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1 Introduction

1.1 What is the evd package?

The evd (extreme value distributions) package is an add-on package for the R (Thaka and Gen-
tleman, 1996) statistical computing system. The package contains the following (user-level)
functions.

Univariate Distributions. Density, distribution, simulation and quantile (inverse distribution)
functions for univariate distributions associated with extreme value theory.

dgev dgumbel drweibull dfrechet dextreme dorder

pgev pgumbel prweibull pfrechet pextreme porder

rgev rgumbel rrweibull rfrechet rextreme rorder

ggev qgumbel qgrweibull qgfrechet gextreme

Bivariate and Multivariate Extreme Value Distributions. Density, distribution and simulation
functions for bivariate and multivariate parametric extreme value models. Eight bivariate models
and two multivariate models are implemented.

dbvevd dmvevd pbvevd pmvevd rbvevd rmvevd

Dependence Functions for Bivariate and Trivariate Extreme Value Distributions. Calculate and
plot dependence functions for bivariate and trivariate extreme value distributions; either non-
parametric estimates, or parametric models, at specified parameter values.

abvnonpar abvpar atvnonpar atvpar

Stochastic Processes. Generate stochastic processes associated with extreme value theory; max
autoregressive moving average processes and first order Markov chains with bivariate extreme
value dependence structures.

evmc marma mar mma

Fitting Models. Obtain maximum likelihood estimates for models used in extreme value theory,
including eight parametric bivariate extreme value models.
fbvevd fgev forder fextreme

Model Diagnostics. Model diagnostics for fitted models; diagnostic plots and analysis of deviance.
plot.gev plot.bvevd anova.evd

Profile deviances. Obtain profile traces, plot profile deviances and obtain profile confidence
intervals from fitted models.
profile.evd plot.profile.evd profile2d.evd plot.profile2d.evd

The following datasets are also included in the package.
failure fox 1lisbon ocmulgee oldage oxford
portpirie sask sealevel wuccle venice



1.2 Obtaining the package/guide

The evd package can be downloaded from CRAN (The Comprehensive R Archive Network)
at http://cran.r-project.org/. This guide (in pdf) will be in the directory evd/doc/
underneath wherever the package is installed. It can also be downloaded directly from
http://www.maths.lancs.ac.uk/“stephena/ (in postscript or pdf).

1.3 Contents

This guide contains examples on the use of the evd package. The examples do not include any
theoretical justification. See Coles (2001) for an introduction to the statistics of extreme values.
See Kotz and Nadarajah (2000) for a theoretical treatment of univariate and multivariate extreme
value distributions.

Section 2 covers the standard (non-fitting) functions for univariate distributions. Sections 3 and
4 do the same for bivariate and multivariate extreme value models. Dependence functions of
extreme value distributions are discussed in Section 5. Stochastic processes are discussed in
Section 6. Maximum likelihood fitting of univariate and bivariate models is discussed in Sections
7 and 8 respectively. Two extended examples, one univariate and one bivariate, using the data
sets oxford and sealevel (both included in the package), are given in Sections 9 and 10.

This guide should not be viewed as an alternative to the documentation files included within the
package. These remain the definitive source of information. A reference manual containing all
the documentation files can be downloaded from http://www.maths.lancs.ac.uk/ stephena/
or from CRAN.

All of the examples presented in this guide are called with options(digits = 4), and with the
option show.signif.stars set to FALSE.

1.4 Citing the package/guide

Volume 2/2 of R-News (the newsletter of the R-project) contains an article that describes
(an earlier version of) the evd package. To cite the package in publications please cite
the R-News article. The article and the corresponding citation can be downloaded from
http://www.cran.r-project.org/doc/Rnews/.

To cite this guide in publications please use the following bibliographic database entry.

Omanual{key,
title = {A User’s Guide to the evd Package (Version 2.0)},
author = {Stephenson, A. G.3},
year = {2003},
month = {January},
url = {http://www.maths.lancs.ac.uk/\textasciitilde stephena/}
}

1.5 Caveat

I have checked these functions as best I can but, as ever, they may contain bugs. If you
find a bug or suspected bug in the code or the documentation please report it to me at
a.stephenson@lancaster.ac.uk. If you do find a bug and are the first person to report it,
I guarantee to buy you the drink of your choice. If you ever manage to find me.



1.6 Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

A  copy of the GNU General Public License can be obtained from
http://www.gnu.org/copyleft/gpl.html. You can also obtain it by writing to the Free
Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111-1307, USA.
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2 Univariate Distributions

The Gumbel, Fréchet and (reversed) Weibull distribution functions are respectively given by

G(z):exp{—exp [— (z;a)]}, —00 < 7 < 00 (1)

0, z < a,
G(2) ={ s\~ (2)

exp{—(%)_ }, z > a,
G(z):{exp{—[— (91}, 2<a, 3)

1, z>a,

where a is a location parameter, b > 0 is a scale parameter and « > 0 is a shape parameter. The
distribution (3) is often referred to as the Weibull distribution. To avoid confusion I will call
this the reversed Weibull, since it is related by a change of sign to the three parameter Weibull
distribution used in survival analysis.

The GEV (Generalized Extreme Value) distribution function is given by

G(2) = exp {~ [1+& (2 — ) /o] 1/}, 4

where (u,0,&) are the location, scale and shape parameters respectively, ¢ > 0 and hy =
max(h,0). When & > 0 the GEV distribution has a finite lower end point, given by u—o/¢. When
¢ < 0 the GEV distribution has a finite upper end point, also given by u — o /€. The parametric
form of the GEV encompasses that of the Gumbel, Fréchet and reversed Weibull distributions.
The Gumbel distribution is obtained in the limit as £ — 0. The Fréchet and Weibull distributions
are obtained when £ > 0 and £ < 0 respectively. To recover the parameterization of the Fréchet
distribution (2) set £ = 1/a >0, 0 =b/a > 0 and u = a + b. To recover the parameterization
of the reversed Weibull distribution (3) set £ = —1/a < 0,0 =b/a >0 and y =a — b.

It is standard practice within R to concatenate the letters r, p, q and d with an abbreviated
distribution name to yield the names of the corresponding simulation, distribution, quantile
(inverse distribution) and density functions respectively. The evd package follows this convention.
Each of the four distributions defined above has an associated set of functions, as given in Section
1.1. Some examples are given below. They should be familiar to those who have had previous
experience with R.



> rgev(6, loc = c(20,1), scale = .5, shape = 1)
[1] 23.7290 1.2492 19.6680 0.8662 19.7939 2.6512

> qrweibull(seq(0.1, 0.4, 0.1), 2, 0.5, 1, lower.tail = FALSE)

> qrweibull(seq(0.9, 0.6, -0.1), loc = 2, scale = 0.5, shape = 1)
# Both give

[1] 1.947 1.888 1.822 1.745

> pfrechet(2:6, 2, 0.5, 1)

[1] 0.0000 0.6065 0.7788 0.8465 0.8825
> pfrechet(2:6, 2, 0.5, 1, low = FALSE)
[1] 1.0000 0.3935 0.2212 0.1535 0.1175

> drweibull(-1:3, 2, 0.5, log = TRUE)

[1] -5.307 -3.307 -1.307 -Inf -Inf

> dgumbel(-1:3, 0, 1)

[1] 0.17937 0.36788 0.25465 0.11820 0.04737

Let F' be an arbitrary distribution function, and let Xi,..., X, be a random sample from F'.
Define U,;, = max{X1,..., X;,} and L,, = min{X,..., X,,}. The distributions of U,, and L,,
are given by

Pr(Un < 2) = [F(z)]™ (5)
Pr(L, <z)=1-[1-F(z)™. (6)

Simulation, distribution, quantile and density functions for the distributions of U, and L,,, given
an integer m and an arbitrary distribution function F', are provided by rextreme, pextreme,
gextreme and dextreme respectively. The integer m should be given to the argument mlen.
The distribution F' is most easily specified by passing an abbreviated distribution name to the
argument distn. If the distribution of Uy, is required the argument largest should be set to
TRUE (the default). If the distribution of Ly, is required largest should be set to FALSE. Some
examples should make this clear.

> rextreme(1l, distn = "norm", sd = 2, mlen = 20, largest = FALSE)
> min(rnorm(20, mean = 0, sd = 2))

# Both simulate from the same distribution

[1] -2.612

> rextreme(4, distn = "exp", rate = 1, mlen = 5)
> rextreme(4, distn = "exp", mlen = 5)

# Both simulate from the same distribution

[1] 2.2001 0.8584 4.5595 3.9397

> pextreme(c(.4, .5), distn = "norm", mean = 0.5, sd = ¢(1, 2), mlen = 4)
[1] 0.04484 0.06250
> dextreme(c(l, 4), distn = "gamma", shape = 1, scale = 0.3, mlen = 100)

[1] 0.3261328 0.0005398

Let X(l) > X(z) > > X(m) be the order statistics of the random sample X1,...,X,,. The
distribution of the jth largest order statistic, for j =1,...,m, is

j—1

Pr(Xgy <2) = 3 (1) @I - P )
k

=0



The distribution of the jth smallest order statistic is obtained by setting j = m-+1—j. Simulation,
distribution and density functions for the distribution of X(;), for given integers m and j €
{1,...,m}, and for an arbitrary distribution function F', are provided by rorder, porder and
dorder respectively. The integer m should again be given to the argument mlen. If the argument
largest is TRUE (the default) the distribution of the jth largest order statistic X;) is used. If
largest is FALSE the distribution of the jth smallest order statistic X(;,4; 1) is used. Some
examples are given below.

> rorder(1, distn = "norm", mlen = 20, j = 2)

[1] 2.284

> porder(c(l, 2), distn = "gamma", shape = c(.5, .7), mlen = 10, j = 2)
[1] 0.5177 0.8259

> dorder(c(1, 2), distn = "gamma", shape = c(.5, .7), mlen = 10, j = 2)

[1] 0.7473 0.3081

3 Bivariate Extreme Value Distributions

The evd package contains functions associated with eight parametric bivariate extreme value
distributions. The univariate marginal distributions in each case are GEV, with marginal pa-
rameters (u1,01,&1) and (p2,09,&2).

There are three symmetric models, with distribution functions
Gle1,20) = exp { ~(01" + /") }, 0<a<1, (8)
G(zl,zg):exp{—yl—yg—l-(yl_r—i-yz_r)_l/r}, r >0, (9)
G(21,22) = exp (—y1®{A™" + Allog(y1 /12)]} — 12 @{A " + §A[log(y2/v1)]}) , A >0,

known as the logistic (Gumbel, 1960), negative logistic (Galambos, 1975) and Hiisler-Reiss
(Hiisler and Reiss, 1989) models respectively, where

yi = () = {1+ &(z5 — pj) o358 (10)

for j = 1,2. Independence* is obtained when o = 1, 7 | 0 or A | 0. Complete dependence’ is
obtained when « | 0, 7 = 00 or A — oc.

The distributions functions (8) and (9) have asymmetric extensions, given by

G(z1,22) = exp {—(1 —01)y1 — (1 — 62)y2 — [(91y1)1/a + (02y2)1/a]a} , 0<a<l, (11)
G(z1,22) = exp {—y1 —y2 +[(6iyr) " + (92@/2)4]71/7} , >0,

known as the asymmetric logistic (Tawn, 1988) and asymmetric negative logistic (Joe, 1990)
models respectively, where the asymmetry parameters 0 < 81,60» < 1. For the asymmetric logistic
model independence is obtained when either @« = 1, 1 = 0 or #; = 0. Different limits occur
when 6 and 6» are fixed and « | 0. For the asymmetric negative logistic model independence is
obtained when either r | 0, 61 | 0 or 6> | 0. Different limits occur when #; and 6. are fixed and
r — 00.

*Independence occurs when G(z1, 22) = exp{—(y1 + y2)}.
fComplete dependence occurs when G(z1,22) = exp{— max(y1,y2)}.



Any bivariate extreme value distribution function can be expressed as (de Haan, 1984)

Gles,za) = oxp { = [ maxfun o) o folo) e |

where (y1,y2) are again defined by the transformations (10), and where f; and fy are density
functions with support [0,1].

In particular, if we take the beta densities fi(z) = (1 — a)z™® and fa(z) = (1 — B)(1 —z)7# we
obtain

1
G(z1,22) = exp {—/0 max{y1(1 — a)z™ %, y2(1 — B)(1 — av)_ﬂ}dav} , a,f<1.

If we further constrain the parameters to be non-negative we obtain the bivariate bilogistic model
proposed by Smith (1990), which can also be expressed as

G(z1,29) = exp {—ylfyl*a —1y2(1 — 'y)l*ﬁ} , 0<a,B<1, (12)

where v = (y1, y2; @, 8) solves (1 — a)y1 (1 —7)? = (1 — B)y27*. The logistic model is obtained
when a = . Independence is obtained as @« = 8 — 1, and when one of «, 3 is fixed and the
other approaches one. Different limits occur when one of «, 8 is fixed and the other approaches
Z€T0.

Alternatively, if we constrain both parameters to be non-positive and set ap = —a > 0 and
Bo = —B > 0 we obtain the negative bilogistic model (Coles and Tawn, 1994), which has the
representation

G(z1,22) = exp {—yl — Yo+ 1y T + (1 — ’Y)Hﬂo}, ag, o > 0,

where v = y(y1,y2; —a9, —Bp).- The negative logistic model is obtained when oy = By (with
r = 1/ap = 1/Bp). Independence is obtained as oy = By — oo, and when one of g, 5y is
fixed and the other tends to co. Different limits occur when one of «y, By is fixed and the other
approaches zero.

The Coles-Tawn model? (Coles and Tawn, 1991) is the final model that is considered in the evd
package. The distribution function is given by

G(z1,22) = exp{-y1[l —Be(u;a +1,8)] —y2Be(u; 0, + 1)}, @, 8>0,

where u = ays/(ays + By1) and Be is the incomplete beta function, given by

Be(u; a, f) = % /Ou %711 — )P da.

Complete dependence is obtained in the limit as @« = 8 — oo. Independence is obtained as
a = 3 — 0 and when one of «, 8 is fixed and the other approaches zero. Different limits occur
when one of o, 8 is fixed and the other tends to oo.

Density, distribution and simulation functions for each of the eight models are provided by
dbvevd, pbvevd and rbvevd respectively. The argument model denotes the specified model, which
must be either "log" (the default), "alog", "hr", "neglog", "aneglog", "bilog", "negbilog"
or "ct" (or any unique partial match). The first argument in pbvevd and dbvevd should be a
vector of length two or a matrix with two columns, so that each row specifies a value for (21, z9).

¥Coles and Tawn (1991) call this the Dirichelet model.



The parameters of the specified model can be passed using one or more of the arguments dep,
asy, alpha and beta. The marginal parameters (u1,01,&1) and (p2,09,&2) can be passed using
the arguments marl and mar2 respectively. Gumbel marginal distributions are used by default.
The arguments marl and mar2 can also be matrices with three columns, in which case each
column represents a vector of values to be passed to the corresponding marginal parameter.
Some examples are given below.

> rbvevd(3, dep = .8, asy = c(.4, 1), model = "alog")
[,1] [,2]

[1,] 0.07876 -0.7971

[2,] 0.01091 -0.8113

[3,] -0.10491 -0.8831

> rbvevd(3, alpha = .5, beta = 1.2, model = "negb", marl = rep(1, 3))
[,11 [,2]

[1,] 0.7417 1.085

[2,] 0.8391 1.825

[3,] 2.0142 2.280

> pbvevd(c(1l, 1.2), dep = .4, asy = c(.4, .6), model = "an", marl = rep(1, 3))
[1] 0.173

> tmp.quant <- matrix(c(1,1.2,1,2), ncol = 2, byrow = TRUE)

> tmp.mar <- matrix(c(1,1,1,1.2,1.2,1.2), ncol = 3, byrow = TRUE)

> pbvevd(tmp.quant, dep = .4, asy = c(.4, .6), model = "an", marl = tmp.mar)

[1] 0.173 0.175

> dbvevd(c(1l, 1.2), alpha = .2, beta = .6, model = "ct", marl = rep(1, 3))
[1] 0.1213

> dbvevd (tmp.quant, alpha
[1] 0.1213 0.0586

0.2, beta = 0.6, model = "ct", marl = tmp.mar)

4 Multivariate Extreme Value Distributions

Let z = (z1,...,24). The d-dimensional logistic model (Gumbel, 1960) has distribution function

G(2) = exp {— (2; y;”“) } 13)

where a € (0,1] and (yi,...,yq) is defined by the transformations (10).

This distribution can be extended to an asymmetric form. Let B be the set of all non-empty
subsets of {1,...,d}, let By = {b € B : |b| = 1}, where |b| denotes the number of elements in the
set b, and let B;y = {b € B : i € b}. The multivariate asymmetric logistic model (Tawn, 1990)

is given by @
G(z) = exp {_ ZbEB [Zieb(gi’byi)l/ab] b}

where the dependence parameters o € (0,1] for all b € B\ By, and the asymmetry parameters
0;p € [0,1] for all b € B and i € b. The constraints ZbeB(i) O;p =1fori=1,...,d ensure that
the marginal distributions are GEV. There exists further constraints which arise from the possible
redundancy of asymmetry parameters in the expansion of the distributional form. Specifically,
if ap =1 for some b € B\ By then 0;, =0 for all i € b. Let b_;, = {¢ € b: i # ig}. If, for some
be B\ By, 0, =0 for all i € b_;;, then 6;,;, = 0. The model contains 2¢ — d — 1 dependence

7



parameters and d2¢~! asymmetry parameters (excluding the constraints). The logistic model
(13) can be obtained by setting 6;12.4 = 1 for all 4 = 1,...,d (which implies that 6;, = 0
whenever |b| < d) and aj9,.4 = a. The density functions for the symmetric and asymmetric
logistic models are given in Appendix A.

Density, distribution and simulation functions for these models are provided by dmvevd, pmvevd
and rmvevd respectively. The argument model denotes the specified model, which must be
either "log" (the default) or "alog" (or any unique partial match). The argument d denotes
the dimension of the model. By default, d = 2. The first argument in pbvevd and dbvevd
should be a vector of length d or a matrix with d columns, so that each row specifies a value
for (z1,...,24). The marginal parameters (ui,0;,&;), for i = 1,...,d, can be passed using the
argument mar. Gumbel marginal distributions are used by default. For the symmetric logistic
model, the argument dep represents the parameter «. Some examples are given below.

> rmvevd(3, dep = .6, model = "log", d = 5)

[,1] [,2] [,3] (.41 [,5]
[1,] 0.1335 0.2878 1.07886 1.55515 1.310
[2,] 1.7100 0.9453 1.02070 -0.02553 1.527
[3,] -0.3376 -0.5814 0.07426 0.10906 2.827

> tmp.mar <- matrix(c(1,1,1,1,1,1.5,1,1,2), ncol = 3, byrow = TRUE)
> rmvevd(3, dep = .6, d = 5, mar = tmp.mar)
[,1] [,2] [,3] [,4] [,5]
[1,] 2.803 4.6415 1.8531 3.5569 8.854
[2,] 0.751 0.9704 2.3328 2.6537 1.233
[3,] 4.641 1.4321 0.5825 0.6041 2.021

> tmp.quant <- matrix(rep(c(1,1.5,2), 5), ncol = 5)

> pmvevd(tmp.quant, dep = .6, d = 5, mar = tmp.mar)

[1] 0.07233 0.16387 0.21949

> dmvevd(tmp.quant, dep = .6, d = 5, mar = tmp.mar, log = TRUE)
[1] -3.564 -6.610 -9.460

For the asymmetric logistic model dep should be a vector of length 2d _g-1 containing the
dependence parameters. For example, when d =4

dep = C(0412, @13, (14, (23, (X24, (N34, (X123, (X124, (X134, (X234, 041234)-

The asymmetry parameters should be passed to asy in a list with 2d _ 1 elements, where each
element is a vector* corresponding to a set b € B, containing {6, : i € b}. For example, when
d=14
asy = list(01,1,022,033,04.4,c(01,12,0212), c(01,13,0313), (61,14, 04,14), c (02,23, 03 23),
c(02,24,04,24), c(03,34,04,34), (61,123, 02,123, 63,123), c(01,124, 02,124, 04,124),
(01,134, 03,134, 04,134), ¢ (02,234, 03,234, 04,234), € (01,1234, 02,1234, 03,1234, 04,1234)).-
All the constraints, including ;. B 0;p = 1fori=1,...,d, must be satisfied or an error will
occur. Some examples are given below.

The dependence parameters used in the following trivariate asymmetric logistic model are
(a2, 13, 003, 123) = (.6,.5,.8,.3). The asymmetry parameters are 6;; = 4, 6o = 0,
93,3 = .6, (91,12,92712) = (.3,.2), (91’13,93,13) = (.1,.1), (92,23,93,23) = (4,1) and ﬁnally
(01,123, 02,123, 03,123) = (.2, .4, .2).

*Including vectors of length one.




> asy <- list(.4, 0, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.4,.2))

> rmvevd(3, dep = c(.6,.5,.8,.3), asy = asy, model = "alog", d = 3)
[,1] [,2] [,3]

[1,] 0.52375 -0.8844 1.4898

[2,] 1.16174 -0.4368 -0.7404

[3,] -0.03737 1.5139 -0.5996

> dmvevd(c(2, 2, 2), dep = c(.6,.5,.8,.3), asy = asy, model = "a", d = 3)
[1] 0.006636

> tmp.quant <- matrix(rep(c(1,1.5,2), 3), ncol = 3)
> pmvevd (tmp.quant, dep = c(.6,.5,.8,.3), asy = asy, model = "a", d = 3)
[1] 0.4131 0.5849 0.7223

The dependence parameters used in the following four dimensional asymmetric logistic model
are o, = 1 for [b] = 2f and (23, 194, @134, @234, 01934) = (.7,.3,.8,.7,.5). The asymme-
tI‘y parameters are Hi,b = 0 for all # € b when |b| S 2, (91’123,02’123,937123) = (2,1,2),
(01,124,62,124,04.104) = (.1,.1,.2), (61,134,03,134,02134) = (.3,.4,.1), (02.234,03234,04931) =
(.2, .2, 2) and ﬁnally (01,1234,92,1234,0371234,04,1234) = (4, .6, .2, 5)

> asy <- 1list(0, 0, 0, 0, c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), <(0,0),
c(.2,.1,.2), c(.1,.1,.2), c(.3,.4,.1), c(.2,.2,.2), c(.4,.6,.2,.5))
> rmvevd(3, dep = c(rep(1,6),.7,.3,.8,.7,.5), asy = asy, model = "alog", d = 4)
[,1] [,2] [,3] [,4]
[1,] -0.5930 -0.1916 1.0211 0.6113
[2,] 4.3522 -1.0050 2.3618 -0.1875
[3,] 0.5805 0.4443 -0.5958 0.9717

5 Dependence Functions

Let z = (21,...,24) and w = (w1,...,wq). Any d-dimensional extreme value distribution function
can be represented in the form

d Y1 Ya
G(z) =exp{ — LA Senns ) 14
(2) =e P{ {Z]’—1 yj} (E ?:1 Yy 2?21 yj>} "

where (y1,...,yq) is defined by the transformations (10). It follows that A(w) =
—log{G(y; *(w1),---,y; " (wa))}, defined on the simplex Sy = {w € R : Z?:l w; = 1} A()
is known as the dependence function. The dependence function characterizes the dependence
structure of G. It can be shown that A(w) = 1 when w is one of the d vertices of Sy (i.e. when
one component of w is equal to one, and all remaining components are equal to zero), and that
A is a convex function with max(ws,...,wy) < A(w) < 1 for all w € S4. The lower and upper
bounds are obtained at complete dependence and mutual independence respectively. In partic-

ular, A(1/d,...,1/d) is equal to 1/d at complete dependence, and 1 at mutual independence.

The dependence function of a bivariate extreme value distribution is a special case (because the
sets So and [0,1] are equivalent), and is typically defined as follows. Any bivariate extreme value
distribution function can be represented in the form

Glarvza) =exp {~n + ) (L)1, (15)

Y1+ Y2

"The values taken by a; when |b| = 2 are irrelevant here because 6;; = 0 for all 4 € b when |b| = 2.



so that A(w) = —log{G(y; ' (w),y5 (1 —w))}, defined on 0 < w < 1.* Tt follows that A(0) =
A(1) =1, and that A(-) is a convex function with max(w,1 —w) < A(w) < 1for all 0 < w < 1.
At independence A(1/2) = 1. At complete dependence A(1/2) = 0.5.

Dependence functions for parametric bivariate and trivariate extreme value models can be cal-
culated and plotted, at given parameter values, using the functions abvpar and atvpar. Some
examples are given at the end of this section. Non-parametric estimators of dependence func-
tions can also be calculated and plotted, using the functions abvnonpar and atvnonpar. Non-
parametric estimators of dependence functions of bivariate extreme value models are constructed
as follows.

Suppose (z;1, %) for i = 1,...,n are n bivariate observations that are passed to abvnonpar
using the argument data. The marginal parameters are estimated (under the assumption of
independence) and the data is transformed using

yin = {1+ & (2 — ) /61}7 7%
iz = {1+ &a(zi2 — ﬂg)/@}f/&’ (16)

fori=1,...,n, where (i1, 61,51) and ({2, &g,ég) are the maximum likelihood estimates for the
location, scale and shape parameters on the first and second margins. If non-stationary fitting is
implemented using the nslocl or nsloc2 arguments (see Sections 7 and 8) the marginal location
parameters may depend on 1.

The estimator is specified using the argument model, which must be either "pickands",
"deheuvels", "cfg" (the default), "tdo" or "hall" (or any unique partial match). These esti-
mators are respectively defined (on 0 < w < 1) as follows.

Pickands (1981)
-1
Yi1 Yi2
=S (2, 22)]

Deheuvels (1991)

-1
n n
Yir Y2
) = { Smin (22,12 ) 03— 1) Y 40
i=1 =1
Capéraa et al. (1997)

A = e {1 -p} [ EHD s ) [ )

Tiago de Oliveira (1997)

1 w 1l—w
Aw) =1 — ——— 5 mi
1) 1+logn iz_;mm<1+nyi1’ 1+nyi2>

Hall and Tajvidi (2000)

o= of S (31t Y

*Some authors (e.g. Pickands, 1981) use A(w) = —log{G(y; *(1 —w),y5 *(w))}.
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In the estimator of Capéraa et al. (1997), H,(z) is the empirical distribution function of
Zly...,Tpn, where ; = y;i1/(yin + yi2) for @ = 1,...,n, and p(-) is any bounded function on
[0, 1], which can be specified using the argument wf. By default p(-) is the identity function. In
the estimator of Hall and Tajvidi (2000), 41 = n='> 0, yi and g = n~' Y0 | yi2. A short
simulation study that compares the properties of these estimators is given in Appendix B.

Let A,(-) be any estimator of A(-). The estimators Ay(-), A¢(-) and Ap(-) all satisfy A,(0) =
Ap(1) = 1. A.(-) satisfies this constraint when p(0) = 0 and p(1) = 1. None of the estimators
given above satisfy max(w,1 — w) < A,(w) <1 for all 0 < w < 1. An obvious modification is

A, (w) = min(1, max{A, (), w, 1 — w}).

This modification is always implemented. Another estimator A, (w) can be derived by taking
the convex minorant of A;l(w). This can be achieved by setting the argument convex to TRUE.

Some examples of the functions described in this section are given below. The last lines of code
produce Figure 1.

2)
3)

> bvlsm <- rmvevd (100, dep
> tvlsm <- rmvevd (100, dep

0.6, model
0.6, model

Illogll d
Illogll s d

> abvpar(seq(0,1,0.25), dep = 0.3, asy = c(.7,.9), model = "alog")
[1] 1.0000 0.8272 0.7013 0.7842 1.0000

> abvnonpar(seq(0,1,0.25), data = bvlsm)

[1] 1.0000 0.8634 0.8158 0.8392 1.0000

> abvpar(dep = .3, asy = c(.5, .9), model = "al", plot = TRUE, blty = 1)
> abvpar(alpha = .5, beta = .9, model = "bil", add = TRUE, lty = 2)
> abvpar(dep = 1.05, model = "hr", add = TRUE, lty = 3)

> abvnonpar(data
> abvnonpar (data
> abvnonpar(data

bvlsm, plot = TRUE, method "cfg", blty = 1)
bvlsm, method = "tdo", add = TRUE, 1ty = 2)
bvlsm, method = "pick", add = TRUE, 1ty = 3)

> atvpar(dep = 0.6, model = "log", plot = TRUE, lower = 0.6)
> atvnonpar(data = tvlsm, plot = TRUE, lower = 0.6)

6 Stochastic Processes

The evd package contains four functions that simulate from stochastic processes associated with
extreme value theory. The functions marma, mar and mma generate max autoregressive moving
average processes. The function evmc generates Markov chains with extreme value dependence
structures.

A max autoregressive moving average process { Xy}, denoted by MARMA(p, q), satisfies
X = max{¢1Xg 1, ., pp Xk p, €ks 0165 1, -, Og€x ¢}

where (¢1,...,¢p) and (01,...,6,) are vectors of non-negative parameters, and {e} is a series
of #id random variables with a common distribution defined by the argument rand.gen. The
standard Fréchet distribution is used by default. A max autoregressive process { X}, denoted
by MAR(p), is equivalent to a MARMA (p, 0) process, so that

Xy =max{¢p1 Xg 1,-., $p Xk p, €k}
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Figure 1: Extreme left: dependence functions for various parametric bivariate extreme value
models. The triangular border represents the constraint max(w,1 — w) < A(w) < 1 for all
w € [0,1]. Left: non-parametric estimates of the dependence function using data simulated
from a bivariate logistic model with a = 0.6. Right: the dependence function of a trivariate
logistic model with o = 0.6, and (extreme right) a non-parametric estimate using data simulated
from that model. The colours represent twelve equally spaced intervals between lower = 0.6
and 1, with darker colours representing stronger dependence (and hence lower values). At the
vertex labelled with the value 7, the ith component of w € S3 is one (and hence the remaining
components are zero).

A max moving average process { X}, denoted by MMA(q), is equivalent to a MARMA(0, q)
process, so that
Xk = ma.x{ek, Hlek_l, . ,quk_q}.

The functions mar, mma and marma generate MAR(p), MMA(q) and MARMA(p, ¢q) processes
respectively. Examples of calls to these functions are given below. The n. start argument denotes
the burn-in period, which can be specified so that the output series is not unduly influenced by
the p starting values, which are all zero by default.

> marma(100, p =1, q =1, psi = 0.75, theta = 0.65)
> mar (100, psi = 0.85, n.start = 20)
> mma (100, q = 2, theta = c(0.75, 0.8))

Informally, a first order Markov chain X1,..., X, is a stochastic process such that at any given
time ¢ the probability distribution of X;y; is independent the past Xi,...,X;_1, given the
current state X;. The evmc function generates a first order Markov chain such that each pair of
consecutive values has the dependence structure of one of the parametric bivariate extreme value
models given in Section 3. The main arguments of evmc are the same as those of rbvevd. The
function evmc also has the argument margin, which denotes the marginal distribution of each
value. This must be either "uniform" (the default), "exponential", "frechet" or "gumbel"
(or any unique partial match), for the uniform, standard exponential, standard Gumbel and
standard Fréchet distributions respectively. Examples of calls to evmc are given below.

> evmc (100, alpha = 0.1, beta = 0.1, model = "bilog")
> evmc (100, dep = 10, model = "hr", margins = "exp")

7 Fitting Univariate Distributions

This section presents functions that produce maximum likelihood estimates for the distributions
introduced in Section 2. Maximum likelihood estimates for bivariate distributions are discussed
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in Section 8. For illustrative purposes Sections 7 and 8 use only simulated data. Two extended
examples (one univariate and one bivariate) using the data sets oxford and sealevel (both
included in the evd package) are given in Sections 9 and 10.

The function fgev produces maximum likelihood estimates for the GEV distribution (4). The
first argument should be a numeric vector containing data to be fitted. Missing values are
allowed. If the argument start is given it should be a named list containing starting values, the
names of which should be the parameters over which the likelihood is to be maximized. If start
is omitted the routine attempts to find good starting values for the optimization using moment
estimators.

If any of the parameters are to be set to fixed values, they can be given as separate arguments.
For example, the Gumbel distribution (1) can be fitted using shape = 0. Arguments of the
optimization function optim can also be specified. This includes the optimization method, which
can be passed using the argument method. Two examples of the fgev function are given below.

> datal <- rgev(1000, loc = 0.13, scale = 1.1, shape = 0.2)

> ml <- fgev(datal)
> ml

Call: fgev(x = datal)
Deviance: 3650

Estimates
loc scale shape
0.127 1.125 0.224

Standard Errors
loc scale shape
0.0400 0.0321 0.0248

Optimization Information
Convergence: successful
Function Evaluations: 51
Gradient Evaluations: 12

> m2 <- fgev(datal, loc = 0, scale = 1)
> m2

Call: fgev(x = datal, loc = O, scale = 1)
Deviance: 3669

Estimates
shape
0.236

Standard Errors
shape
0.0202

Optimization Information
Convergence: successful
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Function Evaluations: 24
Gradient Evaluations: 7

In the first example the likelihood is maximized over (loc, scale, shape). In the second example
the likelihood is maximized over shape, with the location and scale parameters fixed at zero and
one respectively. The maximum likelihood estimates from model m1 are

> fitted(ml)
loc scale shape
0.1271 1.1251 0.2244

The maximum likelihood estimators do not necessarily have the usual asymptotic properties,
since the end points of the GEV distribution depend on the model parameters. Smith (1985)
shows that the usual asymptotic properties hold when & > —0.5. When —1 < £ < —0.5 the
maximum likelihood estimators do not have the standard asymptotic properties, but generally
exist. When ¢ < —1 maximum likelihood estimators do not often exist. This occurs because of
the large mass near the upper end point. The likelihood increases without bound as the upper
end point is estimated to be closer and closer to the largest observed value. In terms of the
reversed Weibull shape parameter «, the usual asymptotic properties hold when o« > 2, the
asymptotic properties are not standard for 1 < a < 2, and maximum likelihood estimators do
not often exist for a < 1.

When the usual asymptotic properties hold (as here) the standard errors of the maximum like-
lihood estimates, approximated using the inverse of the observed information matrix, can be
extracted from the fitted object using

> std.errors(ml)
loc scale shape
0.03999 0.03214 0.02479

When the usual asymptotic properties do not hold the std.errors component will still be based
on the inverse of the observed information matrix, but these values must be interpreted with
caution (Smith, 1985).

Likelihood ratio tests can be performed using the function anova. We can compare the two
models m1 and m2 to test the null hypothesis that the location parameter is zero and the scale
parameter is one.

> anova(ml, m2)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 3 3650
m2 1 3669 2 18.8 8.2e-05

The deviance difference, deviance (m2) minus deviance(ml), is about 18.8, which yields a p-
value of 8.2 x 107° when compared with a chi-squared distribution on two degrees of freedom.
Diagnostic plots and profile deviances for fitted models can be constructed using the functions
plot, profile and profile2d (see Section 9).

By default the maximum likelihood estimates are calculated under the assumption that the
data to be fitted are the observed values of independent random variables Zi,..., Z,, where
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Z; ~ GEV(p,0,&) for each i = 1,...,n. The nsloc argument allows non-stationary models of
the form Z; ~ GEV(u;,0,&), where

pi = Po + Bixir + - - + Brxik-

The parameters (fy,...,0k) are to be estimated. In matrix notation u = B¢ + X3, where
w= (1, 1n)", Bo = (Bo,---, 5%, B=(B1,...,0k) 7T and X is the n x k covariate matrix
(excluding the intercept) with ijth element z;;.

The nsloc argument must be a data frame containing the matrix X, or a numeric vector which is
converted into a single column data frame with column name “trend”. The column names of the
data frame are used to derive names for the estimated parameters. This allows any of the k + 3
parameters (fo, ..., Bk, 0,&) to be set to fixed values within the optimization. The covariates
must be (at least approximately) centred and scaled, not only for numerical reasons, but also
because the starting value (if start is not given) for each corresponding coefficient is taken to
be zero. When a linear trend is present in the data, the location parameter is often modelled as

pi = Bo + Bits,

where t; is some centred and scaled version of the time of the ith observation. Non-stationary
models are rarely fitted, but this is probably the most commonly used form of non-stationarity.
More complex changes in y may also be appropriate. For example, a change-point model

0 <4
pi=Po+ iz where @ = { 0

1 2>14
or a quadratic trend

pi = Po + Puti + Pat;.
See Sections 9 and 10 for examples of non-stationary modelling.

The function fgev also has an argument called prob. If prob = p is passed a value in the
interval |0,1], fgev again produces maximum likelihood estimates for the GEV distribution, but
the model is re-parameterized from (u,0,£) to (zp,0,&), where 2, is the quantile corresponding
to the upper tail probability p. This argument can be used to calculate and plot profile deviances
of extreme quantiles (see Section 9). If prob is zero/one, then z, is defined as the upper/lower
end point p — o/€, and € is restricted to the negative/positive axis. Under non-stationarity
the model is re-parameterized from (8o, 51, ..., Bk, 0,€) to (zp, B1,. .., Bk, 0,€), so that z, is the
quantile corresponding to the upper tail probability p for the distribution obtained when all
covariates are zero.

The fextreme function produces maximum likelihood estimates for the distributions (5) and (6)
given an integer m and an arbitrary distribution function F'. The first argument should be a
numeric vector containing the data to be fitted, which should represent maxima (if the argument
largest is TRUE, the default) or minima (if largest is FALSE). The argument start (which
cannot be missing) should be a named list containing starting values, the names of which should
be the parameters over which the likelihood is to be maximized. If any of the parameters are to
be set to fixed values, they can be given as separate arguments. Arguments of the optimization
function optim can also be specified. The example given below produces maximum likelihood
estimates for the distribution (5), where m = 365 and F is the normal distribution.

> d2 <- rextreme(100, distn = "norm", mean = 0.56, mlen = 365)
# Simulate yearly maxima using normal distribution

> sv <- list(mean = 0, sd = 1)
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Bivariate Model Constraints

Logistic 0.1<a<l1
Asymmetric Logistic 01<a<1,0001<6,,60<1
Hiisler-Reiss 02<A<10
Negative Logistic 0.05<r<5
Asymmetric Negative Logistic 0.056 <r<5,0.001 <0,60<1
Bilogistic 0.1 <a,p<0.999
Negative Bilogistic 0.1 <a,p<20
Coles-Tawn 0.001 < a,8 <30

Table 1: For numerical reasons the parameters of each model are subject to the artificial con-
straints depicted here.

> nm <- fextreme(d2, start = sv, distn = "norm", mlen = 365)
> fitted(nm)
mean sd
0.685 0.959

The forder function yields maximum likelihood estimates for the distribution (7) given integers
m and j € {1,...,m}, and an arbitrary distribution function F'. An example is given below,
where m = 365, j = 2 and F is the normal distribution.

> d3 <- rorder(100, distn = "norm", mean = 0.56, mlen = 365, j = 2)
> sv <- list(mean = 0, sd = 1)
> nm2 <- forder(d3, sv, distn = "norm", mlen = 365, j = 2)

> fitted(nm2)
mean sd
0.483 1.042

8 Fitting Bivariate Extreme Value Distributions

The function fbvevd produces maximum likelihood estimates for each of the eight bivariate
models introduced in Section 3. The first argument should be a numeric matrix (or a data
frame) with two columns containing the data to be fitted. Missing values are allowed. If the
argument start is given it should be a named list containing starting values, the names of which
should be the parameters over which the likelihood is to be maximized. If start is omitted the
routine attempts to find good starting values for the optimization using maximum likelihood
estimators under the assumption of independence. If any of the parameters are to be set to fixed
values, they can be given as separate arguments. Arguments of the optimization function optim
can also be specified.

The nslocl and nsloc2 arguments allow non-stationary modelling of the location parameters
on the first and second margins respectively. They should be used in the same manner as the
nsloc argument of fgev. Examples of bivariate models with non-stationary margins are given
in Section 10.

For numerical reasons the parameters of each model are subject to the artificial constraints
depicted in Table 1. The scale parameters on each GEV margin are artificially constrained to
be greater than or equal to 0.01. These constraints only apply to the functions discussed in this
section.
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The first example given below produces maximum likelihood estimates for the (symmetric) lo-
gistic model. The second example constrains the model at independence (where dep = 1). The
estimates produced in the second example are the same as those that would be produced if fgev
was separately applied to each margin.

> bvdata <- rbvlog(100, dep = 0.6, marl = c(1.2,1.4,0), mar2 = c(1,1.6,0.1))

> ml <- fbvevd(bvdata, model = "log")
> ml

Call: fbvevd(x = bvdata, model = "log")
Deviance: 728.5
AIC: 742.5

Estimates
locl scalel  shapel loc2 scale2  shape2 dep
1.2121  1.3831 -0.1813 0.8404 1.4005 0.0834 0.7202

Standard Errors
locl scalel shapel loc2 scale2 shape2 dep
0.1540 0.1091 0.0673 0.1537 0.1144 0.0614 0.0624

Dependence Structure
Dependence One: 0.3526
Dependence Two: 0.4824
Asymmetry: O

Optimization Information
Convergence: successful
Function Evaluations: 47
Gradient Evaluations: 10

> m2 <- fbvevd(bvdata, model = "log", dep = 1)

> fitted(m2)
locl scalel  shapel loc2 scale2  shape2
1.22311 1.37763 -0.19140 0.83671 1.40829 0.08683

> std.errors(m2)
locl scalel shapel loc2 scale2 shape2
0.15429 0.10886 0.07245 0.15646 0.11625 0.06704

> c(loglik(m2), deviance(m2), AIC(m2))
[1] -376 752 764

The discussion in Section 7 regarding the properties of maximum likelihood estimators for the
GEYV distribution also applies to all bivariate models. The usual asymptotic properties hold only
when the shape parameters on both margins are greater than —0.5. When the usual asymptotic
properties do not hold the std. errors component will still be based on the inverse of the observed
information matrix, but these values must be interpreted with caution (Smith, 1985).

The AIC (Akaike’s Information Criterion) value is the deviance plus twice the number of model
parameters. This is a fairly arbitrary criterion which is commonly used to compare non-nested
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models. The fitted object also yields three values that summarise the dependence structure of
the fitted model. Let A(-) denote the dependence function (15). The three values are given by

Dependence One = x = 2{1 — A(1/2)}

1
Dependence Two = 94 = 4/ 1—A(z) dz
0

4 1/2
Asymmetry = 9, = PREW, /0 A(z) — A(1 —z) dz

The two measures of dependence x (Coles et al., 1999) and 1, are contained in the closed interval
[0,1]. At independence x = 14 = 0, and at complete dependence x = 94 = 1. The measure of
asymmetry 1, is contained in the closed interval [-1,1].* If A(-) is symmetric 9, = 0. The logistic,
Hiisler-Reiss and negative logistic models are always symmetric, and hence always satisfy ¢, = 0.
Any value 9, € (—0.2,0.2) corresponds to a dependence structure that is close to symmetric.

Diagnostic plots and profile deviances for fitted models can be constructed using the functions
plot, profile and profile2d (see Section 10). The function anova performs likelihood ratio
tests. The null hypothesis of the test performed below specifies that the margins are Gumbel
distributions (shapel = shape2 = (). The deviance of the constrained model is compared with
the deviance of the unconstrained model. The p-value is calculated to be 0.78. The hypothesis
would not be rejected at any reasonable significance level.

> m3 <- fbvevd(bvdata, model = "log", shapel = 0, shape2 = 0)
> anova(mi, m3)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 7 708
m3 5 708 2 0.5 0.78

In the following example I attempt to fit the asymmetric logistic model to the simulated data
set used above, which is known to be distributed as symmetric logistic.

> m4 <- fbvevd(bvdata, model = "alog")
> fitted(m4)

locl scalel  shapel loc2 scale2 shape2 asyl asy2 dep
1.20969 1.39280 -0.18529 0.84210 1.38311 0.07725 0.83313 0.99957 0.69248

A boundary of the parameter space has been reached; the maximum likelihood estimate for the
second asymmetry parameter is (effectively) one. This may cause difficulties for the optimizer.
There are two solutions to this problem: the second asymmetry parameter can be fixed at one,
or the L-BFGS-B method can be used. The L-BFGS-B method allows box-constraints using the
arguments lower and upper. The following snippet illustrates both approaches.

> mb <- fbvevd(bvdata, model = "alog", asy2 = 1)
> round(fitted(mb), 3)

locl scalel shapel 1loc2 scale2 shape2  asyl dep
1.212 1.385 -0.176 0.834 1.396 0.086 0.867 0.693

*Conjecture.
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Figure 2: The oxford data.

> up <- c(rep(Inf, 6), 1, 1, 1)
> mb <- fbvevd(bvdata, model = "alog", method = "L-BFGS-B", upper = up)
> round(fitted(mb), 3)
locl scalel shapel 1loc2 scale2 shape2 asyl asy2 dep
1.212 1.385 -0.176 0.834 1.396 0.086 0.867 1.000 0.693

9 Example: Oxford Temperature Data

The numeric vector oxford contains annual maximum temperatures (in degrees Fahrenheit) at
Oxford, England, from 1901 to 1980. It is included in the evd package, and can be made available
using data(oxford). The data has previously been analysed by Tabony (1983).

I begin by plotting the data. The assumptions of stationarity and independence seem sensible,
given the plot generated using the code below, depicted in Figure 2.

> data(oxford) ; ox <- oxford
> plot(1901:1980, ox, xlab = "year", ylab = "temperature")

The following code fits two models based on the GEV distribution. The first model assumes
stationarity. The second model allows for a trend term in the location parameter (even though
the plot appears to show that this is unnecessary). The nsloc argument is centred and scaled
so that the intercept loc represents the location parameter in 1950 and the trend loctrend
represents the increase in the location parameter (or decrease, if negative) over a period of 100
years.

> ox.fit <- fgev(ox)

> tt <- (1901:1980 - 1950)/100
> ox.fit.trend <- fgev(ox, nsloc = tt)

> fitted(ox.fit.trend)
loc loctrend scale shape
83.6617 -1.8812 4.2233 -0.2841

> std.errors(ox.fit.trend)

loc loctrend scale shape
0.55566 1.96754 0.36504 0.07068
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The trend term not statistically significant (at any reasonable level). The stationary model
ox.fit is retained for further analysis.

> ox.fit

Call: fgev(x = oxford)
Deviance: 457.8

Estimates
loc scale shape
83.839 4.260 -0.287

Standard Errors
loc scale shape
0.5231 0.3658 0.0683

Optimization Information
Convergence: successful
Function Evaluations: 29
Gradient Evaluations: 11

The fitted shape is negative, so the fitted distribution is Weibull. It is often of interest to test
the hypothesis that the shape is zero (the Gumbel distribution). A 95% confidence interval for
the shape parameter can be constructed using —0.287 +1.96 x 0.0683. The corresponding Wald
test can be performed by dividing the maximum likelihood estimate by its standard error. The
Wald test would be rejected at significance level 0.05 since the 95% confidence interval does not
contain zero. A likelihood ratio test is performed in the following snippet. The hypothesis is
rejected at any significance level above 0.00053.

> ox.fit.gum <- fgev(ox, shape = 0)
> anova(ox.fit, ox.fit.gum)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ox.fit 3 458
ox.fit.gum 2 470 1 12 0.00053

Diagnostic plots can be produced using plot. The plots produced by the following line of code,
depicted in Figure 3, compare parametric distributions, densities and quantiles to their empirical
counterparts (see the documentation for plot.gev for details of the construction of each plot,
and for an explanation of the argument jitter).

> plot(ox.fit, jitter = TRUE)

The horizontal bars on the P-P, Q-Q and return level plots represent simulated (pointwise) 95%
confidence intervals. The model ox.prof is seen to be a good fit. The fitted density is close
to the non-parametric estimator, and most points lie within the confidence intervals. Profile
deviances (minus twice the profile likelihood) of the parameters can be plotted using
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Figure 3: Diagnostic plots for the model ox.fit.
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Figure 4: Profile deviance surfaces for the model ox.fit.

> ox.prof <- profile(ox.fit)
> pcis <- plot(ox.prof)
> pcis[["scale"]]

lower upper

3.643 5.117

This produces the first three plots within Figure 4. A horizontal line is (optionally) drawn on each
plot so that the intersection of the line with the profile deviance yields a profile confidence interval,
with (default) confidence coefficient 0.95. The end points of the intervals can be derived by
assigning the expression plot (ox.prof) to an object, as above. The profile confidence intervals
for the location and shape parameters are approximately the same as the intervals constructed
using their standard errors, since the profile deviances are approximately symmetric. The profile
deviance for the scale parameter is asymmetric; both end points of the profile confidence interval
(3.64,5.12) are larger than the corresponding end points of the interval (3.54,4.98), constructed
using the standard error.

The joint profile deviance of the scale and shape parameters (which are typically negatively
correlated) can be plotted using

> ox.prof2d <- profile2d(ox.fit, ox.prof, which = c("scale", "shape"))
> plot (ox.prof2d)

This produces the image plot in the left panel of Figure 4.* The colours of the image plot
represent confidence sets with different confidence coefficients. By default, the lightest colour
(ignoring the background colour) represents a confidence set with coefficient 0.995; the darkest
colour represents a confidence set with coefficient 0.5.

*Assuming the package akima is available. If not, the image plot will look ‘blocky’, because bivariate inter-
polation will not be performed.
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Figure 5: Profile deviance surfaces for zg.1, z9.01 and zg.go1-

Let G be the GEV distribution function, and let G(z,) =1 — p, so that

L =gl —{-log(l—p)}™¢] £#0
"\ u—olog{-log(1 - p)} £=0,
is the quantile corresponding to the upper tail probability p. The profile deviance for zy.1 can

be plotted using the following. The argument prob = p reparameterizes the GEV distribution
so that fgev produces maximum likelihood estimates for (zp, 0, £).

(17)

> ox.qfit <- fgev(ox, prob = 0.1)
> ox.qprof <- profile(ox.qfit, which = "quantile")
> plot(ox.qprof)

Figure 5 shows profile deviances for zg.1, 20.01 and zgo01- The extent of the asymmetry in the
profile deviance surface increases for decreasing (small) p. This is to be expected, since the data
provide increasingly weaker information in the (upper) tail of the fitted distribution. If prob =p
is zero, then z, is the upper end point of the GEV distribution, given by u — o/¢§ when £ < 0.
The profile deviance for zy can be plotted using the following code.

> ox.qfit <- fgev(ox, prob = 0)
> ox.qprof <- profile(ox.qfit, which = "quantile", conf = 0.99)
> pcis <- plot(ox.gprof, ci = ¢(0.95, 0.99))
> pcis[["quantile"]]
lower upper
0.95 95.78 113.0
0.99 95.49 131.8

The argument conf of the function profile controls the range of the profile trace. The profile
trace is constructed so that profile confidence intervals with confidence coefficients conf or less
can be derived from it. By default, conf = 0.999, though a smaller value is often appropriate
when the profile deviance exhibits strong asymmetry. The 95% and 99% profile confidence
intervals for the upper end point zy are derived as (95.8,113.0) and (95.5,131.8) respectively.

10 Example: Sea Level Data

The sealevel data frame (Coles and Tawn, 1990) has two columns containing annual sea level
maxima from 1912 to 1992 at Dover and Harwich, two sites on the coast of Britain. It contains
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Harwich Annual Maxima
3.
Dover Annual Maxima
I I I I I
%
Harwich Annual Maxima
3.

32 34 36 38 40 42 44 46

32 34 36 38 40 42 44 46 1920 1940 1960 1980 1920 1940 1960 1980

Dover Annual Maxima Year Year

Figure 6: From left to right; Harwich Maxima vs Dover Maxima, Dover Maxima vs Year and
Harwich Maxima vs Year.

39 missing maxima in total; nine at Dover and thirty at Harwich. There are three years for
which the annual maximum is not available at either site.

I begin by plotting the data, using the code below. The resulting plots are given in Figure
6. The plot of the Harwich maxima against the Dover maxima depicts a reasonable degree of
dependence. The outlier corresponds to the 1953 flood resulting from a storm passing over the
South-East coast of Britain on 1st February. The Harwich and Dover maxima both appear to
increase with time.

> data(sealevel) ; sl <- sealevel

> plot(sl, xlab = "Dover Annual Maxima", ylab = "Harwich Annual Maxima")
> plot(1912:1992, sl1[,1], xlab = "Year", ylab "Dover Annual Maxima")

> plot(1912:1992, sl1[,2], xlab = "Year", ylab = "Harwich Annual Maxima")

The following three expressions fit (symmetric) logistic models. The first model incorporates
linear trend terms on both marginal location parameters. The second model incorporates a
linear trend on the Dover margin only. The third model assumes stationarity. The nslocl
and nsloc2 arguments are centred and scaled so that the intercepts locl and loc2 represent the
marginal location parameters in 1950 and the linear trend parameters locltrend and loc2trend
represent the increase in the marginal location parameters (or decrease, if negative) over a period
of 100 years.

> tt <- (1912:1992 - 1950)/100

> ml <- fbvevd(sl, model = "log", nslocl = tt, nsloc2 = tt)
> m2 <- fbvevd(sl, model = "log", nslocl = tt)

> m3 <- fbvevd(sl, model = "log")

I’ll leave you to analyse the models in detail. In particular, notice how the trend terms affect
the parameter estimates. Marginal Weibull distributions (negative shapes) are estimated when
the trends are not included, but marginal Fréchet distributions (positive shapes) are estimated
upon their inclusion.

The maximum likelihood estimates of the parameters can be compared with their standard errors
to perform Wald tests or construct confidence intervals. Likelihood ratio tests are performed in
the following snippet. The p-values confirm the statistical significance of the linear trend terms.

> anova(ml, m2, m3)
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Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

ml 9 -36.5
m2 8 -29.2 1 7.26 0.007
m3 7 -9.7 1 19.56 9.7e-06

Quadratic trends for the location parameter on either or both margins can be incorporated using
the following code. Further testing, using the models generated below, suggests that a quadratic
trend may be implemented for the location parameter on the Harwich margin. Despite this, I
retain the model m1 for further analysis.

> tdframe <- data.frame(trend = tt, quad = tt~2)

> m4 <- fbvevd(sl, model = "log", nslocl = tdframe, nsloc2 = tt)

> mb <- fbvevd(sl, model "log", nslocl = tt, nsloc2 = tdframe)

> m6 <- fbvevd(sl, model = "log", nslocl = tdframe, nsloc2 = tdframe)

The code given below compares two logistic models that are nested within m1. Model m7 assumes
independence. The maximum likelihood estimates are the same as those that would be produced
if fgev was separately applied to each margin. The deviance increase with respect to model m1 is
calculated to be 13.6. The asymptotic distribution of the deviance increase is not chi-squared. The
distribution is non-regular because the dependence parameter in the restricted (independence)
model is fixed at the edge of the parameter space. Testing for the (symmetric) logistic model
within the asymmetric logistic model also leads to non-regular behaviour. Tawn (1988) discusses
non-regular testing procedures for bivariate extreme value models. In this case the increase in
deviance is clearly too large to consider independence as a viable model.

Model m8 assumes that both marginal shape parameters are zero (or equivalently, that both
marginal distributions are Gumbel). A likelihood ratio test of this hypothesis provides a p-value
of 0.72. The hypothesis would not be rejected at any reasonable significance level.

> m7 <- fbvevd(sl, model = "log", nslocl = tt, nsloc2 = tt, dep = 1)

> anova(ml, m7)

# The asymptotic distribution of the deviance difference is non-regular
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 9 -36.5
m7 8 -22.9 1 13.6 0.00023

> m8 <- fbvevd(sl, "log", nslocl = tt, nsloc2 = tt, shapel = 0, shape2 = 0)
> anova(mi, m8)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 9 -36.5
m8 7 -356.8 2 0.67 0.72

Diagnostic plots for the fitted (generalized extreme value) marginal distributions can be produced
using plot with mar = 1 or mar = 2. The plots produced are of the same structure as those
given in Section 9. Diagnostic plots for the fitted dependence structure can be produced using
plot, as shown in Figure 7 for the model m1.
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Figure 7: Diagnostic plots for the dependence structure of model m1.

Profile Deviance of Dep

profile deviance

dep

Figure 8: The profile deviance of the dependence parameter from model m1.

1)
2)

> plot(ml, mar
> plot(ml, mar
> plot(ml)

The plots in Figure 7 compare parametric conditional distributions, densities and dependence
functions to empirical counterparts (see the documentation for plot.bvevd for details of the
construction of each plot). The horizontal bars on the conditional P-P plots represent simulated
(pointwise) 95% confidence intervals. The model m1 fits the data reasonably well. There are some
minor deviations within the conditional P-P plots, but they do not represent a serious departure
of the empirical estimates from the fitted model. The profile deviance (minus twice the profile
likelihood) of the dependence parameter can be plotted using the following. The argument xmax
denotes the upper bound of the dependence parameter dep.

> ml.prof <- profile(ml, which = "dep", xmax = 1)
> pcis <- plot(ml.prof)
> pcis[["dep"]]

lower upper

0.5282 0.8865

This produces the plot in Figure 8. A horizontal line is (optionally) drawn so that the intersection
of the line with the profile deviance yields a profile confidence interval, with (default) confidence
coefficient 0.95. The end points of the interval can be derived by assigning the expression
plot(ml.prof) to an object, as above.

Further analysis with models other than the (symmetric) logistic yields the following conclusions.
The two models in Section 3 that include three parameters with which to describe the dependence
structure (the asymmetric logistic and asymmetric negative logistic) are inappropriate. In both
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cases, the maximum likelihood estimate for the parameter dep is at an artificial boundary, because
the fitted model is close to a distribution (obtained in the limit) which contains a singular
component. This is clearly illustrated in the density plots of the fitted models, which both
depict a ridge of mass extending towards the 1953 outlier. The logistic and the bilogistic models
have the lowest deviance of all one and two parameter models respectively. The fitted bilogistic
model has ¥, = —0.02, so the fitted dependence structure is almost symmetric, and hence the
logistic model would appear to be preferable. In fact, the fitted bilogistic model (12) is almost
logistic, because the o and [ parameter estimates are almost equal, and hence the difference
between the model deviances is less than 0.01.

Appendix A: Multivariate Extreme Value Densities

Let z = (21,...,2q). Recall that the d-dimensional distribution function of the logistic model is

given by
. d -1/ “
G(Z)—exp{—<§ i Vi ) }

where a € (0,1] and (y1,...,yq) is defined by the transformations (10). The density function,
reproduced from Shi (1995), is given by

d 1/o+g
o(z) = (H y—) o101/ 9, @) exp(—v),

- a;
i=1 ?

where a
- o d —1/a
v = v(z) - (Zj:l Yj ) ’
and
Qa(v, @) = v "4 crg + coqv + -+ + caav??) (18)

so that v¥1Qq(v, @) is a polynomial in v, of order d—1, with coefficients defined by the recurrence
relations
I'd — )
L0 = G — )’
d—1 .
Cid = <T — ) Cid—1+ Ci1,4-1, i=2,...,d-1,

Cd,d = 1.

Let B be the set of all non-empty subsets of {1,...,d} and let By = {b € B : |b| = 1}, where ||
denotes the number of elements in the set b. Recall that the d-dimensional distribution function
of the asymmetric logistic model is given by

G(z) = exp {— ZbEB [Zieb(ﬁi,byz’)l/ab]ab} ,

where the dependence parameters «y € (0,1] for all b € B\ By, and the asymmetry parameters
0ip € [0,1] for all b € B and 7 € b. The remaining constraints on the parameters are given in
Section 4. For ease of notation, define o = 1 whenever b € By, so that a1 =--- = a4 = 1, and
define v = v(2z) = > g Vb, Where

vp = [Zieb(ei,byi)l/ab]ab
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for each b € B. Then the density function is given by

d g d
; 1-1/ap, )
a0 = (H :Z'L> Z H (ei,biyi)l/abi’ubi fo Qpi('ubwabi)l/pl exp(—v),
i=1 "'

{bla“'abd} i=1
where the sum is over all 2441 sequences of sets by, ..., by such that, for each i = 1,...,d,
i € bj and b; € B, and where p; € {1,...,d} is the number of times that the set b; appears in
the sequence by, ...,bs. The function @ is again given by expression (18).

Appendix B: Simulation Study

Section 3 defines five non-parametric estimators for the dependence function A(-) of the bivariate
extreme value distribution. In this Appendix we use the tools in the package to examine the
small sample properties of these estimators.

Simulation studies of this form (e.g. Hall and Tajvidi, 2000) typically use the known marginal
parameters (u1,01, &1, g2, 09, &) within the transformations (16). In practice, these parameters
need to be estimated. In this study we seek to replicate the behaviour of the estimators when

applied to real data, and we have therefore estimated the marginal parameters by maximum
likelihood.

Figure 9 depicts the behaviour of the estimators A, (the default), A, and A;. The estimators
Ay and Ap, are not considered, as they produce plots that are indistinguishable from those of
Ap. The first, second and third columns of the figure employ simulations from (symmetric)
logistic distributions, with a equal to 0.5, 0.75 and 1 respectively. Standard Gumbel marginal
distributions were used in each case. The figure shows that the estimator A; is abysmal when
estimating dependence functions with very strong (o = 0.5) or very weak (a = 1) levels of
dependence. The estimators A, and A, give more consistent performances across different levels
of dependence. The estimator A, appears to outperform A, as the estimates of the former
appear to cluster more tightly around the true dependence function for each @ = 0.5,0.75, 1.
The plots can easily be generated, using e.g.

dep <- 0.5 ; method <- "cfg"
abvpar(dep = dep, plot = TRUE, 1ty = 0)
set.seed (44)
for(i in 1:50) {
sdt <- rbvevd(100, dep = dep)
abvnonpar(data = sdt, add = TRUE, method = method, col = "grey")
}
> abvpar(dep = dep, add = TRUE, 1lwd = 3)

vV V V VvV

which generates the plot in the top left corner. Only the first line of code needs to be changed
in order to produce the remaining plots. The second line of code establishes the plotting region.
The simulation is performed in the for loop, and the last line adds the true dependence function
to the plot. The set.seed function sets the seed of the random generator, which ensures that
the simulated data sets used for each plot are comparable.

Let A,(-) be any estimator of A(-). Table 2 gives median integrated absolute errors for various
non-parametric dependence function estimators. The table was constructed as follows. For
a = 0.5,0.75,1 we simulated 1000 datasets containing n = 25,100 bivariate observations, using
standard Gumbel margins. Then for each of the 1000 datasets we estimated the integrated

27



05
05
05

T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Figure 9: Simulated non-parametric dependence function estimates. The grey lines represent
estimates derived using the estimators A, (top row), A, (middle row) and A; (bottom row). The
thick black lines represent the true dependence functions, which are (symmetric) logistic models
with dependence parameters 0.5 (first column), 0.75 (second column) and 1 (third column).
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n =25 n = 100
a=05 a=07 a=1|a=05 a=07 a=1
A, 210 415 110 104 198 62
A 205 363 340 103 194 168
Ap 243 469 211 134 242 113
A; 218 357 554 126 215 285
Ay 393 189 983 334 155 830

Table 2: Median integrated absolute errors x 10* for non-parametric estimates of the dependence
function of the bivariate extreme value distribution, using datasets containing n = 25,100 bi-
variate observations, simulated from the (symmetric) logistic model with dependence parameter
a =10.5,0.75,1. The estimators A7 and Ay are the convex minorants of A. and A, respectively.

absolute error fol |An(z) — A(z)| dz. The table contains the median of the 1000 values, for each
value of o and n. We have extended the number of estimators to include the convex minorants
of Ac and Ap, which we denote by A7 and A;. The convex minorant of A; is identical to Ay,
because A; is always convex. The estimators Az and Ay, are again not considered, as they produce
virtually identical results to those of A,.

The table again shows the poor performance of A; when a = 0.5, and particularly when o = 1.
Ay is the best estimator when o = 0.75, which is not surprising given that the estimator only
yields adequate estimates at mid-range levels of dependence. The estimator A, outperforms A,,
confirming the impression given by Figure 9. Taking the convex minorant of A, or A, leads to an
improvement for a = 0.5 and a = 0.75, but a considerable worsening for « = 1. This worsening
is expected, since taking the convex minorant always leads to estimates of stronger dependence.
The values in the table can be generated using e.g.

dep <- 0.5 ; n <- 25 ; method <- "cfg" ; cv <- FALSE

nn <- 100 ; x <- (1:nn)/(an + 1)

a <- abvpar(x, dep = dep)

iae <- numeric(1000)

set.seed(44)

for(i in 1:1000) {
sdt <- rbvevd(n, dep = dep)
anp <- abvnonpar(x, data = sdt, method = method, convex = cv)
iae[i] <- sum(abs(a - anp))/nn

}

> round (10~4 * median(iae))

V V V V V V

which generates the value in the top left corner. Only the first line of code needs to be changed in
order to produce the remaining values. The integrated absolute error is estimated by evaluating
the absolute difference between true dependence function and the non-parametric estimate at
nn = 100 equally spaced points in the interval [0, 1]. The function numeric merely initializes the
object iae to be a vector of 1000 zeros.
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