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1 Introduction

1.1 What is the evd package?

The evd (extreme value distributions) package is an add-on package for the R (Thaka and Gentle-
man, 1996) statistical computing system. The package extends simulation, distribution, quantile
(inverse distribution) and density functions to univariate, bivariate and multivariate parametric
extreme value distributions. It also provides fitting functions which calculate maximum likeli-
hood estimates for univariate and bivariate models.

All comments, criticisms and queries on the package or associated documentation are gratefully
received.

1.2 Obtaining the package/guide

The evd package can be downloaded from CRAN (The Comprehensive R Archive Network)
at http://cran.r-project.org/. This guide (in pdf) will be in the directory evd/doc/
underneath wherever the package is installed. It can also be downloaded directly from
http://www.maths.lancs.ac.uk/ stephena/ (in postscript or pdf).

1.3 Contents

This guide contains examples on the use of the evd package. The examples do not include any
theoretical justification. See Coles (2001) for an introduction to the statistics of extreme values.
See Kotz and Nadarajah (2000) for a theoretical treatment of univariate and multivariate extreme
value distributions.

Section 2 covers the standard functions for univariate extreme value distributions. Sections 3 and
4 do the same for bivariate and multivariate models. Maximum likelihood fitting of univariate
and bivariate models is discussed in Sections 5 and 6 respectively. Two extended examples, one
univariate and one bivariate, using the data sets oxford and sealevel (both included in the
package) are given in Sections 7 and 8.

This guide should not be viewed as an alternative to the help files included within the package.
These remain the definitive source of help. A reference manual containing all the help files can
be downloaded from http://www.maths.lancs.ac.uk/ stephena/ or from CRAN.

All of the examples presented in this guide are called with options(digits = 4).



1.4 Citing the package/guide

Volume 2/2 of R-News (the newsletter of the R-project) contains an article that describes the evd
package. To cite the package in publications please cite the R-News article. The article and the
corresponding citation can be downloaded from http://www.cran.r-project.org/doc/Rnews/.

To cite this guide in publications please use the following bibliographic database entry.
@manual{key,

title = {A User’s Guide to the evd Package (Version 1.2)},

author = {Stephenson, A. G.},

year = {2002},

month = {June},
url = {http://www.maths.lancs.ac.uk/ stephena/}

1.5 Caveat

I have checked these functions as best I can but, as ever, they may contain bugs. If you
find a bug or suspected bug in the code or the documentation please report it to me at
a.stephenson@lancaster.ac.uk. If you do find a bug and are the first person to report it,
I guarantee to buy you the drink of your choice. If you ever manage to find me.

1.6 Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without
even the implied warranty of merchantability or fitness for a particular purpose. See the GNU
General Public License for more details.

A  copy of the GNU General Public License can be obtained from
http://www.gnu.org/copyleft/gpl.html. You can also obtain it by writing to the Free
Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111-1307, USA.
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2 Standard Univariate Functions

The Gumbel, Fréchet and (reversed) Weibull distribution functions are respectively given by

G(z):exp{—exp [— (z;aﬂ}, —00 < 7z < 00 (1)

0, z < a,
a(z) = { o s @




where g is a location parameter, b > 0 is a scale parameter and « > 0 is a shape parameter. The
distribution (3) is often referred to as the Weibull distribution. To avoid confusion I will call
this the reversed Weibull, since it is related by a change of sign to the three parameter Weibull
distribution used in survival analysis.

The GEV (Generalized Extreme Value) distribution function is given by

G(z) =exp {~[1+¢(z— ) /o17/¢}, (4)

where (u,0,&) are the location, scale and shape parameters respectively, ¢ > 0 and hy =
max(h,0). The parametric form of the GEV encompasses that of the Gumbel, Fréchet and
reversed Weibull distributions. The Gumbel distribution is obtained in the limit as & — 0. The
Fréchet and Weibull distributions are obtained when & > 0 and ¢ < 0 respectively. To recover
the parameterization of the Fréchet distribution (2) set {¢ =1/a > 0,0 =b/a > 0and = a+b.
To recover the parameterization of the reversed Weibull distribution (3) set £ = —1/a < 0,
oc=b/a>0and p=a—b.

It is standard practice within R to concatenate the letters r, p, q and d with an abbreviated
distribution name to yield the names of the corresponding simulation, distribution, quantile
(inverse distribution) and density functions respectively. The evd package follows this convention.
Each of the four distributions defined above has an associated set of functions, as shown here for
the GEV.

rgev(n, loc = 0, scale = 1, shape = 0)

pgev(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE)
qgev(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE)
dgev(x, loc = 0, scale = 1, shape = 0, log = FALSE)

Parameters arguments can be vectors* (the standard recycling rules are applied). Some examples
are given below. They should be familiar to those who have had previous experience with R.

> rgev(6, loc = c(20,1), scale = .5, shape = 1)
[1] 23.7290 1.2492 19.6680 0.8662 19.7939 2.6512

> qrweibull(seq(0.1, 0.4, 0.1), 2, 0.5, 1, lower.tail = FALSE)

> qrweibull(seq(0.9, 0.6, -0.1), loc = 2, scale = 0.5, shape = 1)
# Both give

[1] 1.947 1.888 1.822 1.745

> pfrechet(2:6, 2, 0.5, 1)

[1] 0.0000 0.6065 0.7788 0.8465 0.8825
> pfrechet(2:6, 2, 0.5, 1, low = FALSE)
[1] 1.0000 0.3935 0.2212 0.1535 0.1175

> drweibull(-1:3, 2, 0.5, log = TRUE)

[1] -5.307 -3.307 -1.307 -Inf -Inf

> dgumbel(-1:3, 0, 1)

[1] 0.17937 0.36788 0.25465 0.11820 0.04737

*With one exception; the shape parameter of the GEV functions cannot be a vector.



Let F' be an arbitrary distribution function, and let Xi,...,X,, be a random sample from F'.
Define Uy, = max{X1,...,X,,} and L,, = min{Xy,..., X;,}. The distributions of U,, and L,,
are given by
Pr(Un < z) = [F(z)]™ (5)
Pr(Ly, <z)=1-[1-F(z)]™. (6)
Simulation, distribution, quantile and density functions for the distributions of U, and L,,, given
an integer m and an arbitrary distribution function F, are provided by

rext(n, quantfun, ..., distn, mlen = 1, largest = TRUE)

pext(q, distnfun, ..., distn, mlen = 1, largest = TRUE, lower.tail = TRUE)
gext(p, quantfun, ..., distn, mlen = 1, largest = TRUE, lower.tail = TRUE)
dext(x, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE, log = FALSE)

The integer m should be given to the argument mlen. The distribution F' can be specified by pass-
ing the corresponding quantile, distribution and density functions to quantfun, distnfun and
densfun respectively (both the distribution and density functions are required for dext). Alter-
natively, a string can be passed to distn such that the name of the quantile/distribution/density
function is derived when the string is prefixed by the letter q/p/d. If the distribution of
Unm is required use largest = TRUE (the default). If the distribution of L,, is required use
largest = FALSE. Some examples should make this clear.

> rext (4, qexp, rate = 1, mlen = 5)

> rext(4, distn "exp", rate = 1, mlen = b)
> rext (4, distn = "exp", mlen = 5)

# All simulate from the same distribution
[1] 2.2001 0.8584 4.5595 3.9397

> rext(1, distn = "norm", sd = 2, mlen = 20, largest = FALSE)
[1] -4.403

# Simulates from the same distribution as

> min(rnorm(20, mean = 0, sd = 2))

[1] -2.612

> pext(c(.4, .5), distn = "norm", mean = 0.5, sd = c(1, 2), mlen = 4)

[1]1 0.04484 0.06250

> dext(c(1, 4), distn = "gamma", shape = 1, scale = 0.3, mlen = 100)
[1] 0.3261328 0.0005398

Parameters can be given as vectors assuming that this is implemented in the functions passed
as arguments (either directly, using [quant/dist/dens|fun, or indirectly, using distn). If
any of the parameters of F' are omitted the defaults defined in the corresponding distribu-
tion/density /quantile function are used. If default values do not exist an error occurs. Although
the examples above use functions provided in R, user defined functions can be specified. Density
functions must have log alrguments.Jr
Let X(1) > X(9) > --+ > X(;) be the order statistics of the random sample X1,..., Xp,. The
distribution of the jth largest order statistic, for j = 1,...,m, is

j—1 m

—k k
Pr(Xgy <2) = 3 () @I - P )
k=0
A simple wrapper can always be constructed to achieve this.




The distribution of the jth smallest order statistic is obtained by setting j = m-+1—j. Simulation,
distribution and density functions for the distribution of X for given integers m and j €

{1,...,m}, and for an arbitrary distribution function F, are provided by

rorder(n, quantfun, ..., distn, mlen = 1, j = 1, largest = TRUE)

porder(q, distn, ..., mlen = 1, j = 1, largest = TRUE, lower.tail = TRUE)

dorder(x, densfun, distnfun, ..., distn, mlen = 1, j = 1, largest = TRUE,
log = FALSE)

The integer m should again be given to the argument mlen. If largest = TRUE (the default) the
distribution of the jth largest order statistic X(;) is used. If largest = FALSE the distribution
of the jth smallest order statistic X(;,4;_1) is used.

For computational reasons it is better to specify j to be an integer in the interval
[1,ceiling(mlen/2)]. This can always be achieved using the argument largest. Some examples
are given below.

> rorder(1, distn = "norm", mlen = 20, j 2)

> rorder (1, distn "norm", mlen = 20, j = 19, largest = FALSE)

# Both simulate the second largest order statistic from 20 standard normals
# The first expression is preferred since j is in the interval [1,10]

[1] 2.284

> porder(c(l, 2), distn = "gamma", shape = c(.5, .7), mlen = 10, j = 2)
[1] 0.5177 0.8259
> dorder(c(1, 2), distn = "gamma", shape = c(.5, .7), mlen = 10, j = 2)

[1] 0.7473 0.3081

3 Standard Bivariate Functions

The evd package contains functions associated with eight (parametric) bivariate extreme value
distributions. The univariate marginal distributions in each case are GEV, with marginal pa-

rameters (u1,01,&1) and (p2,09,&2).

There are three symmetric models, given by
G, ) = exp { -1/ +9)/*)"}, 0<as<y, (8)
G(zl,zQ):exp{—y1—yg—l-(yl_T—FyQ_T)_l/T}, r >0, (9)
G(z1,22) = exp (=1 @{A"" + g\ [log(y1/92)]} — 92 @{A " + gA[log(y2/y1)]}) A >0,

known as the logistic (Gumbel, 1960), negative logistic (Galambos, 1975) and Hiisler-Reiss
(Hiisler and Reiss, 1989) models respectively, where

yi = yj(z) = {1+ &(z; — pj) o33 (10)

for j = 1,2. Independence* is obtained when o = 1, 7 | 0 or A | 0. Complete dependence’ is
obtained when « | 0, 7 = o0 or A — oc.

*Independence occurs when G(z1, z2) = exp{—(y1 + y2)}-
fComplete dependence occurs when G(z1,22) = exp{— max(y1,y2)}.



The distributions (8) and (9) have asymmetric extensions, given by

G(z1,22) = exp {—(1 — 01)y1 — (1= O2)y2 — [(B131) /™ + (92’y2)1/a]a} , 0<a<l, (11)
Go1,2) = exp { 1 =10 +[(O11) 7 + Oan) "1}, >0,

known as the asymmetric logistic (Tawn, 1988) and asymmetric negative logistic (Joe, 1990)
models respectively, where the asymmetry parameters 0 < 81,602 < 1. For the asymmetric logistic
model independence is obtained when either « = 1, 8 = 0 or §; = 0. Different limits occur
when 6 and 69 are fixed and « | 0. For the asymmetric negative logistic model independence is
obtained when either r | 0, 81 | 0 or 6 | 0. Different limits occur when 6y and 6, are fixed and
r — 00.

Any bivariate extreme value distribution function can be expressed as (de Haan, 1984)

Gleryzn) = oxp { - [ maxin @) 1o fo(o)) |

where (y1,y2) are again defined by the transformations (10), and where f; and fo are density
functions with support [0,1].

In particular, if we take the beta densities fi(z) = (1 — @)z=® and fo(z) = (1 — B)(1 —z)~# we
obtain

1
G(z1,22) = exp {—/0 max{y; (1 — @)z %, y2(1 — B)(1 — m)ﬁ}dm} , a,B<1.

If we further constrain the parameters to be non-negative we obtain the bivariate bilogistic model
proposed by Smith (1990), which can also be expressed as

G(z1,22) = exp {—ylfyl_a —yo(1 — 7)1—/3}’ 0<a,p<1,

where v = y(y1, y2; a, 8) solves (1 — a)y1(1 —7)? = (1 — B)y27®. The logistic model is obtained
when o = (. Independence is obtained as @« =  — 1, and when one of «, 8 is fixed and the
other approaches one. Different limits occur when one of «, 8 is fixed and the other approaches
Z€To.

Alternatively, if we constrain both parameters to be non-positive and set g = —a > 0 and
Bo = —B > 0 we obtain the negative bilogistic model (Coles and Tawn, 1994) which has the
representation

G(z1,22) = exp {—yl — g2 + 1y T + yo(l — ’Y)Hﬂo} ,  «g,fo >0,

where v = y(y1,y2; —ag, —Bo). The negative logistic model is obtained when oy = Sy (with
r = 1/ag = 1/Bp). Independence is obtained as ag = Sy — o0, and when one of g, is
fixed and the other tends to co. Different limits occur when one of «g, By is fixed and the other
approaches zero.

The Coles-Tawn model* (Coles and Tawn, 1991) is the final model that is considered in the evd
package. The distribution function is given by

G(z1,22) = exp{—yi[l — Be(u;a + 1,8)] —y2Be(u; o, 5+ 1)}, «,8>0,

¥Coles and Tawn (1991) call this the Dirichelet model. T avoid this term because it could be confused with the
Dirichelet distribution.




where u = ays/(ays + By1) and Be is the incomplete beta function, given by
Lla+B) [ o -1
Be(u; a, 8) = 7/ 2211 — z)P .
L(a)I'(B) Jo

Complete dependence is obtained in the limit as @« =  — o0o. Independence is obtained as
a = 8 — 0 and when one of «, (3 is fixed and the other approaches zero. Different limits occur
when one of a, 8 is fixed and the other tends to occ.

Each of the eight models has a set of functions of the type given here for the asymmetric logistic.

rbvalog(n, dep, asy = c¢(1, 1), marl = c(0, 1, 0), mar2 = marl)

pbvalog(q, dep, asy = c(1, 1), marl c(0, 1, 0), mar2 = marl)

dbvalog(x, dep, asy = c(1, 1), marl = c(0, 1, 0), mar2 = marl, log = FALSE)
abvalog(x = 0.5, dep, asy = c(1, 1), plot = FALSE, add = FALSE, 1ty = 1,

blty = 3, xlim = c(0, 1), ylim = ¢(0.5, 1), xlab = "", ylab ="", ...)

The first three functions are for simulation and for the calculation of the distribution and density
functions. The arguments q and x in pbvalog and dbvalog respectively should be vectors of
length two or matrices with two columns, so that each row specifies a value for (z1, z9).

The argument dep is the dependence parameter. In this case dep represents the parameter
a in distribution (11). The argument asy is a vector containing the asymmetry parameters
(61,62). The marginal parameters (u1,01,£1) and (ug2, 02, &2) should be passed to mari and mar2
respectively. The arguments mar1l and mar?2 can also be given as matrices with three columns, in
which case each column represents a vector of values to be passed to the corresponding marginal
parameter (the standard recycling rules are applied). Vector/matrix arguments for dep and asy
are not implemented.

The abvalog function calculates (by default) or plots the dependence function A(-), which is
defined as follows. Any bivariate extreme value distribution function can be represented in the

form
Al
G = - A ,
(21, 22) eXP{ (y1 + v2) (yl n y2)}

so that A(w) = —log{G(y; " (w),y5 * (1-w))}, defined on 0 < w < 1.8 A(-) does not depend on the
marginal parameters. It can be shown that A(0) = A(1) = 1, and that A(-) is a convex function
with max(w,1 —w) < A(w) <1 forall 0 <w < 1. A(-) is differentiable when the distribution
is jointly continuous. The value A(1/2) € [0.5,1] is returned by default. At independence
A(1/2) = 1. At complete dependence A(1/2) = 0.5.

Non-parametric estimators of the dependence function can also be calculated or plotted, using
the function abvnonpar. Suppose (21, 2zi2) for ¢ = 1,...,n are n bivariate observations that are
passed to abvnonpar using its data argument. The marginal parameters are estimated (under
the assumption of independence) and the data is transformed using

~ ~ N _1 &
yir = {1+ & (za — ju) [61}3/
A ~ ~ _1 &
yir = {1+ Ea(ziz — fi2) [52} 7" (12)
for i =1,...,n, where (fi1,61,&1) and (fio, 62,&2) are the maximum likelihood estimates for the

location, scale and shape parameters on the first and second margins. If non-stationary fitting is
implemented using the nslocl or nsloc2 arguments (see Sections 5 and 6) the marginal location
parameters may depend on 3.

$Some authors (e.g. Pickands, 1981) use A(w) = —log{G(y; *(1 — w),y; *(w))}.



Five different estimators can be implemented. They are defined (on 0 < w < 1) as follows.

Pickands (1981)
-1
n
(Yl Y2
A = =
p(w) n{;_l min ( T —w)}

Deheuvels (1991)

-1
n n n
Ag(w) =n {Zmin (%, ly_ﬂw) — waﬂ -(1- w)Zgn +n}
=1 =1 =1

Capéraa et al. (1997); The Default Estimator

A = e {1} [ I ar ) [ = )

Tiago de Oliveira (1997)

1 " w 1w
Aflw)=1— —— min ,
1) 1+logn§ (1+nyi1 1+nyi2)

Hall and Tajvidi (2000)

n 1
- min ( YL _ Y2
Anle) _n{,; (ylw’yQ(l—w)>}

In the estimator of Capéraa et al. (1997), H,(x) is the empirical distribution function of
Zi,...,ZTpn, Where z; = y;1/(yi1 + yi2) for ¢ = 1,...,n, and p(-) is any bounded function on
[0, 1], which can be specified using the argument wf. By default p(-) is the identity function. In
the estimator of Hall and Tajvidi (2000), y1 =n ' > g1 and g2 = n 1 300, o

Let A,(-) be any estimator of A(-). The estimators Ay(-), A¢(-) and Ap(-) all satisfy A,(0) =
Ap(1) = 1. A.(-) satisfies this constraint when p(0) = 0 and p(1) = 1. None of the estimators
satisfy max(w,1 — w) < Ap(w) <1 for all 0 < w < 1. An obvious modification is

Al (w) = min(1, max{ A (w),w, 1 — w}).
Another estimator A, (w) can be derived by taking the convex minorant of A, (w). These mod-

ifications can be implemented using the modify argument. Set modify = 1 to plot or calculate
A, (w). Set modify = 2 to plot or calculate A, (w).

Some of the functions outlined in this section are illustrated below.

> rbvalog(3, dep = .8, asy = c(.4, 1))
[,1] [,2]

[1,1] 0.07876 -0.7971

[2,] 0.01091 -0.8113

[3,] -0.10491 -0.8831

> rbvnegbilog(3, alpha = .5, beta = 1.2, marl = c(1, 1, 1))
[,11 [,2]
[1,] 0.7417 1.085



Figure 1: Dependence functions for various bivariate extreme value distributions. All dependence
functions must be convex and must lie within the triangular region.

[2,] 0.8391 1.825
[3,]1 2.0142 2.280

> pbvaneglog(c(l, 1.2), dep = .4, asy = c(.4, .6), marl = c(1, 1, 1))
[1] 0.173

> tmp.quant <- matrix(c(1,1.2,1,2),ncol = 2, byrow = TRUE)

> tmp.mar <- matrix(c(1,1,1,1.2,1.2,1.2), ncol = 3, byrow = TRUE)

> pbvaneglog(tmp.quant, dep = .4, asy = c(.4, .6), marl = tmp.mar)
[1] 0.173 0.175

> dbvet(c(1, 1.2), alpha
[1] 0.1213

> dbvct (tmp.quant, alpha
[1] 0.1213 0.0586

.2, beta = .6, marl = c(1, 1, 1))

0.2, beta = 0.6, marl = tmp.mar)

> abvlog(dep = .3)

[1] 0.6156

> abvlog(seq(0, 1, 0.25), dep = .3)
[1] 1.0000 0.7557 0.6156 0.7557 1.0000

> abvalog(dep = .3, asy = c(.5, .9), plot = TRUE, blty = 1)
> abvbilog(alpha = .5, beta = .9, add = TRUE, lty = 2)
> abvhr(dep = 1.05, add = TRUE, 1ty = 3)

The last three lines of code produce Figure 1.

The simulation functions rbvlog and rbvalog use bivariate versions of Algorithms 1.1 and 1.2
in Stephenson (2002). All other simulation functions use a root finding algorithm to generate
random vectors from the conditional distribution function. The simulation functions rbvbilog
and rbvnegbilog for the bilogistic and negative bilogistic models are relatively slow (about 2.8
seconds per 1000 random vectors on a 450MHz PIII, 512Mb RAM) because each evaluation of
either distribution function requires a root finding algorithm to evaluate ~.



4 Standard Multivariate Functions

Let z = (21,...,24). The d-dimensional logistic model (Gumbel, 1960) is given by

6 =ew{- (X0 5") } (13)

where a € (0,1] and (y1,...,yq) is defined by the transformations (10).

This distribution can be extended to an asymmetric form. Let B be the set of all non-empty
subsets of {1,...,d}, let By = {b € B :[b| = 1} and let B;) = {b € B :i € b}. The multivariate
asymmetric logistic model (Tawn, 1990) is given by

G(z) = exp {_ ZbeB [Zieb(ei’byi)l/ab]ab}

where the dependence parameters oy € (0,1] for all b € B\ Bj, and the asymmetry parameters
0ip € [0,1] for all b € B and i € b. The constraints ZbeB(i) 0ip =1fori=1,...,d ensure that
the marginal distributions are GEV. There exists further constraints which arise from the possible
redundancy of asymmetry parameters in the expansion of the distributional form. Specifically,
if ap = 1 for some b € B\ By then 0;, =0 for all i € b. Let b_;; = {i € b: 1 # ig}. If, for some
be B\ By, b6, =0 for all i € b_;, then 6;, 5, = 0. The model contains 2¢ — d — 1 dependence
parameters and d2¢~! asymmetry parameters (excluding the constraints). The logistic model
(13) can be obtained by setting ;1.4 = 1 for all i = 1,...,d (which implies, using the sum
constraints, that 6; , = 0 whenever |b| < d) and ai12..4 = .

The evd package provides the following functions for simulating from and calculating the distri-
bution function of these models.

rmvlog(n, dep, d = 2, mar = c(0, 1, 0))
pmvlog(q, dep, d = 2, mar = c(0, 1, 0))
rmvalog(n, dep, asy, d = 2, mar = c(0, 1, 0))
pmvalog(q, dep, asy, d = 2, mar = c(0, 1, 0))

The argument mar represents the GEV marginal parameters for every univariate margin, and
may again be a matrix. The simulation functions rmvlog and rmvalog use Algorithms 2.1 and
2.2 in Stephenson (2002).

For the symmetric model dep = . Some examples are given below.

> rmvlog(3, dep = .6, d = b)

[,1] [,2] (,3] (.41 [,5]
[(1,] 0.1335 0.2878 1.07886 1.55515 1.310
[2,] 1.7100 0.9453 1.02070 -0.02553 1.527
[3,] -0.3376 -0.5814 0.07426 0.10906 2.827

> tmp.mar <- matrix(c(1,1,1,1,1,1.5,1,1,2), ncol = 3, byrow = TRUE)
> rmvlog(3, dep = .6, d = 5, mar = tmp.mar)
[,1] [,2] [,3] [,4] [,5]
[1,] 2.803 4.6415 1.8531 3.5569 8.854
[2,] 0.751 0.9704 2.3328 2.6537 1.233
[3,]1 4.641 1.4321 0.5825 0.6041 2.021

,2), 5), ncol = 5)
5, mar = tmp.mar)

> tmp.quant <- matrix(rep(c(1,1.
> pmvlog(tmp.quant, dep = .6, d
[1] 0.07233 0.16387 0.21949

I o
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For the asymmetric model dep should be a vector of length 2d —q—1 containing the dependence
parameters. Specifically, when d = 4

dep = c(ai2, 013, 14, 23, 0424, 034, (X123, (U124, (X134, (234, (V1234 )-

The asymmetry parameters should be passed to asy in a list with 2d 1 elements, where each
element is a vector* corresponding to a set b € B, containing {6, : ¢ € b}. Specifically, when
d=14

asy = list(61,1,62.2,633,044,c(61,12,602,12),c(61,13,63,13), c(01,14,04,14), c(02,23, 03 23),
0(92,24, 94,24), C(93,34, 94,34), 0(91,123, 92,123, 93,123), 0(91,124, 92,124, 04,124)1

(01,134, 03,134, 04,134), c(62,234, 03 234, 04,234), (01,1234, 02,1234, 03,1234, 04,1234) ) -

All the constraints, including ;. By 0;p = 1fori=1,...,d, must be satisfied or an error will
occur.

The dependence parameters used in the following trivariate asymmetric logistic model are
(a2, 13, 003, 123) = (.6,.5,.8,.3). The asymmetry parameters are 6;; = 4, 6o = 0,
93,3 = .6, (01,12,02712) = (3, .2), (01713,03,13) = (.1,.1), (02,23,93,23) = (4,1) and ﬁnally
(01,123, 62,123,03.123) = (.2,.4,.2). Notice that the constraints are satisfied.

> asy <- list(.4, 0, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.4,.2))
> rmvalog(3, dep = c(.6,.5,.8,.3), asy = asy, d = 3)

[,1] [,2] [,3]
[1,] 0.52375 -0.8844 1.4898

(e}

[2,] 1.16174 -0.4368 -0.7404

[3,] -0.03737 1.5139 -0.5996

> pmvalog(c(2, 2, 2), dep = c¢(.6,.5,.8,.3), asy = asy, d = 3)
[1] 0.7223

> tmp.quant <- matrix(rep(c(1,1.5,2), 3), ncol = 3)

> pmvalog(tmp.quant, dep = c(.6,.5,.8,.3), asy = asy, d = 3)

[1] 0.4131 0.5849 0.7223

The dependence parameters used in the following four dimensional asymmetric logistic model
are op — 1 for |b| = 2T and (Oé123,01124,05134,05234,041234) = (.7,.3,.8,.7,.5). The asymmetry
parameters are 6;;, = 0 for all ¢ € b such that |b] < 2, (01,123,62,123,03,123) = (.2,.1,.2),
(01,124,62,124,04.124) = (.1,.1,.2), (61,134,03,134,01134) = (.3,.4,.1), (02.234,03234,04231) =
(.2, .2, 2) and ﬁnally (01,1234, 92’1234, 93,1234, 04,1234) = (4, .6, .2, 5)

> asy <- 1list(0, 0, 0, 0, c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), c(0,0),
c(.2,.1,.2), c(.1,.1,.2), c(.38,.4,.1), c(.2,.2,.2), c(.4,.6,.2,.5))
> rmvalog(3, dep = c(rep(1,6),.7,.3,.8,.7,.5), asy = asy, d = 4)
[,1] [,2] [,3] [,4]
[1,] -0.5930 -0.1916 1.0211 0.6113
[2,] 4.3522 -1.0050 2.3618 -0.1875
[3,] 0.5805 0.4443 -0.5958 0.9717

I will end this section with some examples that may be helpful in deciphering errors.

*Including vectors of length one.
"The values taken by a; when |b| = 2 are irrelevant here because 6;, = 0 for all 4 € b such that |b| = 2.
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> asy <- list(.4, 0, .5, c¢(.3,.2), c¢(.1,.15), c(.4,.075), c(.2,.4,.25))

> rmvalog(3, dep = c(.6,.5,.8,.3), asy = asy, d = 3)

Error in rmvalog(3, dep = c(0.6, 0.5, 0.8, 0.3), asy = asy, d = 3)
‘asy’ does not satisfy the appropriate constraints

# 0.5 + 0.15 + 0.075 + 0.25 does not equal one; the sum constraint on the third
margin is not satisfied.

> asy <- list(.4, 0, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.4,.2))

> rmvalog(3, dep = ¢(.6,1,.8,.3), asy = asy, d = 3)

Error in rmvalog(3, dep = ¢(0.6, 1, 0.8, 0.3), asy = asy, d = 3)
‘asy’ does not satisfy the appropriate constraints

# A dependence parameter is equal to one but the corresponding asymmetry
parameters are not zero (the first ‘further constraint’).

# One possible alternative which preserves dep (and still satisfies the sum
constraints) is

> asy <- list(.4, 0, .6, c(.3,.2), c(0,0), c(.4,.1), c(.3,.4,.3))
> rmvalog(3, dep = c(.6,1,.8,.3), asy = asy, d = 3)
[,1] [,2] [,3]
[1,] 4.627 2.9125 0.9414
[2,] 1.200 0.1556 0.2048
[3,] -1.159 -0.8749 -1.0340

> asy <- list(.5, 0, .6, c(.3,.2), c(0,.1), c(.4,.1), c(.2,.4,.2))

> rmvalog(3, dep = c(.6,.5,.8,.3), asy = asy, d = 3)

Error in rmvalog(3, dep = c(0.6, 0.5, 0.8, 0.3), asy = asy, d = 3)
‘asy’ does not satisfy the appropriate constraints

# The fifth element in asy contains exactly one non-zero asymmetry parameter
(the second ‘further constraint’).

> asy <- list(.4, 0, .6, c(.3,.2), c(.1,.1), c(.4,.1), c(.2,.4,.2))
> rmvalog(3, dep = c(.6,.5,.8,.3), asy = asy)
Error in rmvalog(3, dep = c(0.6, 0.5, 0.8, 0.3), asy = asy)

‘asy’ is not of the correct form

# asy is not of the correct form only because the dimension has been
mis-specified (the default dimension is 2).

5 Fitting Univariate Distributions by Maximum Likelihood

This section presents functions that produce maximum likelihood estimates for distributions
introduced in Section 2. Maximum likelihood estimates for bivariate distributions are discussed
in Section 6. For illustrative purposes Sections 5 and 6 use only simulated data. Two extended
examples (one univariate and one bivariate) using the data sets oxford and sealevel (both
included in the evd package) are given in Sections 7 and 8.

The following function produces maximum likelihood estimates for the GEV distribution (4).

fgev(x, start, ..., nsloc = NULL, std.err = TRUE, corr = FALSE,
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method = "BFGS", warn.inf = TRUE)

The argument x should be a numeric vector containing data to be fitted. Missing values are
allowed. If start is given it should be a named list containing starting values, the names of
which should be the parameters over which the likelihood is to be maximized. If start is
omitted the routine attempts to find good starting values for the optimization using moment
estimators.

If some of the parameters are to be set to fixed values, they can be given as separate arguments.
The Gumbel distribution (1) can be fitted using shape = 0. Any arguments that can be passed to
the optimization function optim can also be specified. This includes the optimization method,
which is explicitly passed using the argument method. If std.err = TRUE (the default), the
(asymptotic) standard errors* of the maximum likelihood estimates are returned. If corr = TRUE,
the (asymptotic) correlation matrix is returned. When warn. inf = TRUE (the default), a warning
is given if the negative log-likelihood is infinite at the starting values. The nsloc argument is
explained subsequently.

Two examples of the fgev function are given below.

> datal <- rgev(1000, loc = 0.13, scale = 1.1, shape = 0.2)

> ml <- fgev(datal)
> ml

Call: fgev(x = datal)
Deviance: 3650

Estimates
loc scale shape
0.127 1.125 0.224

Standard Errors
loc scale shape
0.0400 0.0321 0.0248

Optimization Information
Convergence: successful
Function Evaluations: 51
Gradient Evaluations: 12

> m2 <- fgev(datal, loc = 0, scale = 1)
> m2

Call: fgev(x = datal, loc = O, scale = 1)
Deviance: 3669

Estimates
shape
0.236

Standard Errors

*This is not strictly true. Read on for the details.
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shape
0.0202

Optimization Information
Convergence: successful
Function Evaluations: 24
Gradient Evaluations: 7

In the first example the likelihood is maximized over (loc, scale, shape). In the second example
the likelihood is maximized over shape, with the location and scale parameters fixed at zero and
one respectively.

The maximum likelihood estimates from model m1 are

> fitted(ml)
loc scale shape
0.1271 1.1251 0.2244

Maximum likelihood estimators of GEV parameters do not necessarily have the usual asymptotic
properties, since the (lower or upper) end point of the GEV distribution (given by u — o/€)
depends on the parameters. Smith (1985) shows that the usual asymptotic properties hold when
& > —0.5. When —1 < £ < —0.5 the maximum likelihood estimators do not have the standard
asymptotic properties, but generally exist. When ¢ < —1 maximum likelihood estimators do
not often exist. This occurs because of the large mass near the upper end point. The likelihood
increases without bound as the upper end point is estimated to be closer and closer to the largest
observed value. In terms of the Weibull shape parameter «, the usual asymptotic properties hold
when a > 2, the asymptotic properties are not standard for 1 < a < 2, and maximum likelihood
estimators do not often exist for o < 1.

When the usual asymptotic properties hold (as here) the asymptotic standard errors of the max-
imum likelihood estimates (approximated using the inverse of the observed information matrix)
can be extracted from the fitted object using

> std.errors(ml)
loc scale shape
0.03999 0.03214 0.02479

When the usual asymptotic properties do not hold the “standard errors” and the “correlation
matrix” must be interpreted with caution (Smith, 1985).

The deviance(ml) is minus twice the log-likelihood function, evaluated at fitted(ml1). Like-
lihood ratio tests can be performed by comparing with chi-squared distributions the difference
between the deviances of nested models.! We can compare the two examples given above, using
the function anova, to test the null hypothesis that the location parameter is zero and the scale
parameter is one.

> anova(mil,m2)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

tThere are non-regular cases for which the asymptotic distribution of the test statistic is not chi-squared (see
Section 8).
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ml 3 3650
m2 1 3669 2 18.8 8.2e-05 *%*

Signif. codes: O ‘**x’ 0.001 ‘x*’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

The deviance difference is about 18.8, which yields a p-value of 8.2 x 1075 when compared with
a chi-squared distribution on two degrees of freedom. Model diagnostics and profile deviances
can be calculated/plotted using plot, profile and profile2d (see Section 7).

By default the maximum likelihood estimates are calculated under the assumption that the
data to be fitted are the observed values of independent random variables Zi,..., Z,, where
Z; ~ GEV(p,0,€) for each i = 1,...,n. The nsloc argument allows non-stationary models of
the form Z; ~ GEV(u;,0,£), where

pi = Po + Brzin + -+ + Brwig.

The parameters (fy,...,0k) are to be estimated. In matrix notation u = B¢ + X3, where

= (1, )’ Bo = Bo,---, 5%, B=(B1,...,0:)" and X is the n x k covariate matrix
(excluding the intercept) with ijth element z;;.

The nsloc argument must be a data frame containing the matrix X, or a numeric vector which is
converted into a single column data frame with column name “trend”. The column names of the
data frame are used to derive names for the estimated parameters. This allows any of the k& + 3
parameters (B, ..., 0k 0,&) to be set to fixed values within the optimization. The covariates
must be (at least approximately) centered and scaled, not only for numerical reasons, but also
because the starting value (if start is not given) for each corresponding coefficient is taken to
be zero. When a linear trend is present in the data, the location parameter is often modelled as

Hi = Po + Bit;

where %; is some centered and scaled version of the time of the ith observation. Non-stationary
models are rarely fitted, but this is probably the most commonly used form of non-stationarity.
More complex changes in g may also be appropriate. For example, a change-point model

0 <4
pi = Po+ Prz;  where =z = { 0

1 2>14
or a quadratic trend

pi = Bo + Piti + ot
See Sections 7 and 8 for examples of non-stationary modelling.

The function fgev.quant again produces maximum likelihood estimates for the GEV distri-
bution, but the model is re-parameterized from (p,0,£) to (2p,0,§), where 2, is the quantile
corresponding to the upper tail probability p. The function can be used to calculate and plot
profile deviances of extreme quantiles (see Section 7). Under non-stationarity the model is
re-parameterized from (8o, f1, .- -, Bk, 0,&) to (2, B1,---, Bk, 0, &), so that z, is the quantile cor-
responding to the upper tail probability p for the distribution obtained when all covariates are
Z€ro.

The following functions produce maximum likelihood estimates for the distributions (5), (6) and

(7).

fext(x, start, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE,
std.err = TRUE, corr = FALSE, method = "Nelder-Mead")
forder(x, start, densfun, distnfun, ..., distn, mlen = 1, j = 1, largest = TRUE,

std.err = TRUE, corr = FALSE, method = "Nelder-Mead")
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The fext function yields maximum likelihood estimates for the distributions (5) and (6) given
an integer m and an arbitrary distribution function F'.

The arguments densfun, distnfun, distn, mlen and largest are the same as those used in the
density function dext (see Section 2). The argument x should be a numeric vector containing
the data to be fitted, which should be assumed to represent maxima (if largest is TRUE, the
default) or minima (if largest is FALSE). start (which cannot be missing) should be a named
list containing starting values, the names of which should be the parameters over which the
likelihood is to be maximized. If some of the parameters are to be set to fixed values, they can
be given as separate arguments. If parameters are missing, they are fixed at their default values
specified in the density/distribution function. Any of the arguments that can be given to optim
can also be specified.

The optimizer will be affected by the way in which the density and distribution functions passed
to fext behave when given values outside of the valid parameter space.! Functions in R base
generally produce NaN values which may result in warnings being printed. These warnings can
usually be ignored.

If the density and distribution functions are user defined, the order of the arguments must mimic
those in R base (i.e. data first, parameters second). The density function must have a log
argument.§

Two examples are given below. The second example (incorrectly) takes F' to be a gamma
distribution with the shape parameter fixed at 0.5.

> data2 <- rext(100, gnorm, mean = 0.56, mlen = 365)
# Simulate yearly maxima using normal distribution

> nm <- fext(data2, list(mean = 0, sd = 1), distn = "norm", mlen = 365)
> fitted(nm)
mean sd
0.685 0.959

> ga <- fext(data2, list(scale = 1), shape = 0.5, distn = "gamma", mlen = 365,
method = "L-BFGS-B", lower = 0.01)

> fitted(ga)

scale

0.7386

The forder function yields maximum likelihood estimates for the distribution (7) given integers
m and j € {1,...,m}, and an arbitrary distribution function F. The arguments densfun,
distnfun, distn, mlen, j and largest are the same as those used in the density function
dorder (see Section 2). The argument x should be a numeric vector containing the data to be
fitted, and start (which cannot be missing) should again be a named list containing starting
values.

6 Fitting Bivariate Distributions by Maximum Likelihood

For each of the eight bivariate models introduced in Section 3 there is a function that produces
maximum likelihood estimates. Each function has the same formal arguments. The function
corresponding to the logistic model is

#The L-BFGS-B method can be used to specify box-constraints. See the help page of optim for details.
A simple wrapper can always be constructed to achieve this.
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Bivariate Model Constraints

Logistic 0.1<a<l1
Asymmetric Logistic 01<a<1,0<64,600<1
Hiisler-Reiss 0.2< <10
Negative Logistic 0.05<r<5
Asymmetric Negative Logistic 0.06 <r<5,0.001 <0,60<1
Bilogistic 0.1 <a,p<0.999
Negative Bilogistic 01 <, <20
Coles-Tawn 0.001 < a,8 <30

Table 1: For numerical reasons the parameters of each model are subject to the artificial con-
straints depicted here.

fbvlog(x, start, ..., nslocl = NULL, nsloc2
corr = FALSE, method = "BFGS", warn.inf

NULL, std.err = TRUE,
TRUE)

The argument x should be given a numeric matrix (or a data frame) containing two columns
of data to be fitted. Missing values are allowed on either or both margins/columns within any
observation/row. If start is given it should be a named list containing starting values, the
names of which should be the parameters over which the likelihood is to be maximized. See the
help file for details. If start is omitted the routine attempts to find good starting values for the
optimization using maximum likelihood estimators under the assumption of independence.

A separate name is associated with each individual parameter so that any parameter subset can
be fixed at specified values. The parameters on the first margin can be fixed using the arguments
locl, scalel and shapel. The parameters on the second margin can be fixed using loc2, scale?2
and shape2. The asymmetry parameters in the asymmetric logistic and asymmetric negative
logistic models can be fixed using asyl and asy2. As usual, any arguments that can passed to
optim can be specified.

The nslocl and nsloc2 arguments allow non-stationary modelling of the location parameter on
the first and second margin respectively. They should be used in the same manner as the nsloc
argument in univariate fitting functions. Examples of bivariate models with non-stationary mar-
gins are given in Section 8. The std.err, corr, method and warn.inf arguments are equivalent
to those used in univariate fitting functions.

For numerical reasons the parameters of each model are subject to the artificial constraints
depicted in Table 1. The scale parameters on each GEV margin are artificially constrained to
be greater than or equal to 0.01. These constraints only apply to the functions discussed in this
section.

The first example given below uses the fbvlog function to obtain maximum likelihood estimates
for the (symmetric) logistic model. The second example constrains the model at independence
(where dep = 1). The estimates produced in the second example are the same as those that
would be produced if fgev was separately applied to each margin.

> bvdata <- rbvlog(100, dep = 0.6, marl = c(1.2,1.4,0), mar2 = ¢(1,1.6,0.1))

> ml <- fbvlog(bvdata)
> ml

Call: fbvlog(x = bvdata)
Deviance: 707.8
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Estimates
locl scalel shapel loc2 scale2 shape? dep
1.19491 1.39859 -0.00922 1.02453 1.41791 0.03395 0.54230

Standard Errors
locl scalel shapel loc2 scale2 shape?2 dep
0.1519 0.1089 0.0517 0.1570 0.1169 0.0645 0.0540

Optimization Information
Convergence: successful
Function Evaluations: 51
Gradient Evaluations: 11

> m2 <- fbvlog(bvdata, dep = 1)
> fitted(m2)

locl scalel  shapel loc2 scale2  shape2
1.19070 1.39358 -0.01697 1.02258 1.41097 0.04831

The discussion in Section 5 regarding the properties of maximum likelihood estimators for the
GEV distribution applies to all bivariate models. The usual asymptotic properties hold only
when the shape parameters on both margins are greater than —0.5. When the usual asymptotic
properties do not hold the “standard errors” and the “correlation matrix” must be interpreted
with caution (Smith, 1985).

Model diagnostics and profile deviances can be calculated/plotted using plot, profile and
profile2d (see Section 8). Components of the fitted object can be extracted using fitted,
std.errors and deviance.

The following snippet uses anova to perform a likelihood ratio test. The null hypothesis spec-
ifies that the margins are Gumbel distributions (shapel = shape2 = 0). The deviance of the
constrained model is compared with the deviance of the unconstrained model. The p-value is
calculated to be 0.78.

> m3 <- fbvlog(bvdata, shapel = O, shape2 = 0)
> anova(ml, m3)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ml 7 708
m3 5 708 2 0.5 0.78

Boundary Problems

In the following example I attempt to fit the asymmetric logistic model to the simulated data
set used above. The data set is distributed as symmetric logistic; both asymmetry parameters
equal one. This illustrates the difficulties that arise when parameter estimates are on the edge
of the parameter space.

> m4 <- fbvalog(bvdata)
> fitted(m4)

locl scalel shapel loc2 scale2 shape2 asyl asy2 dep
1.19537 1.33235 0.01946 1.03591 1.41390 0.13776 0.99949 0.89746 0.47705
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A boundary of the parameter space has been reached; the maximum likelihood estimate for
the first asymmetry parameter is (effectively) one. This will cause difficulties for the optimizer.
There are two approaches to this problem. The parameter can be fixed at one, or the L-BFGS-B
method can be used. The L-BFGS-B method allows box-constraints using the arguments lower
and upper. The following snippet illustrates these approaches.

> fitted(fbvalog(bvdata, asyl = 1))
locl scalel shapel loc2 scale2 shape?2 asy2 dep
1.178964 1.391445 -0.002429 1.036365 1.430401 0.036784 0.869307 0.495566

> upper <- c(rep(Inf, 6), 1, 1, 1)
> fitted(fbvalog(bvdata, method = "L-BFGS-B", upper = upper))

locl scalel shapel loc2 scale? shape? asyl asy2
1.178968 1.391463 -0.002437 1.036320 1.430364 0.036788 1.000000 0.869414
dep
0.495590

Fitting Every Model

The fbvall function produces maximum likelihood estimates for all eight models.

fbvall(x, ..., nslocl = NULL, nsloc2 = NULL, which = NULL, boxcon = TRUE,
std.err = TRUE, orderby = c("AIC", "BIC", "SC"), control = list(maxit = 250))

The argument x should again be given a numeric matrix (or a data frame) containing two columns
of data to be fitted. Marginal parameters can be set to fixed values within each optimization
(if Gumbel margins are required, use shapel = 0 and shape2 = 0). The nslocl and nsloc2
arguments allow non-stationary modelling of the location parameters, for every fitted model. A
subset of models can be specified using which (all models are fitted by default). The (column)
order of the models in the components of the returned object is controlled by orderby. The
control argument is passed to the optimization function optim. The boxcon argument defines
the method used for the optimizations. If boxcon is TRUE (the default), the L-BFGS-B optimization
method is used, which incorporates box-constraints. If boxcon is FALSE the BFGS method is used.
The BFGS method is faster, and should be preferred if the estimates are known to lie in the interior
of the parameter space. The help page provides further details. An example is provided in Section
8.

7 Extended Example: Oxford Data

The numeric vector oxford contains annual maximum temperatures (in degrees Fahrenheit) at
Oxford, England, from 1901 to 1980. It is included in the evd package, and can be made available
using data(oxford). The data has previously been analysed by Tabony (1983).

I begin by plotting the data. The assumptions of stationarity and independence seem sensible,
given the plot generated using the code below, as depicted in Figure 2.

> data(oxford) ; ox <- oxford
> plot(1901:1980, ox, xlab = "year", ylab = "temperature")
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Figure 2: The oxford data.

The following snippet fits two models based on the GEV distribution. The first model assumes
stationarity. The second model allows for a trend term in the location parameter (even though
the plot appears to show that this is unnecessary). The nsloc argument is centered and scaled
so that the intercept loc represents the location parameter in 1950 and the trend loctrend
represents the increase in the location parameter (or decrease, if negative) over a period of 100
years.

> ox.fit <- fgev(ox)

> tt <- (1901:1980 - 1950)/100
> ox.fit.trend <- fgev(ox, nsloc = tt)

> fitted(ox.fit.trend)

loc loctrend scale shape
83.6617 -1.8812 4.2233 -0.2841
> std.errors(ox.fit.trend)

loc loctrend scale shape
0.55566 1.96754 0.36504 0.07068

The trend term not statistically significant (at any reasonable level). The stationary model
ox.fit is retained for further analysis.

> ox.fit

Call: fgev(x = oxford)
Deviance: 457.8

Estimates
loc scale shape
83.839 4.260 -0.287

Standard Errors
loc scale shape
0.5231 0.3658 0.0683

Optimization Information
Convergence: successful
Function Evaluations: 29
Gradient Evaluations: 11
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Figure 3: Diagnostic plots for the model ox.fit.

The fitted shape is negative, so the fitted distribution is Weibull. It is often of interest to
test the hypothesis that the shape is zero (the Gumbel distribution). A 95% (asymptotic)
confidence interval for the shape parameter can be constructed using —0.287 + 1.96 x 0.0683.
The corresponding Wald test can be performed by dividing the maximum likelihood estimate
by its standard error. The Wald test would be rejected at significance level 0.05 since the 95%
confidence interval does not contain zero. A likelihood ratio test is performed in the following
snippet. The hypothesis is rejected at any significance level above 0.00053.

> ox.fit.gum <- fgev(ox, shape = 0)
> anova(ox.fit, ox.fit.gum)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)
ox.fit 3 458
ox.fit.gum 2 470 1 12 0.00053 ***

Signif. codes: 0 ‘#*xx> 0.001 ‘*x”> 0.01 ‘x> 0.05 “.” 0.1 ¢ * 1

Diagnostic plots can be produced using plot. The argument jitter is specified because the
oxford data contains repeated values (see the help file for plot.evd).

> plot(ox.fit, jitter = TRUE)

The plots, depicted in Figure 3, compare parametric distributions, densities and quantiles to
their empirical counterparts (see the help files for details on the construction of each plot). The
horizontal bars on the P-P, Q-Q and return level plots represent simulated (pointwise) 95%
confidence intervals. The model ox.prof is seen to be a good fit. The fitted density is close
to the non-parametric estimator, and most points lie within the confidence intervals. Profile
deviances (minus twice the profile likelihood) of the parameters can be plotted using

> ox.prof <- profile(ox.fit)
> plot(ox.prof)

This produces the first three plots within Figure 4. A horizontal line is (optionally) drawn on each
plot so that the intersection of the line with the profile deviance yields a profile confidence interval,
with (default) confidence coefficient 0.95. The end points of the intervals can be calculated
explicitly using pcint(ox.prof). The profile confidence intervals for the location and shape
parameters are approximately the same as the intervals constructed using their standard errors,
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Figure 4: Profile deviance surfaces for the model ox.fit.

since the profile deviances are approximately symmetric. The profile deviance for the scale
parameter is asymmetric; both end points of the profile confidence interval (3.64,5.12) are larger
than the corresponding end points of the interval (3.54,4.98), constructed using the standard
error.

The joint profile deviance of the scale and shape parameters (which are typically negatively
correlated) can be plotted using*

> ox.prof2d <- profile2d(ox.fit, ox.prof, which = c("scale", "shape"))
> plot (ox.prof2d)

This produces the image plot in the left panel of Figure 4.F The colours of the image plot
represent confidence sets with different confidence coefficients. By default, the lightest colour
(ignoring the background colour) represents a confidence set with coefficient 0.995; the darkest
colour represents a confidence set with coefficient 0.5.

Let G be the GEV distribution function, and let G(z,) = 1 — p, so that

%:{u—%ﬂ—%J%ﬂ—pﬂf]£#0

p — o log{—log(1 —p)} £=0, (14

is the quantile corresponding to the upper tail probability p. The profile deviance for zy.1 can
be plotted using the following. The function fgev.quantile calculates maximum likelihood
estimates for the GEV distribution under the parameterization (zp,0,§), where p is specified
using the argument prob.

> ox.qfit <- fgev.quantile(ox, prob = 0.1)
> ox.gprof <- profile(ox.qfit, which = "quantile")
> plot (ox.gprof)

Figure 5 shows profile deviances for zg.1, 20.01 and zg.g01- The extent of the asymmetry in the
profile deviance surface increases for decreasing (small) p. This is to be expected, since the data
provide increasingly weaker information in the (upper) tail of the fitted distribution.

Imagine that Oxford is on another planet (it’s easy if you try), and that maximum daily tem-
peratures are both stationary and independent. The snippet below fits normal and gamma
distributions to the (unrecorded) daily observations.

*For R Version 1.5.0 and later this will produce warnings, because the robust "Nelder-Mead" method is not
recommended for optimizations over one variable, although it seems to work okay in this example.

”Assuming the package akima is available. If not, the image plot will look ‘blocky’, because bivariate inter-
polation will not be performed.
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Figure 5: Profile deviance surfaces for zg.1, z9.01 and 2g.go1-
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Figure 6: The fitted GEV density (solid line), and fitted densities for models assuming normal
(dashed line) and gamma (dotted line) distributions for (unrecorded) daily maxima (valid under
extremely tenuous assumptions). A rug plot of the (jittered) data is also included.

> ox.nm <- fext(ox, list(mean = 40, sd = 1), distn = "norm", mlen = 365)
> fitted(ox.nm)

mean sd

48.85 12.43

> ox.ga <- fext(ox, list(scale = 1, shape = 1), distn = "gamma", mlen = 365)
> fitted(ox.ga)
scale shape

1.63 32.94
> x <- seq(70, 100, length = 100)
> mle <- fitted(ox.fit)
> plot(x, dgev(x, mle[1], mle[2], mle[3]), type = "1", ylab = "Density")
> nm.max <- dext(x, mean = 48.85, sd = 12.43, distn = "norm", mlen = 365)
> ga.max <- dext(x, scale = 1.63, shape = 32.94, distn = "gamma", mlen = 365)
> lines(x, nm.max, lty = 2)
> lines(x, ga.max, lty = 3)
> rug(jitter(ox))

The fitted densities for the annual maxima, derived by passing normal and gamma parameter
estimates to dext, are compared to the GEV model in Figure 6. The normal and gamma models
yield very similar distributions,} and both are marginally more right skewed than the GEV fit.

¥Which will not be surprising to those who know about domains of attraction. The limiting distribution (as
mlen tends to co) for both models is Gumbel.
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Figure 7: From left to right; Harwich Maxima vs Dover Maxima, Dover Maxima vs Year and
Harwich Maxima vs Year.

This example is not particularly relevant for the oxford data, but it may be relevant for other
data sets.

8 Extended Example: Sea Level Data

The sealevel data frame (Coles and Tawn, 1990) has two columns containing annual sea level
maxima from 1912 to 1992 at Dover and Harwich, two sites on the coast of Britain. It contains
39 missing maxima in total; nine at Dover and thirty at Harwich. There are three years for
which the annual maximum is not available at either site.

I begin by plotting the data, using the code below. The resulting plots are depicted in Figure
7. The plot of the Harwich maxima against the Dover maxima shows a reasonable degree of
dependence. The outlier corresponds to the 1953 flood resulting from a storm passing over the
South-East coast of Britain on 1st February. The Harwich and Dover maxima both appear to
increase with time.

> data(sealevel) ; sl <- sealevel

> plot(sl, xlab = "Dover Annual Maxima", ylab "Harwich Annual Maxima')
> plot(1912:1992, sl1[,1], xlab = "Year", ylab "Dover Annual Maxima')

> plot(1912:1992, sl1[,2], xlab = "Year", ylab = "Harwich Annual Maxima")

The following three expressions fit (symmetric) logistic models. The first model incorporates
linear trend terms on both marginal location parameters. The second model incorporates a
linear trend on the Dover margin only. The third model assumes stationarity. The nslocl and
nsloc2 arguments are centered and scaled so that the intercepts locl and loc2 represent the
marginal location parameters in 1950 and the linear trend parameters locltrend and loc2trend
represent the increase in the marginal location parameters (or decrease, if negative) over a period
of 100 years.

> tt <- (1912:1992 - 1950)/100

> ml <- fbvlog(sl, nslocl = tt, nsloc2 = tt)
> m2 <- fbvlog(sl, nslocl = tt)

> m3 <- fbvlog(sl)

I’ll leave you to analyse the models in detail. In particular, notice how the trend terms affect
the parameter estimates. Marginal Weibull distributions (negative shapes) are estimated when
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the trends are not included, but marginal Fréchet distributions (positive shapes) are estimated
upon their inclusion.

The maximum likelihood estimates of the parameters can be compared with their standard errors
to perform Wald tests or construct confidence intervals. Likelihood ratio tests are performed in
the following snippet. The p-values confirm the statistical significance of the linear trend terms.

> anova(ml, m2, m3)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

ml 9 -36.5
m2 8 -29.2 1 7.26 0.007 **
m3 7 -9.7 1 19.56 9.7e-06 *x**

Signif. codes: O ‘x*x’ 0.001 ‘x*’ 0.01 ‘x? 0.05 ‘.” 0.1 ¢ > 1

Quadratic trends for the location parameter on either or both margins can be incorporated using
the following code. Further testing, using the models generated below, suggests that a quadratic
trend may be implemented for the location parameter on the Harwich margin. Despite this, I
retain the model m1 for further analysis.

> tdframe <- data.frame(trend = tt, quad = tt~2)
> m4 <- fbvlog(sl, nslocl = tdframe, nsloc2 = tt)
> mb <- fbvlog(sl, nslocl = tt, nsloc2 = tdframe)
> m6 <- fbvlog(sl, nslocl = tdframe, nsloc2 = tdframe)

The code given below compares two logistic models that are nested within m1. Model m7 assumes
independence. The maximum likelihood estimates are the same as those that would be produced
if fgev was separately applied to each margin. The deviance increase with respect to model m1
is calculated to be 13.59. The asymptotic distribution of the test statistic is not chi-squared. The
distribution is non-regular because the dependence parameter in the restricted (independence)
model is fixed at the edge of the parameter space. Testing for the (symmetric) logistic model
within the asymmetric logistic model also leads to non-regular behaviour. Tawn (1988) discusses
non-regular testing procedures within bivariate extreme value models. In this case the increase
in deviance is clearly too large to consider independence.

Model m8 assumes that both marginal shape parameters are zero (or equivalently, that both
marginal distributions are Gumbel). A likelihood ratio test of this hypothesis provides a p-value
of 0.72. The hypothesis would not be rejected at any reasonable significance level.

> m7 <- fbvlog(sl, nslocl = tt, nsloc2 = tt, dep = 1)

> deviance(m7) - deviance(ml)

# WARNING: The asymptotic distribution of this statistic is non-regular
[1] 13.59

> m8 <- fbvlog(sl, nslocl = tt, nsloc2 = tt, shapel = 0, shape2 = 0)
> anova(ml, m8)
Analysis of Deviance Table

M.Df Deviance Df Chisq Pr(>chisq)

ml 9 -36.5
m8 7 -36.8 2 0.67 0.72
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Figure 8: Diagnostic plots for the dependence structure of model m1.
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Figure 9: The profile deviance of the dependence parameter from model m1.

Diagnostic plots for the fitted (generalized extreme value) marginal distributions can be produced
using plot with mar = 1 or mar = 2. The plots produced are the same as those given in Section
7. Diagnostic plots for the fitted dependence structure can be produced using plot, as shown in
Figure 8 for the model m1.

)
2)

> plot(ml, mar
> plot(ml, mar
> plot(ml)

The plots compare parametric conditional distributions, densities and dependence functions to
empirical counterparts (see the help files for details on the construction of each plot). The
horizontal bars on the conditional P-P plots represent simulated (pointwise) 95% confidence
intervals. The model m1 fits the data reasonably well. There are some minor deviations within
the conditional P-P plots, but they do not represent a serious departure of the empirical estimates
from the fitted model. The profile deviance (minus twice the profile likelihood) of the dependence
parameter can be plotted using the following.

> ml.prof <- profile(ml, which = "dep", xmax = 1)
> plot(ml.prof)

This produces the plot in Figure 9. A horizontal line is (optionally) drawn so that the intersection
of the line with the profile deviance yields a profile confidence interval, with (default) confidence
coefficient 0.95. The end points of the interval can be calculated explicitly using pcint (m1.prof).

Models other than the logistic can be fitted in a similar fashion, using fbvhr, fbvbilog, fbvct
and others. The function fbvall attempts to fit all bivariate models simultaneously (see Section
6). The code below provides an example. Linear trend terms for the marginal location parameters
are implemented within each fit.
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> m.all <- fbvall(sl, nslocl = tt, nsloc2 = tt)

> fitted(m.all)

log neglog alog aneglog hr  bilog ct negbilog
locl 3.57566 3.57510 3.58582 3.58285 3.57528 3.57548 3.57544 3.57516
locltrend 0.43944 0.44014 0.46393 0.44098 0.44032 0.43871 0.43903 0.44104
scalel 0.15881 0.15843 0.17088 0.16577 0.15809 0.15857 0.15833 0.15863
shapel 0.06634 0.07259 -0.03219 0.00221 0.07325 0.06623 0.06841 0.07315
loc2 2.54899 2.55061 2.55091 2.55022 2.55167 2.54913 2.54967 2.55054
loc2trend 0.53283 0.53568 0.49654 0.51825 0.53605 0.53504 0.53811 0.53379
scale2 0.20701 0.20792 0.19952 0.20468 0.20852 0.20718 0.20683 0.20784
shape?2 0.04781 0.03951 0.06158 0.07265 0.03038 0.04898 0.04233 0.03889
asyl/alpha NA NA 0.37812 0.45615 NA 0.69068 0.49647 1.37009
asy2/beta NA NA 0.25716 0.32518 NA 0.71339 0.48443 1.54953
dep 0.70282 0.68503 0.10000 5.00000 1.05590 NA NA NA

The dependence parameter estimates for the asymmetric logistic and asymmetric negative logistic
models are at artificial boundaries. It appears that both models are fitting close to a (singular)
distribution obtained in the limit. I will return to this issue later.

The m.all object contains standard errors and deviances for each model, which can be accessed
using the functions std.errors and deviance. The fitting function fbvall and every accessor
function has an argument which, that can be used to fit or access components of a specified
subset of models. The object also contains the components dep.summary and criteria. The
dep.summary component contains simple summary statistics of the dependence structure of each
model, based on the dependence function A(-) defined in Section 3.

> m.all$dep.summary

log neglog alog aneglog hr bilog ct negbilog
dep 0.3723 0.3635 0.2564 0.3144 0.3436 0.37284 0.359591 0.36404
intdep 0.5072 0.5039 0.3035 0.3694 0.4837 0.50794 0.495147 0.50458
intasy 0.0000 0.0000 -0.2708 -0.2695 0.0000 -0.02149 0.003764 0.01997

These summaries are given by
dep = x = 2{1 — A(1/2)}

1
intdepzwdzél/ 1 - A(z) dz
0
4 1/2
intasy =1, = ——— A(x) — A(1l —z) dx
y=th= 3 [ Al -A(-a)

The two measures of dependence, x (Coles et al., 1999) and 14, are contained in the closed
interval [0,1]. At independence x = %4 = 0, and at complete dependence x = 94 = 1. The
summary statistic 1, is a measure of asymmetry, and is contained in the closed interval [-1,1].*
If A(-) is symmetric 9, = 0. As a rough guide, any value 9, € (—0.2,0.2) corresponds to a
dependence structure that is close to symmetric.! The (unoptimized) asymmetric logistic and
the (unoptimized) asymmetric negative logistic are the only models for which |¢,| > 0.2. The

*Conjecture.

tThe integral measures 14 and 9, are not standard theory; I have created them for the purpose of this package.
They have no underlying interpretation that I am aware of. I am open to suggestions of other simple summaries
of the dependence structure.
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Figure 10: Diagnostic plots for the dependence structure of model m9.

Coles-Tawn, bilogistic and negative bilogistic models can incorporate asymmetry, but for all
three models |1,| < 0.05.

Models that are not nested can be compared by adding penalty terms to the deviances. The
penalty terms take into account the number of parameters fitted. (If both models have the same
number of parameters the deviances can be compared directly.) Three commonly used penalty
terms are 2p (Akaike’s information criterion, or AIC), plog(n) (Schwarz’s criterion, or SC) and
p{1 + log(n)} (Bayesian information criterion, or BIC), where p is the number of parameters
estimated and 7 is the number of observations.? The AIC, SC and BIC values for each model
are contained in the criteria component of the m.all object.

> m.all$criteria

log neglog alog aneglog hr bilog ct negbilog
AIC -18.498 -17.905 -17.85 -17.544 -17.376 -16.506 -16.218 -15.913
SC  -2.238 -1.645 2.02 2.330 -1.116 1.560 1.849 2.153
BIC 6.762 7.355 13.02 13.330 7.884 11.560 11.849 12.153

By default, the (column) order of the models in the components of m.all is determined by AIC
(lowest /best first, highest /worst last). The default behaviour can be changed using the argument
orderby. The (symmetric) logistic model is seen to give the best fit under all three criteria.

All models other than the asymmetric logistic and the asymmetric negative logistic produce
similar dependence structures. The code below produces diagnostic plots for the (unoptimized)
asymmetric logistic model, as depicted in Figure 10.

> m9 <- fbvalog(sl, nslocl = tt, nsloc2 = tt)
> plot(m9)

The near singular component can clearly be seen in the contour plot of the fitted density. Diag-
nostic plots for the (unoptimized) asymmetric negative logistic model depict the same behaviour.
Both fits are unrealistic for sea level data.
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