group_id=1337.

5. Summary and discussion

Summary

Motivated by the need for automatic generation of exams (or quizzes, tests, assessments)
for learning management systems, the exams package is turned into an extensible toolbox for
exam generation. While previous versions of the package just supported generation of random
replications of exams in PDF format, the new version of the package provides interfaces for
various output formats, such as PDF, HTML, or XML specifications for Moodle or OLAT.
All exam output formats are based on the same specification of exercise Sweave files whose
format was only slightly extended compared to previous versions. The flexibility of producing
different output formats is accomplished by adopting a new extensible framework that consists
of the following modular steps: (1) weaving a single exercise, (2) reading the resulting ITEX
text and metainformation into R, (3) transforming the text (if necessary, e.g., from IATEX
to HTML), (4) writing the text into output files such as IWTEX, HTML, or XML templates.
Flexible building blocks are available for each of the steps that can either be customized for
the existing output formats or reused for generating new output formats.

Infrastructure vs. content

As emphasized in the discussion of version 1 of exams (Griin and Zeileis 2009), the objective of
the package is to provide the technological infrastructure for automatic generation of exams,
especially for large-lecture courses. Thus, users of exams should not have to worry about
implementation details and can focus on the content of their exams when they build up
a pool of exercises accompanying a particular course. Creating “good” exercises from an
educational (rather than computational) point of view is not a trivial task but guidelines for
this are beyond the scope of the exams package and this manuscript. Hence, we just provide
a few references to the relevant literature on statistical education and assessment: Gal and
Garfield (1997) and Garfield and Chance (2000) discuss issues such as topics covered and
skills developed in statistics courses as well as suitable ways of assessment. Strategies for
good multiple-choice questions, especially if they are also used for self-study materials, are
suggested by Klinke (2004).

Strategies for setting up exercises

When switching a course to the exams infrastructure, clearly the most work has to go into the
generation of the content, i.e., the Sweave exercises. However, by the modular design of the

http://R-Forge.R-project.org/forum/?group_id=1337
http://R-Forge.R-project.org/forum/?group_id=1337

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch

package it is easy to distribute the workload among a large team of contributors. Each person
can just work on stand-alone .Rnw files, e.g., for a particular exercises type or for the exercises
pertaining to a specific chapter from the lecture etc. Depending on the output formats, it
is typically a good idea to make sure that the exercise, foo.Rnw say, works as desired by
running exams2pdf ("foo.Rnw") and exams2html("foo.Rnw") to make sure that it can be
appropriately rendered in both PDF and HTML. To check that the solution is correctly
entered in the metainformation, it helps to run exams_metainfo (exams2html ("foo.Rnw"))
(or analogously for exams2pdf ()).

When the pool of exercises is ready, then it is typically useful to set up a convenience wrapper
function that (a) selects the desired exercises from this pool and (b) produces the desired
output format(s) for them. For the latter step, it may just be necessary to set the arguments
of one of the exams2xyz () functions appropriately or maybe to write a custom template that
can be plugged into the function. However, the customization of such a wrapper function is
typically not a lot of work and can be performed by a single person, e.g., the team member
with some more experience in the technologies involved (R, HTML, XML, ...).

Experiences at Universitit Innsbruck

In 2012, the Department of Statistics at Universitdt Innsbruck built up infrastructure for a
new “Mathematics 101” course. The team included seven professors and lecturers, and six
student assistants. All professors and lecturers were previously familiar with R and IXTEX (but
not necessarily with HTML or XML) while several of the student assistants had experience
in neither. The workload was then split up so that the professors and lecturers designed the
content of the exercises and programmed prototypes. The student assistants then typically
performed tasks such as checking the correctness of the exercises, testing out the random data
generation or making it more flexible, and creating variations of existing exercises by making
small modifications in the underlying “stories” or changing the data generating process. Even
though, many of the student assistants had no prior knowledge of R and IXTEX, they were
rather quickly able to work on the exercise Sweave files (with all the usual small problems
that often occur when learning R/IATEX).

The resulting pool of exercises is maintained in a Subversion repository (SVN, Pilato, Collins-
Sussman, and Fitzpatrick 2004) for version control so that all team members can easily obtain
the latest version or contribute fixes/improvements. In combination with the exams package
this approach proved to be rather successful in addressing the needs of multi-author and
cross-platform development.

After having the pool of exercises established, just one team member is concerned with running
exams2qtil2() and uploading the resulting ZIP file into OLAT for the biweekly online tests.
And for creating the printed tests at the end of the semester the exams2lops() interface is
employed.

Outlook

In the current version, exams already provides a wide variety of different output formats,
some additional formats may be desirable for future developments though. For example,
QTI 2.0/2.1 is likely to become more widely adopted — and is already currently employed by
some programs such as ONYX. This may also be one potential route for support of Blackboard
which we have not yet been able to investigate due to lack of access to the proprietary

25

26 Flexible Generation of E-Learning Exams in R

Blackboard system. An alternative could be a direct adaptation of the Blackboard flavor of
the QTI 1.2 XML format.

Furthermore, users may be interested in extensions/adaptions of existing e-learning formats.
A forum for support and discussions of such issues is available on R-Forge at http://R-Forge.
R-project.org/forum/?group_id=1337.

Acknowledgments

We are indebted to all our colleagues in the “Mathematics” team at the Department of Statis-
tics at Universitdt Innsbruck for testing and challenging the code and making suggestions for
improvement. This project was also partially supported by an e-learning grant (#2011.241)
of the Universitdt Innsbruck.

References

Agea A, Crespo Garcia RM, Delgado Kloos C, Gutiérrez I, Leony D, Pardo A (2009). “Analysis
of Existing Specifications and Standards for Assessment and Evaluation and Their Usage
in Europe.” Deliverable D6.1, ICOPER Network for Interoperable Content for Performance
in a Competency-Driven Society. URL http://www.icoper.org/results/deliverables/
D6-1.

Blackboard Inc (2010). Blackboard Learn 9.1. Washington, DC. URL http://wuw.
blackboard.com/.

Blesius CR, Moreno-Ger P, Neumann G, Raffenne E, Gonzalez Boticario J, Delgado Kloos
C (2007). “LRN: E-Learning Inside and Outside the Classroom — Supporting Collabora-
tive Learning Communities Using a Web Application Toolkit.” In B Fernandez-Manjén,
JM Séanchez-Pérez, JA Goémez-Pulido, MA Vega-Rodriguez, J Bravo-Rodriguez (eds.),
Computers and FEducation: FE-Learning, From Theory to Practice. Springer-Verlag, Dor-
drecht.

BPS Bildungsportal Sachsen GmbH (2012). ONYX Testsuite. Chemnitz, Germany. URL
http://onyx.bps-system.de/.

de Leeuw J (2001). “Reproducible Research: The Bottom Line.” Technical Report 2001031101,
Department of Statistics Papers, University of California, Los Angeles. URL http://
repositories.cdlib.org/uclastat/papers/2001031101/.

Design Science (2012a). MathJax 2.1 Documentation. Long Beach, CA. URL http://wuw.
MathJax.org/.

Design Science (2012b). MathPlayer: Display MathML in Your Browser. Long Beach, CA.
URL http://www.dessci.com/en/products/mathplayer/.

Dougiamas M, et al. (2012). Moodle, Version 2.3. URL http://moodle.org/.

frentix GmbH (2012). OpenOLAT 8.1 — User Manual. Ziirich, Switzerland. URL http:
//www.openolat.org/.

http://R-Forge.R-project.org/forum/?group_id=1337
http://R-Forge.R-project.org/forum/?group_id=1337
http://www.icoper.org/results/deliverables/D6-1
http://www.icoper.org/results/deliverables/D6-1
http://www.blackboard.com/
http://www.blackboard.com/
http://onyx.bps-system.de/
http://repositories.cdlib.org/uclastat/papers/2001031101/
http://repositories.cdlib.org/uclastat/papers/2001031101/
http://www.MathJax.org/
http://www.MathJax.org/
http://www.dessci.com/en/products/mathplayer/
http://moodle.org/
http://www.openolat.org/
http://www.openolat.org/

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch 27

Gal I, Garfield JB (eds.) (1997). The Assessment Challenge in Statistics Education. 10S
Press, Netherlands.

Garfield JB, Chance B (2000). “Assessment in Statistics Education: Issues and Challenges.”
Mathematical Thinking and Learning, 2(1/2), 99-125.

Griin B, Zeileis A (2009). “Automatic Generation of Exams in R.” Journal of Statistical
Software, 29(10), 1-14. URL http://www. jstatsoft.org/v29/110/.

Hutchinson IH (2012). TtH: A ‘TgX to HTML’ Translator. C code version 4.03, URL
http://hutchinson.belmont.ma.us/tth/.

Hutchinson IH, Leisch F, Zeileis A (2012). tth: TgX to HTML/MathML Translators tth/ttm.
R package version 4.03-0, URL http://CRAN.R-project.org/package=tth.

ImageMagick Studio LLC (2012). ImageMagick: Convert, Edit, and Compose Images.
Version 6.8.0-4, URL http://www.ImageMagick.org/.

IMS Global Learning Consortium, Inc (2012). IMS Question & Test Interoperability: ASI
XML Binding Specification Final Specification Version 1.2. Lake Mary, FL. URL http:
//www.imsglobal.org/question/qtivip2/imsqti_asi_bindv1ip2.html.

Klinke S (2004). “Q&A — Variable Multiple Choice Exercises with Commented Answers.” In
J Antoch (ed.), COMPSTAT 2004 — Proceedings in Computational Statistics, pp. 1323
1328. Physica Verlag, Heidelberg.

Knuth DE (1984). The TgXbook, volume A of Computers and Typesetting. Addison-Wesley,
Reading, Massachusetts.

Knuth DE (1992). Literate Programming, volume 27 of CSLI Lecture Notes. Center for the
Study of Language and Information, Stanford, California.

Lamport L (1994). BTgX: A Document Preparation System. 2nd edition. Addison-Wesley,
Reading, Massachusetts.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Hérdle, B Ronz (eds.), COMPSTAT 2002 — Proceedings in Computational Statistics,
pp- 575-580. Physica Verlag, Heidelberg.

Leisch F (2012a). “Sweave FAQ.” URL http://www.stat.uni-muenchen.de/"leisch/
Sweave/.

Leisch F (2012b). Sweave User Manual. URL http://www.stat.uni-muenchen.de/
“leisch/Sweave/.

Leisch F, Rossini AJ (2003). “Reproducible Statistical Research.” Chance, 16(2), 46-50.

Pilato CM, Collins-Sussman B, Fitzpatrick BW (2004). Version Control with Subversion.
O’Reilly. Full book available online at http://svnbook.red-bean.com/.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

http://www.jstatsoft.org/v29/i10/
http://hutchinson.belmont.ma.us/tth/
http://CRAN.R-project.org/package=tth
http://www.ImageMagick.org/
http://www.imsglobal.org/question/qtiv1p2/imsqti_asi_bindv1p2.html
http://www.imsglobal.org/question/qtiv1p2/imsqti_asi_bindv1p2.html
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://svnbook.red-bean.com/
http://www.R-project.org/
http://www.R-project.org/

28 Flexible Generation of E-Learning Exams in R

RStudio Team (2012). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA.
URL http://www.RStudio.com/ide/.

TheuBl S, Zeileis A (2009). “Collaborative Software Development Using R-Forge.” The R
Journal, 1(1), 9-14. URL http://journal.R-project.org/2009-1/RJournal_2009-1_
Theussl+Zeileis.pdf.

Universitét Ziirich (2012). OLAT 7.6 — User Manual. IT Services, Universitét Ziirich,
Switzerland. URL http://www.olat.org/.

Urbanek S (2012). base6jenc: Tools for Base6j Encoding. R package version 0.1-0, URL
http://CRAN.R-project.org/package=baseb4enc.

Vismor T (2012). “Viewing Mathematics on the Internet.” Revision 2012-11-08, URL http:
//vismor.com/documents/site_implementation/viewing_mathematics/.

W3C (2010). “Mathematical Markup Language (MathML) Version 3.0.” URL http://www.
w3.org/TR/MathML/.

Wikipedia (2012). “MathML — Wikipedia, The Free Encyclopedia.” URL http://en.
wikipedia.org/wiki/MathML, accessed 2012-11-14.

http://www.RStudio.com/ide/
http://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://journal.R-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://www.olat.org/
http://CRAN.R-project.org/package=base64enc
http://vismor.com/documents/site_implementation/viewing_mathematics/
http://vismor.com/documents/site_implementation/viewing_mathematics/
http://www.w3.org/TR/MathML/
http://www.w3.org/TR/MathML/
http://en.wikipedia.org/wiki/MathML
http://en.wikipedia.org/wiki/MathML

Achim Zeileis, Nikolaus Umlauf, Friedrich Leisch 29

A. List of Sweave exercises in exams

File Type Description

confint num Confidence interval for one-sample mean, i.e., result of lenght two
(for version 1 interface).

dist num Very simple numeric exercise (for introductory illustrations).

lagrange num Lagrange optimzation under constraint. Result is randomly se-
lected to be one of three potential quantities.

regression num Prediction in simple linear regression.

tstat num Computation of 1-sample ¢ statistic.

anova mchoice Interpretation of anova() table and corresponding boxplots.

boxplots mchoice Interpretation of two parallel boxplots with potentially varying
location, scatter, skewness, and outliers.

cholesky mchoice Computation of Cholesky decomposition, result is checked by ran-
domly constructed statements about different matrix elements.

relfreq mchoice Interpretation of 2-way contingency table.

scatterplot mchoice Interpretation of scatterplot.

ttest mchoice Interpretation of t.test() output.

boxhist cloze Based on randomly generated data as (exercise-specific) . csv files

some quantiles have to be computed (num) and interpretations of
a boxplot and histogram have to be made (mchoice).

confint?2 cloze Cloze version (for all version 2 interfaces) constructed from the
numeric confint.

dist?2 cloze Extended cloze version of the numeric dist.

tstat2 schoice Single-choice version constructed from the numeric tstat.

Table 3: List of Sweave exercises provided as examples in exams/inst/exercises.

Affiliation:

Achim Zeileis, Nikolaus Umlauf

Department of Statistics

Faculty of Economics and Statistics

Universitdt Innsbruck

Universitatsstr. 15

6020 Innsbruck, Austria

E-mail: Achim.Zeileis@R-project.org, Nikolaus.Umlauf@uibk.ac.at

URL: http://eeecon.uibk.ac.at/"zeileis/, http://eeecon.uibk.ac.at/ umlauf/

Friedrich Leisch

Institute of Applied Statistics and Computing

Universitédt fiir Bodenkultur Wien

Peter Jordan-Str. 82

1180 Wien, Austria

E-mail: Friedrich.Leisch@R-project.org

URL: http://www.rali.boku.ac.at/friedrichleisch.html

mailto:Achim.Zeileis@R-project.org
mailto:Nikolaus.Umlauf@uibk.ac.at
http://eeecon.uibk.ac.at/~zeileis/
http://eeecon.uibk.ac.at/~umlauf/
mailto:Friedrich.Leisch@R-project.org
http://www.rali.boku.ac.at/friedrichleisch.html

	Introduction
	Using the exams package
	Version 1: PDF exams() from Sweave exercises
	Version 2: Producing PDF, HTML, or XML for Moodle or OLAT
	Producing PDF documents: exams2pdf()
	Producing HTML documents: exams2html()
	Producing Moodle XML: exams2moodle()
	Producing QTI 1.2 XML (for OLAT): exams2qti12()

	Design
	Extended specification of exercises
	The xexams() wrapper function
	The read driver: readexercise() and readmetainfo()
	LaTeX-to-HTML transform driver generator
	PDF and HTML write driver generators
	Further functions for processing xexams return values

	Extending the exams toolbox and writing new drivers
	Summary and discussion
	List of Sweave exercises in exams

