A Guide to the EVD R Package (Version 1.0).

Alec Stephenson
25th January 2002

1 Introduction

1.1 What is the EVD package?

The EVD (Extreme Value Distributions) package is an add-on package for the R (Thaka and
Gentleman, 1996) statistical computing system. The package extends simulation, distribution,
inverse distribution (quantile) and density functions to univariate, bivariate and (for simulation)
multivariate parametric extreme value distributions. It also provides fitting functions which
calculate maximum likelihood estimates for univariate and bivariate models.

The package does not currently implement non-stationary fitting.

1.2 Contents

This guide contains examples on the use of the EVD package. The examples do not include the-
oretical justification. See Coles (2001) for an introduction to the statistics of extreme values. See
Kotz and Nadarajah (2000) for a theoretical treatment of univariate and multivariate extreme
value distributions. Section 2 covers the standard functions for univariate extreme value distri-
butions. Section 3 does the same for bivariate and multivariate models. Maximum likelihood
fitting of univariate and bivariate models is discussed in Sections 4.1 and 4.2 respectively. Two
extended examples (one univariate and one bivariate) using the data sets oxford and sealevel
(both included in the EVD package) are given in Section 4.3. Within these examples I implement
various diagnostic plots and procedures.

This guide should not be viewed as an alternative to the help files included within the package.
These remain the definitive source of help. All of the examples presented in this guide are called
with options(digits = 4).

1.3 Citing this package/document
Do you want to cite this package? No? Spoil sport.

OMANUAL{key,

TITLE = {A Guide to the EVD R Package (Version 1.0)},

AUTHOR = {Stephenson, A. G.},

YEAR = {2002},

NOTE = {Available from \verb+http://www.maths.lancs.ac.uk/ stephena/+}
}

1.4 Caveat (a.k.a the only way you can get me to buy a round)

I’'ve checked these functions as best I can but, as ever, they may contain bugs. If you
find a bug or suspected bug in the code or the documentation please report it to me at
a.stephenson@lancaster.ac.uk. If you do find a bug and are the first person to report it,
I guarantee to buy you the drink of your choice. If you ever manage to find me.

1.5 Thank-U

Thanks to Paulo Ribeiro Jr. for much needed technical advice.

2 Standard Univariate Functions

The Gumbel, Fréchet

and (reversed) Weibull distribution functions are respectively given by

G(z):exp{—exp [— (Z;aﬂ}, —00 < 7 < 00 (1)

0, z < a,
Gle) = {exp {— (%)_a} , z>a, @)

G(z) = {exp{— - (59} z<aq, 3)

1, z2>a,

where a is a location parameter, b > 0 is a scale parameter and a > 0 is a shape parameter. The
distribution (3) is often referred to as the Weibull distribution. To avoid confusion I will call
this the reversed Weibull, since it is related to the three parameter Weibull distribution used in
survival analysis by a change of sign.

It is standard practice within R to concatenate the letters r, p, q and d with an abbreviated
distribution name to yield the names of the corresponding simulation, distribution, quantile (in-
verse distribution) and density functions respectively. The EVD package follows this convention.
Each distribution defined above has an associated set of functions, as shown here for the reversed

Weibull.*

rrweibull(n, loc =
prweibull(q, loc =
qrweibull(p, loc =
drweibull(x, loc =

> rrweibull(6, loc

0, scale = 1, shape = 1)

0, scale = 1, shape = 1, lower.tail = TRUE)
0, scale = 1, shape = 1, lower.tail = TRUE)
0, scale = 1, shape = 1, log = FALSE)

= 2, scale = .5, shape = c(1, 1.2))

[1] -0.1373 1.4492 1.5704 1.6512 1.9856 1.3174

> qrweibull(seq(0.1, 0.4, 0.1), 2, 0.5, 1, lower.tail = FALSE)
> qrweibull(seq(0.9, 0.6, -0.1), loc = 2, scale = 0.5, shape = 1)

Both give

[1] 1.947 1.888 1.822 1.745

> prweibull(-1:3, 2, 0.5, 1)

[1] 0.002479 0.018316 0.135335 1.000000 1.000000
> prweibull(-1:3, 2, 0.5, 1, low = FALSE)

[1] 0.9975 0.9817 0.8647 0.0000 0.0000

> drweibull(-1:3, loc = 2, scale = 0.5, shape = 1)
[1]1 0.004958 0.036631 0.270671 0.000000 0.000000

*The equivalent set of functions for the three parameter Weibull distribution used in survival analysis can be
derived from the rweibull functions as follows. For simulation, negate the output. For the distribution function,
reverse the logical value passed to lower.tail and negate the argument q. For the quantile function, reverse the
logical value passed to lower.tail and negate the output. For the density function, negate the argument x.

> drweibull(-1:3, 2, 0.5, 1, log = TRUE)
[1] -5.307 -3.307 -1.307 -Inf -Inf

Standard stuff. Parameters can be given as vectors (the standard recycling rules are applied).
An error occurs if any of the parameters are specified outside of the valid parameter space.

The GEV (generalized extreme value) distribution function is given by

G(z) = exp [~ {1+€(z =) [0}, °]

where (u,0,&) are the location, scale and shape parameters respectively, o > 0 and hy =
max(h,0). The parametric form of the GEV encompasses that of the Gumbel, Fréchet and
reversed Weibull distributions. The Gumbel distribution is obtained in the limit as & — 0. The
Fréchet and Weibull distributions are obtained when & > 0 and ¢ < 0 respectively. To recover
the parameterization of the Fréchet distribution (2) set £ =1/a > 0,0 =b/a > 0 and y = a+b.
To recover the parameterization of the reversed Weibull distribution (3) set £ = —1/a < 0,
o =>b/a>0and p = a—>b. The set of functions associated with the GEV distribution should
be familiar.

rgev(n, loc = 0, scale = 1, shape = 0)

pgev(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE)
qgev(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE)
dgev(x, loc = 0, scale = 1, shape = 0, log = FALSE)

These can be used in the same manner as the corresponding functions for the reversed Weibull
distribution.*

Let F be an arbitrary distribution function, and let Xy,..., X, be a random sample from F.
Define Uy, = max{X1,...,X;n} and L,, = min{Xy,..., X;,}. The distributions of U,, and Ly,
are given by

z) = [F(z)]" (4)
g) =1-[1— F(z)™. (5)

Simulation, distribution, quantile and density functions for the distributions of U, and L,,, given
an integer m and an arbitrary distribution function F, are provided by

rext(n, quantfun, ..., distn, mlen = 1, largest = TRUE)
pext(q, distnfun, ..., distn, mlen = 1, largest = TRUE, lower.tail = TRUE)
gext(p, quantfun, ..., distn, mlen = 1, largest = TRUE, lower.tail = TRUE)

dext(x, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE, log = FALSE)

The integer m should be given to the argument mlen. The distribution F can be speci-
fied by passing the corresponding quantile, distribution and density functions to quantfun,
distnfun and densfun respectively (both the distribution and density functions are required
for dext). Alternatively, a string can be passed to distn such that the name of the quan-
tile/distribution/density function is derived when prefixed by the letter q/p/d. If maxima are
required use largest = TRUE (the default). For minima use largest = FALSE. Some examples
should make this clear.

*The shape argument cannot be a vector.
fThe simulation function rext does not literally simulate from F(-); the simulation speed is invariant to mlen.

> rext(4, qexp, rate = 1, mlen = 5)

> rext(4, distn = "exp", rate = 1, mlen = b)
> rext (4, distn = "exp", mlen = 5)

With set.seed(50) these all give

[1] 2.356 1.558 4.650 1.856

> rext(1, distn = "norm", mean = 0.5, sd = 2, mlen = 20)
[1] 3.379

Simulates from the same distribution as

> max(rnorm(20, 0.5, 2))

[1] 4.354

> rext(1l, distn="norm", sd = 2, mlen = 20, largest = FALSE)
[1] -4.482

Simulates from the same distribution as

> min(rnorm(20, 0, 2))

[1] -4.286

> pext(c(.4, .5), distn="norm", sd = c(1, 2), mlen = 4)

> pext(c(.4, .5), distn="norm", mean = 0, sd = c(1, 2), mlen = 4)
Both give
[1] 0.1845 0.1285

> dext(c(l, 4), distn="gamma", shape = 1, scale = 0.3, mlen = 100)
[1] 0.3261328 0.0005398

Parameters can be given as vectors assuming that this is implemented in the functions passed as
arguments (either directly or indirectly via distn). If any of the parameters of F' are omitted the
defaults defined in the corresponding distribution/density/quantile function are used. If default
values do not exist an error occurs. Although the examples above use functions provided in R,
user defined functions can be specified. Density functions must have log arguments.*

Let X(1) > X(9) > --+ > X(;) be the order statistics of the random sample X1,..., Xp,. The
distribution of the jth largest order statistic, for j = 1,...,m, is

j—1

Pi(xg) <) = 3}) P i - P, ©)
k

=0

The distribution of the jth smallest order statistic is obtained by setting j = m+1—j. Simulation,
distribution and density functions for the distribution of X;) for given integers m and j €

{1,...,m}, and for an arbitrary distribution function F', are provided by

rorder(n, quantfun, ..., distn, mlen = 1, j = 1, largest = TRUE)

porder(q, distn, ..., mlen = 1, j = 1, largest = TRUE, lower.tail = TRUE)

dorder(x, densfun, distnfun, ..., distn, mlen = 1, j = 1, largest = TRUE,
log = FALSE)

The integer m should again be given to the argument mlen. If largest = TRUE (the default) the
distribution of the jth largest order statistic X(;) is used. If largest = FALSE the distribution
of the jth smallest order statistic X(;,4;_1) is used.

* A simple wrapper can always be constructed to achieve this.

For computational reasons it is better to specify j to be an integer in the interval
[1,ceiling(mlen/2)]. This can always be achieved using the argument largest. Some ex-
amples? Okay then.

> rorder(1, distn "norm", mlen = 20, j 2)

> rorder(1, distn = "norm", mlen = 20, j 19, largest = FALSE)

Simulates the second largest order statistic from 20 standard normals
With set.seed(50) both give

[1] 1.685

> porder(c(l, 2), distn="gamma", shape =c(.5, .7), mlen = 10, j = 2)
[1] 0.5177 0.8259

> dorder(c(1, 2), distn="gamma", shape =c(.5, .7), mlen = 10, j = 2)

[1] 0.7473 0.3081

3 Standard Bivariate and Multivariate Functions

The EVD package contains functions associated with the following three symmetric bivariate
distributions

G(z1,22) = exp [—(yi/a + yé/a)"] , 0<a<l,

G(z1,22) = exp [—yl —yo+ (y7" + y;’)‘l/’"] , >0,

G(z1,22) = exp (—1®{A " + $Allog(y1 /y2)]} — y2@{A ™" + SA[log(y2/y1)]}), A >0,

known as the (symmetric) logistic (Gumbel, 1960, 1961), (symmetric) negative logistic (Galam-
bos, 1975) and Hiisler-Reiss (Hiisler and Reiss, 1989) models respectively, where

vy = vi(25) = {1+ & —) o}, 1® (™)
for 5 = 1,2. The jth univariate marginal distribution of each model is GEV, with parameters

(pj,04,&;), where o; > 0. Independence* is obtained when o = 1, | 0 or XA | 0. Complete
dependence! is obtained when a | 0, r — 00 or A — 0.

The package also contains functions for the asymmetric distributions
G(21,22) = exp {—(1 —01)y1 — (1 — 02)yz — [(Bry1)/* + (92y2)1/a]a} ; 0<a<l,
G (21, 22) = exp {—yl —y2 + [(01y1) ™" + (92y2)_r]_1/7} , 1>0,

known as the asymmetric logistic (Tawn, 1988) and asymmetric negative logistic (Joe, 1990)
models respectively, where the asymmetry parameters 0 < 61,6 < 1, and where (y1,y2) are
again defined by (7). The univariate margins are again GEV.

These models (in fact, any bivariate extreme value distribution function) can be represented in

the form
G(z1,22) = exp [—(yl +1y2)A (Yl)] ,
Y1+ Y2

so that A(w) = —log[G(w, 1 — w)], defined on 0 < w < 1. A(-) is called (by some authors) the
dependence function.? Tt follows that A(0) = A(1) = 1, and that A(-) is a convex function with
max(w,l —w) < A(w) <1lforall 0 <w < 1.

Each model has a set of functions of the type given here for the asymmetric logistic distribution.

*Independence occurs when G(z1, z2) = exp[—(y1 + y2)]-
fComplete dependence occurs when G(z1, 2z2) = exp[— max(y1, y2)].
¥This is not quite the same as e.g. Pickands (1981), who uses A(w) = —log[G(1 — w,w)].

rbvalog(n, dep, asy, marl c(1, 1, 0), mar2 = marl)

pbvalog(q, dep, asy, marl c(1, 1, 0), mar2 = marl)

dbvalog(x, dep, asy, marl c(1, 1, 0), mar2 = marl, log = FALSE)

abvalog(x = 0.5, dep, asy, plot = FALSE, border = TRUE, add = FALSE, 1ty = 1,

blty = 3, xlim = c(0, 1), ylim = c(0.5, 1), xlab = "", ylab = "", ...)

The first three functions, for simulation and for the calculation of the distribution and density
functions, are standard. The arguments q and x in pbvalog and dbvalog respectively should
be vectors of length two or matrices with two columns, so that each row specifies a value for
(21,22). The argument dep is the dependence parameter (in this case «, but the same formal ar-
gument represents 7 and A). The argument asy is a vector containing the asymmetry parameters
(01,62). The marginal parameters (u1,01,&1) and (usg, 02, £2) should be passed to marl and mar2
respectively. The arguments mar1l and mar2 can also be given as matrices with three columns, in
which case each column represents a vector of values to be passed to the corresponding marginal
parameter (the standard recycling rules are applied). Vector/matrix arguments for dep and asy
are not implemented.

The abvalog function calculates (by default) or plots* the dependence function A(-). The value
A(1/2) € [0.5,1] is returned by default. The lower and upper end points of [0.5, 1] are obtained
by A(1/2) at complete dependence and at independence respectively.

> rbvalog(3, dep = .8, asy c(.4, 1))
[,11 [,2]

[1,]1 0.2242 2.230

[2,] 1.5712 2.593

[3,] 2.7550 1.830

> rbvalog(3, dep = .8, asy = c(.4, 1), marl = c(1, 1, 1))
[,11 [,2]

[1,] 1.7686 0.908

[2,] 22.5297 7.489

[3,1] 0.5617 1.057

> pbvalog(c(l, 1.2), dep = .4, asy = c(.4, .6), marl = c(1, 1, 1))
[1] 0.216

> tmp.quant <- matrix(c(1,1.2,1,2),ncol = 2, byrow = TRUE)

> tmp.mar <- matrix(c(1,1,1,1.2,1.2,1.2), ncol = 3, byrow = TRUE)
> pbvalog(tmp.quant, dep = .4, asy = c(.4, .6), marl = tmp.mar)
[1] 0.2160 0.2153

> dbvalog(c(1l, 1.2), dep
[1]1 0.1427

> dbvalog(tmp.quant, dep
[1] 0.1427 0.0696

.4, asy = c(.4, .6), marl = c(1, 1, 1))

.4, asy = c(.4, .6), marl = tmp.mar)

> abvalog(dep = .3, asy= c(.7, .9))

[1] 0.7013

> abvalog(seq(0, 1, 0.25), dep = .3, asy = c(.7, .9))
[1] 1.0000 0.8272 0.7013 0.7842 1.0000

1)

> abvalog(dep = .3, asy = c(.5, .9), plot = TRUE, blty

*If plotted, the values used for the plot are returned invisibly.

06

Figure 1: Dependence functions for various bivariate extreme value distributions. All dependence
functions must be convex and must lie within the triangular region.

c(.5, .5), add = TRUE, 1ty = 2)

> abvalog(dep = .1, asy =
= TRUE, 1ty = 3)

> abvhr(dep = .5, add

The last three lines of code produce Figure 1. The function abvhr plots the dependence function
for the Hiisler-Reiss model. The simulation functions rbvneglog, rbvaneglog and rbvhr for the
negative logistic models and for the Hiisler-Reiss model respectively use a root finding algorithm
for each realization and are therefore relatively slow. Ghoudi et al. (1998) derive a simulation
method for the negative logistic model which is not currently implemented. The simulation
functions rbvlog and rbvalog use bivariate versions of Algorithms 1.1 and 1.2 in Stephenson
(2002) respectively.

Let z = (z1,...,24). The d-dimensional (symmetric) logistic distribution function (Gumbel,

1960) is given by
d _1/a\"
oo (5]

where a € (0,1] and (y1,...,yq) is defined by the transformations (7).

This distribution can be extended to an asymmetric form. Let B be the set of all non-empty
subsets of {1,...,d}, let By = {b € B :[b| = 1} and let B;) = {b € B :i € b}. The multivariate
asymmetric logistic model (Tawn, 1990) is given by

G(z) = exp {_ ZbEB [zieb(ei’byi)l/ab]ab}

where the dependence parameters oy € (0,1] for all b € B\ Bj, and the asymmetry parameters
iy € [0,1] for all b € B and i € b. The constraints ZbeB(i) 0;p =1 fori=1,...,d ensure that
the marginal distributions GEV. There exists further constraints which arise from the possible
redundancy of asymmetry parameters in the expansion of the distributional form. Specifically,
if ap =1 for some b € B\ By then 6;, =0 for all i € b. Let b_;, = {i € b: i # i¢}. If, for some
be B\ By, b6, =0 for all i € b_;, then 6;,5 = 0. The model contains 2¢ — d — 1 dependence
parameters and d2¢~! asymmetry parameters (excluding the constraints).

The EVD package provides the following functions for simulating from and calculating the dis-
tribution function of these models.

rmvlog(n, dep, d = 2, mar = c(1, 1, 0))
pmvlog(q, dep, d = 2, mar = c(1, 1, 0))
rmvalog(n, dep, asy, d = 2, mar = c(1, 1, 0))
pmvalog(q, dep, asy, d = 2, mar = c(1, 1, 0))

The argument mar represents the GEV marginal parameters for every univariate margin, and
may again be a matrix. The interface for rmvalog/pmvalog is not particularly good. If anybody
uses rmvalog or pmvalog above about five dimensions it may inspire me to make improvements.
Possibly. The simulation functions rmvlog and rmvalog use Algorithms 2.1 and 2.2 in Stephenson
(2002) respectively.

For the symmetric model dep = a. For the asymmetric model dep should be a vector of length
2d _4g-1 containing the dependence parameters. Specifically, when d = 4

dep = (0412, 13, 014, (23, (24, (34, (V123 , (1245 (X134, (X234, 051234)-

The asymmetry parameters should be passed to asy in a list with 2d _ 1 elements, where each
element is a vector® corresponding to a set b € B, containing {6;, : i € b}. Specifically, when
d=14

asy = list(61,1,02,2,033,014,c(61,12,02,12), c(01,13,05,13), c(01,14,04,14), c(02,23, 03.23),
0(92,24, 94,24), C(93,34, 94,34), 0(91,123, 92,123, 93,123), 0(91,124, 92,124, 04,124)1

(01,134, 03,134, 04,134), c(62,234, 03 234, 04,234), (01,1234, 02,1234, 03,1234, 04,1234)) -

All the constraints, including ;. B 0;p = 1fori=1,...,d, must be satisfied or an error will
occur.

The code given below illustrates the symmetric logistic functions rmvlog and pmvalog.

> rmvlog(3, dep = .6, d = 5)

[,1] [,2] [,31 [,4] [,5]
[1,] 1.738 1.1709 2.4161 2.249 1.7047
[2,] 4.052 -0.1505 -0.2324 2.063 1.3453
[3,] 0.886 0.9965 0.4698 0.788 0.7828

> tmp.mar <- matrix(c(1,1,1,1,1,1.5,1,1,2), ncol = 3, byrow = TRUE)
> rmvlog(3, dep = .6, d = 5, mar = tmp.mar)
(,11 [,21 [,3] [,4] I[,5]
[1,]1 2.8440 2.700 2.1742 1.1078 1.213
[2,] 0.7029 2.894 0.5864 0.4811 0.851
[3,] 3.0829 1.810 3.5614 3.5234 1.927

> tmp.quant <- matrix(rep(c(1,1.5,2), 5), ncol = 5)
> pmvlog(tmp.quant, dep = .6, d = 5, mar = tmp.mar)
[1] 0.07233 0.16387 0.21949

The dependence parameters used in the following trivariate asymmetric logistic model are
(a2, 13, 03, 123) = (.6,.5,.8,.3). The asymmetry parameters are 61; = 4, 6o = 0,
93’3 = .6, (91’12,92,12) = (3, 2), (01,13,93’13) = (1,1), (92’23,93,23) = (4,1) and ﬁnally
(01,123,62,123,03.123) = (.2,.4,.1). Notice that the constraints are satisfied.

*Including vectors of length one.

> rmvalog(3, dep = ¢(.6,.5,.8,.3), asy =
list(.4,0,.6,c(.3,.2),c(.1,.1),c(.4,.1),c(.2,.4,.2)), d = 3)
(11 [,21 [,3]
[1,] 4.0022 2.4301 1.925
[2,] 0.9138 0.2474 1.019
[3,] 1.5825 0.5251 0.897

> pmvalog(c(2, 2, 2), dep = c(.6,.5,.8,.3), asy =

list(.4,.0,.6,c(.3,.2),c(.1,.1),c(.4,.1),c(.2,.4,.2)), d = 3)
[1] 0.4131
> tmp.quant <- matrix(rep(c(1,1.5,2), 3), ncol = 3)
> pmvalog(tmp.quant, dep = c(.6,.5,.8,.3), asy =
list(.4,.0,.6,c(.3,.2),c(.1,.1),c(.4,.1),c(.2,.4,.2)), d = 3)

[1] 0.09042 0.23277 0.41307

The dependence parameters used in the following four dimensional asymmetric logistic model

are ap — 1 for |b‘ = 2* and (algg,a124,a134,a234,a1234) = (.7,.3,.8,.7,.5). The asymme-
tI‘y parameters are 91'7() = 0 for all 4 € b such that |b| S 2, (91’123,02’123,93,123) = (2,1,2),
(01,124, 62,124,04,104) = (.1,.1,.2), ..., and (61,1234, 02,1234, 03,1234, 04,1234) = (.4, .6,.2,.5)

> rmvalog(3, dep = c(rep(1,6),.7,.3,.8,.7,.5), asy =
list(0, 0, 0, 0, c(0,0), c(0,0), c(0,0), c(0,0), c(0,0), c(0,0),
c(.2,.1,.2), c(.1,.1,.2), c(.3,.4,.1), c(.2,.2,.2), c(.4,.6,.2,.5)), d = 4)
[,11 [,2] [,31 [,4]
[1,] 1.960 2.111 1.2831 1.427
[2,] 3.337 3.512 1.4408 2.470
[3,] 1.394 1.897 -0.2020 2.543

The following examples may be helpful in deciphering errors.

> rmvalog(3, dep = c(.6,.5,.8,.3), asy =
list(.4,0,.5,c(.3,.2),c(.1,.1),c(.4,.1),c(.2,.4,.2)), d = 3)
Error in rmvalog(3, dep = ¢(0.6, 0.5, 0.8, 0.3), asy = list(0.4, 0, 0.5,
‘asy’ does not satisfy the appropriate constraints

0.5+ 0.1 + 0.1 + 0.2 does not equal one; the sum constraint on the third
margin is not satisfied

> rmvalog(3, dep = ¢(.6,1,.8,.3), asy =
list(.4,0,.6,c(.3,.2),c(.1,.1),c(.4,.1),c(.2,.4,.2)), d = 3)
Error in rmvalog(3, dep = c(0.6, 1, 0.8, 0.3), asy = list(0.4, 0, 0.6,
‘asy’ does not satisfy the appropriate constraints

A dependence parameter is equal to one but the corresponding asymmetry
parameters are not zero (the first ‘further constraint’).

One possible alternative which preserves dep (and still satisfies the sum
constraints) is

*The values taken by o, when |b| = 2 are irrelevant here because 6;,, = 0 for all ¢ € b such that |b| = 2; they do
not therefore appear in the expansion of the distributional form (I arbitrarily set them to one). Test this yourself
using set.seed to set the seed of the random generator.

> rmvalog(3, dep = ¢(.6,1,.8,.3), asy =
list(.4,0,.6,c(.3,.2),c(.0,.0),c(.4,.1),c(.3,.4,.3)), d = 3)
[,11 [,2] [,3]
[1,]1 1.814 2.097 0.6302
[2,] 1.007 3.435 0.8756
[3,] 1.279 1.441 1.3642

> rmvalog(3, dep = c(.6,.5,.8,.3), asy =
list(.5,0,.6,c(.3,.2),c(0,.1),c(.4,.1),c(.2,.4,.2)), d = 3)
Error in rmvalog(3, dep = c(0.6, 0.5, 0.8, 0.3), asy = 1list(0.5, 0, 0.6,
‘asy’ does not satisfy the appropriate constraints

The fifth element in asy contains exacly one non-zero asymmetry parameter
(the second ‘further constraint?’)

> rmvalog(3, dep = c(.6,.5,.8,.3), asy =
list(.4,0,.6,c(.3,.2),c(.1,.1),c(.4,.1),c(.2,.4,.2)))
Error in rmvalog(3, dep = c(0.6, 0.5, 0.8, 0.3), asy = list(0.4, 0, 0.6,
‘asy’ is not of the correct form

Actually, asy is not of the correct form only because the dimension has
been mis-specified (the default dimension is 2)

4 Fitting Distributions by Maximum Likelihood

This section presents the functions which produce maximum likelihood estimates for the distri-
butions given previously. The fitting functions derive maximum likelihood estimates using the
general purpose optimization function optim. This requires a fairly recent version of R. Univari-
ate and bivariate distributions are discussed Sections 4.1 and 4.2 respectively. For illustrative
purposes Sections 4.1 and 4.2 use only simulated data. Two extended examples (one univariate
and one bivariate) using the data sets oxford and sealevel (both included in the EVD pack-
age) are given in Section 4.3. Within these examples I implement various diagnostic plots and
procedures, and show how to choose good starting values for the optimization.

The maximum likelihood estimators of the GEV parameters do not necessarily have the usual
asymptotic properties, since the (lower or upper) end point of the GEV distribution (given by
p — o /&) depends on the parameters. Smith (1985) shows that the usual asymptotic properties
hold when ¢ > —0.5. Fortunately, this is often the case.* When —1 < ¢ < —0.5 the maximum
likelihood estimators do not have the standard asymptotic properties, but generally exist. When
¢ < —1 maximum likelihood estimators do not often exist.'*

4.1 Univariate Fitting

The univariate fitting functions are’

*For environmental data sets, at least.

fThis occurs because of the short tail (i.e. the large mass at the lower end point). The likelihood increases
without bound as the lower end point is estimated to be closer and closer to the minimum of the data.

In terms of the Weibull shape parameter o, the usual asymptotic properties hold when a > 2, the asymptotic
properties are not standard for 1 < a < 2, and maximum likelihood estimators do not often exist for a < 1.

$The first four functions are simple wrappers to fdensfun which is based on fitdistr in package MASS.

10

ffrechet(x, start, ...)

frweibull(x, start, ...)

fgumbel (x, start, ...)

fgev(x, start, ...)

fext(x, start, densfun, distnfun,

forder(x, start, densfun, distnfun,
largest = TRUE)

., distn, mlen = 1, largest = TRUE)
., distn, mlen

=1, j=1,

The argument x should be given a numeric vector containing data to be fitted. start should be
a named list containing starting values, the names of which should be the parameters over which
the likelihood is to be maximized. If some of the parameters are to be set to fixed values, they
can be given as separate arguments. Any of the arguments that can be passed to optim can also

be specified.

> data <- rgev(1000, loc = 0.13, scale
> fgev(data, start = list(loc
control = list(trace = 1))
Minimize the negative log-likelihood
initial wvalue 1956.771912
final value 1830.364841
converged
$estimate
loc scale shape
0.1594 1.1422 0.2101

$std.err
loc scale shape
0.04088 0.03265 0.02549

$deviance

[1] 3661

$counts

function gradient
39 9

> fgev(data, start = list(loc = 0, scale
$estimate

loc scale
0.3042 1.2836

$std.err
loc scale
0.04234 0.03341

$deviance

[1] 3778

$counts

function gradient
34 10

11

1.
0, scale =

0.2)
= 0), method = "BFGS",

1, shape
1, shape

1), shape = 0, method = "BFGS")

> fgev(data, start = list(loc = 0), scale = 1, shape = 0)
> fgev(data, start = list(loc = 0))
Both are equivalent, since the default values for the scale and
shape arguments in dgev are one and zero respectively
$estimate
loc
0.1844

$std.err
loc
0.03162

$deviance
[1] 3882

$counts
function gradient
20 NA

The first example maximizes over (loc, scale shape), using starting values (0,1,0). The second
example maximizes over (loc, scale), with the shape parameter fixed at zero, and the third
maximizes over loc, with the shape and scale parameters fixed at zero and one respectively. In
the third example the shape and scale arguments are not specified. When a parameter is not
specified, it is taken to be fixed at the default value in the corresponding density function.

The value returned by the fitting function is a list of four elements. The estimate and std.err
components give maximum likelihood estimates and their standard errors* (approximated using
the inverse of the observed information matrix). The deviance component is minus twice the
log-likelihood function. In the first example the minimum deviance is given by

> -2xsum(dgev(data, loc = 0.1594, scale = 1.1422, shape = 0.2101, log = TRUE))
[1] 3661

The deviance component can be used to compare models. Likelihood ratio tests can be per-
formed by comparing the difference between the deviances of nested models with chi-squared
distributions.? For example, 3778 — 3661 = 117 yields a very small p-value when compared with
a chi-squared distribution on one degree of freedom, so the evidence for a Gumbel distribution
(zero shape) is non-existent. This is not surprising since the 95% confidence interval for the shape
parameter given by the full fit is (0.16,0.26).} Confidence intervals based on profile likelihoods
are discussed in Section 4.3.1.

The counts component returns the number of function and gradient evaluations? used by optim.
The arguments method and control are passed to optim. The default method used by optim ‘uses
only function values and is robust but relatively slow’. I prefer (in the first instance) the method
BFGS, which uses gradient evaluations and tends to be much faster for more complex examples.
The default maximum number of gradient evaluations used for derivative based optimization

*Assuming the global maximum has been found. A range of starting values can be used to examine the space
fully.

fThere are exceptions (see Section 4.3.2).

Specifically, the confidence interval does not contain zero. A Wald test would therefore be rejected at signifi-
cance level 0.05.

$Finite-difference approximations.

12

methods is 100 and is rarely reached.* For non-derivative based methods the default maximum
number of function evaluations is 500, which is often reached. If it has been reached set it to a
higher value using the named list element maxit in the argument control. There are numerous
options that can be passed to optim through control. See the help page for details.

The fgumbel function is a simple wrapper to fgev. The models

> somedata <- rgev(100,1,1,0.05)
> fgumbel (somedata, start = list(loc = 0.5, scale = 2))
> fgev(somedata, start = list(loc = 0.5, scale = 2))

are equivalent.

GEV estimates can be compared with Fréchet and Weibull estimates.

> ffrechet(data, start = list(loc=-2,scale=1,shape=5), method ="BFGS")
$estimate

loc scale shape
-5.278 5.437 4.759

$std.err
loc scale shape
0.6711 0.6872 0.5779

$deviance

[1] 3661

$counts

function gradient
40 15

Compare this example with the full GEV fit. The deviances are the same. I am fitting the
same model, but under a different parameterization. The relationship between the parameter
estimates was given in Section 2. For example, the shape parameter estimate in the Fréchet
model is the inverse of the shape parameter estimate in the GEV model (4.759 ~ 1/0.2101). The
following snippet shows the analogous relationship with frweibull.

> data2 <- rgev(1000, loc = 0.13, scale = 1.1, shape = -0.25)
> frweibull(data2, start = list(loc = 5, scale = 5, shape = 5), method="BFGS")
$estimate
loc scale shape
4.507 4.403 4.077

$std.err
loc scale shape

0.2837 0.2965 0.3134

$deviance
[1] 3026

$counts

*So rare that optim gives no warning when it is reached.

13

function gradient
37 12

> fgev(data2, start = list(loc=0.13,scale=1.1,shape=0), method="BFGS")
$estimate

loc scale shape
0.1036 1.0800 -0.2451

$std.err
loc scale shape
0.03748 0.02607 0.01887

$deviance

[1] 3026

$counts

function gradient
74 12

The fext function works slightly differently. It yields maximum likelihood estimates for the
distributions (4) and (5) given an integer m and an arbitrary distribution function F.

fext(x, start, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE)

If yearly.maxima.data contains yearly maxima taken from a process observed daily (with the
daily observations independent, or at least approximately so), a normal distribution can be fitted
to the (unrecorded or unavailable) daily observations as follows

fext (yearly.maxima.data, list(mean = 0, sd = 1), distn = "norm", mlen = 365)

The arguments densfun, distnfun, distn, mlen and largest are the same as those used in the
density function dext (see Section 2). The argument x should be a numeric vector containing
the data to be fitted, which should be assumed to represent maxima (if largest is TRUE, the
default) or minima (if largest is FALSE). start should be a named list containing starting values,
the names of which should be the parameters over which the likelihood is to be maximized. If
some of the parameters are to be set to fixed values, they can be given as separate arguments. If
parameters are missing, they are fixed at their default values specified in the density/distribution
function. Any of the arguments that can be given to optim can also be specified.

The optimizer will be effected by the way in which the density and distribution functions passed
to fext behave when given values outside of the valid parameter space. Functions in R base
generally produce NA values which may result in warnings being printed which can usually be
ignored.*

If the density and distribution functions are user defined, the order of the arguments must mimic
those in R base (i.e. data first, parameters second). The density function must have a log
argument.

> data3 <- rext(100, qnorm, mean = 0.56, mlen = 365)
Simulate yearly maxima using normal distribution

*See the help page for optim if you wish to avoid this.

14

> fext(data3, list(mean = 0, sd = 1), distn = "norm", mlen = 365)
$estimate

mean sd
0.5876 0.9833

$std.err
mean sd
0.20215 0.07374

$deviance

[1] 78.91

$counts

function gradient
61 NA

> fext(data3, list(rate = 1), distn = "exp", mlen = 365)
Incorrectly fit exponential distribution

$estimate

rate

1.785

$std.err
rate
0.03165

$deviance
[1] 123.9

$counts
function gradient
26 NA

> fext(data3, list(scale = 1), shape = 0.5, distn = "gamma", mlen = 365)
Incorrectly fit gamma distribution with shape fixed at 0.5
$estimate
scale
0.7323

$std.err
scale
0.01560

$deviance
[1] 149.7

$counts

function gradient
28 NA

15

The forder function yields maximum likelihood estimates for the distribution (6) given integers
m and j € {1,...,m}, and an arbitrary distribution function F.

forder(x, start, densfun, distnfun, ..., distn, mlen =1, j = 1,
largest = TRUE)

The arguments densfun, distnfun, distn, mlen, j and largest are the same as those used
in the density function dorder (see Section 2). The argument x should be a numeric vector
containing the data to be fitted, and start should again be a named list containing starting
values. And no, I have never encountered a data set where it would be of much use either, but
it fitted easily within the design of the package!

4.2 Bivariate Fitting

The bivariate fitting functions are

fbvlog(x, start, ...)
fbvalog(x, start, ...)
fbvhr(x, start, ...)
fbvneglog(x, start, ...)
fbvaneglog(x, start, ...)

The argument x should be given a numeric matrix (or a data frame) containing two columns of
data to be fitted. start should be a named list containing starting values, the names of which
should be the parameters over which the likelihood is to be maximized. These names can be
any or possibly all of dep, asy (a vector of length two), marl and mar2 (vectors of length three).
Alternatively, marl can be passed as three separate arguments; locl, scalel and shapel. mar2
can similarly be passed as three separate arguments; loc2, scale2 and shape2. The asymmetry
parameters can also be given separately as asyl and asy2. As usual, any arguments that can
passed to optim can be specified. The following example yields maximum likelihood estimates
for the symmetric logistic model.

> bvdata <- rbvlog(100, dep = 0.6, marl = c(1.2,1.4,0.4),
mar2 = c(1.2,1.4,0.4))
Simulate data

> fbvlog(bvdata, start = list(marl = c(2,1,0), mar2 = c(1,1,0), dep = 0.75),
control = list(maxit = 2000))

> fbvlog(bvdata, start = list(locl=2, scalel=1, shapel=0, loc2=1, scale2=1,
shape2=0, dep=0.75), control = list(maxit = 2000))

Both eventually give the following output

$estimate
locl scalel shapel loc2 scale2 shape2 dep

0.9104 1.2590 0.3652 0.9784 1.2315 0.4569 0.6495

$std.err
locl scalel shapel loc2 scale2 shape2 dep
0.14052 0.12319 0.08053 0.14138 0.13158 0.09832 0.06020

$deviance

16

[1] 777.9

$counts
function gradient
626 NA

> fbvlog(bvdata, start = list(marl = c(2,1,0), mar2 = c(1,1,0), dep = 0.75),
method = "BFGS")$counts
This method is faster
function gradient
85 28

Associating a separate name with each parameter allows any parameter subset to be fixed at
specified values. If parameters are to be set to fixed values, they can be given as separate argu-
ments. All parameters with fixed values must be passed individually (e.g. to fix the parameters
on the first margin all of locl, scalel and shapel must be specified; using mar1 to specify all
three simultaneously results in an error).

> fbvlog(bvdata, start = list(marl = c(2,1,0), mar2 = c(1,1,0)), dep = 1,
method="BFGS")

Fix the dependence parameter at one

$estimate
locl scalel shapel loc2 scale2 shape?2

0.9080 1.2482 0.3435 0.9822 1.2438 0.4832

$std.err
locl scalel shapel loc2 scale2 shape2
0.14173 0.12214 0.08596 0.14321 0.13580 0.10192

$deviance

[1] 813.1

$counts

function gradient
71 24

Marginal GEV estimates
> fgev(bvdatal[,1], start
loc scale shape

0.9079 1.2482 0.3434

list(loc=1,scale=1,shape=0), method="BFGS")$estimate

> fgev(bvdatal,2], start
loc scale shape
0.9821 1.2438 0.4832

list(loc=1,scale=1,shape=0), method="BFGS")$estimate

This example shows how to fix the dependence parameter at one (at independence). The esti-
mates are seen to tally with the separate marginal GEV fits. In real (data) examples this is a
good way of finding reasonable starting values on the margins (see Section 4.3.2).

To illustrate fixed parameters the following snippet performs likelihood ratio tests.*

*These are for illustrative purposes only. I know what the process generating the data is!

17

Test for Gumbel (zero shape) margins

Deviance increses by 109.6

P-value is pchisq(109.6, 2, low = FALSE) = 1.587e-24
Hypothesis rejected

> fbvlog(bvdata, start = list(locl=1, scalel=1, loc2=1, scale2=1, dep=0.75),
shapel = 0, shape2 = 0, method = "BFGS")

$estimate
locl scalel 1loc2 scale2 dep

1.2422 1.7526 1.3554 1.6286 0.8431

$std.err
locl scalel loc2 scale2 dep
0.18019 0.15039 0.16808 0.13883 0.05581

$deviance

[1] 887.5

$counts

function gradient
29 12

> pchisq(109.6, 2, low = FALSE)
[1] 1.587e-24

Test whether the parameters on the first margin are (1,1.5,0.5)
Deviance increses by 4.3
P-value is pchisq(4.3, 3, low = FALSE) = 0.2308

> fbvlog(bvdata, start = list(mar2 = c(1,1,0), dep = 0.75), locl =1,
scalel = 1.5, shapel = 0.5, method = "BFGS")

Do not use marl = ¢(1,1.5,0.5)

It will produce an error

$estimate
loc2 scale2 shape2 dep

1.0552 1.3686 0.5359 0.5962

$std.err
loc2 scale2 shape2 dep
0.12982 0.12808 0.10190 0.05638

$deviance

[1] 782.2

$counts

function gradient
61 16

> pchisq(4.3, 3, low = FALSE)
[1] 0.2308

18

There follows a few examples of asymmetric logistic fits. I use the same simulated data set,
distributed as symmetric logistic (where both asymmetry parameters equal one). This illustrates
the difficulties that arise when the fit is on the edge of the parameter space. Although I have made
a distinction between the asymmetry and dependence parameters, they all affect the dependence
structure, and are highly correlated. Try plotting the fitted dependence function with abvalog.
The likelihood function is complex, and you must ensure good starting values (see Section 4.3.2).

> fbvalog(bvdata, start = list(marl = c(1,1,0), mar2 = ¢(1,1,0),
asy = ¢(.7,.7), dep = 0.75), method = "BFGS")
$estimate
locl scalel shapel loc2 scale2 shape2 asyl asy2 dep
0.9130 1.1753 0.2340 1.0240 1.1933 0.2639 0.9994 0.7233 0.5849

$std.err
locl scalel shapel loc2 scale2 shape?2 asyl asy2
1.309e-01 1.045e-01 5.158e-02 1.408e-01 1.211e-01 7.490e-02 2.000e-06 1.524e-01
dep
7.429e-02

$deviance
[1] 782.1

$counts
function gradient
144 18

There are problems here. The first asymmetry parameter is almost one. This will cause difficulties
for the optimizer. A lower deviance can be obtained by setting this parameter to one. There
are two approaches. The first approach fixes the parameter directly, while updating the starting
values.

> fbvalog(bvdata, start = list(marl = ¢(0.9,1.2,0.2), mar2 = c(1,1.2,0.3),
asy2 = .72, dep = 0.58), asyl = 1, method = "BFGS")

$estimate
locl scalel shapel 1loc2 scale2 shape2 asy2 dep

0.8808 1.2381 0.3826 1.0037 1.2702 0.4598 0.7013 0.5362

$std.err
locl scalel shapel loc2 scale2 shape2 asy2 dep
0.13948 0.12219 0.08068 0.14631 0.13809 0.10182 0.14706 0.07484

$deviance

[1] 774.3

$counts

function gradient
46 14

This now appears to be a global maxima. The standard errors relate to the reduced model. The
second approach uses the optimization method L-BFGS-B, which can incorporate box-constraints
using the arguments lower and upper.

19

> fbvalog(bvdata, start = list(marl = ¢(0.9,1.2,0.2), mar2 = ¢(1,1.2,0.3),
asy = ¢(.99,.72), dep = 0.58), method = "L-BFGS-B", lower =
c(rep(-Inf, 6), 0, 0, -Inf), upper = c(rep(Inf, 6), 1, 1, 1))

$estimate
locl scalel shapel loc2 scale2 shape2 asyl asy2 dep

0.8808 1.2381 0.3826 1.0037 1.2702 0.4598 1.0000 0.7013 0.5362

$std.err
locl scalel shapel loc2 scale2 shape2 asyl asy?2
1.395e-01 1.222e-01 8.068e-02 1.463e-01 1.381e-01 1.018e-01 2.000e-06 1.471e-01
dep
7.484e-02
$deviance
(1] 774.3
$counts
function gradient
20 20

The first asymmetry parameter is (not surprisingly) estimated to be one. Using the L-BFGS-B
method prevents the optimizer stopping at parameter boundaries. In fact, if I had used this
method to start with, I would have avoided the initial problem.*

Using fbvalog with both asymmetry parameters fixed at one returns the same as the symmetric
fit (fbvlog) given previously.

> fbvalog(bvdata, start = list(marl = c(1.5,1.4,0.1), mar2 = c(1.4,1.4,0.2),
dep = 0.73), asyl = 1, asy2 = 1, method="BFGS")
$estimate
locl scalel shapel 1loc2 scale2 shape?2 dep
0.9101 1.2591 0.3651 0.9777 1.2309 0.4570 0.6495

$std.err
locl scalel shapel loc2 scale2 shape2 dep
0.14051 0.12322 0.08052 0.14131 0.13148 0.09830 0.06020

$deviance

[1] 777.9

$counts

function gradient
41 16

4.3 Examples

In this section I present two extended examples (one univariate and one bivariate) using the data
sets oxford and sealevel, included in the EVD package.

*And it would not have been a very good illustration of boundary problems!

20

4.3.1 A Univariate Example

The numeric vector oxford contains annual maximum temperatures (in degrees Fahrenheit) at
Oxford, England, from 1901 to 1980. The data has previously been analysed by Tabony (1983).

> data(oxford)
Loads the data
> plot(1901:1980, oxford)
> sqrt(6 * var(oxford))/pi
Moment estimate of scale
[1] 3.326
> mean(oxford) - 0.58 * sqrt(6 * var(oxford))/pi
Moment estimate of location
[1] 83.4
> oxford.fit <- fgev(oxford, start = list(loc=83.5, scale=3.5, shape=0))
> oxford.fit
$estimate
loc scale shape
83.8386 4.2597 -0.28T71

$std.err
loc scale shape
0.52310 0.36575 0.06835

$deviance

[1] 457.8

$counts

function gradient
106 NA

> fgev(oxford, start = list(loc=83.8, scale=4.25))$deviance -
oxford.fit$deviance

[1]1 12

> pchisq(12, 1, low = FALSE)

[1] 0.000532

Always begin by plotting the data. The plots generated during this example are presented (with
better labeling) in Figure 2 at the end of this section. The assumptions of stationarity and
independence seem sensible. To specify decent starting values I use moment estimators for the
location and scale parameters under the assumption that the shape is zero. The value 0.58, used
in the moment estimator for the location, is the Euler constant* (to 1dp). The fitted shape is
negative, so the fitted distribution is Weibull. The hypothesis that the shape is zero (the Gumbel
distribution) is rejected at any significance level above about 0.0005.

> mle <- oxford.fit$estimate

> as.vector(mle[1] - mle[2]/mle[3])

End point of the fitted GEV distribution
[1] 98.67

> range (oxford)

[1] 75 95

*The Euler constant is defined as the limit as n — oo of >°"_, 1/x —log(n).

21

The (upper) end point* of the fitted distribution is 98.67. The maximum temperature recorded
was 95 degrees Fahrenheit, so we are not near the edge of the parameter space.” Basic diagnostic
plots can be produced using

> pvec <- seq(70, 100, len=200)
> plot(pvec, dgev(pvec, mle[1], mle[2], mle[3]), type = "1")
> rug(jitter(oxford))

> plot(c(70, sort(oxford), 100), c(seq(0, 1, len=81), 1),
xlim = c(70, 100), type = "s")
> lines(pvec, pgev(pvec, mle[1], mle[2], mle[3]), 1ty = 2)

> plot(qgev(ppoints(oxford), mle[1], mle[2], mle[3]), sort(oxford))
> abline(0,1)

The plots compare parametric distributions, densities and quantiles to their empirical counter-
parts. The profile deviance (minus twice the profile likelihood) of the shape parameter can be
plotted using

> shape.profile <- numeric(20)

> shapes <- seq(-0.5, 0.1, len = 20)

> for(i in 1:20)
shape.profile[i] <- fgev(oxford, start = list(loc=83.8, scale=4.25),
shape = shapes[i])$deviance

Warning messages:

[...]

In four of the twenty optimizations the deviance was infinite at the starting
values. Infinite values are converted to 1le6 when passed to the optimizer.

Check that the optimizer always found its way to a ‘finite’ value with

> any(shape.profile == 1e6)

[1] FALSE

> plot(sp <- spline(shapes, shape.profile), type = "1")

> climit <- oxford.fit$deviance + qchisq(0.95, 1)

One degree of freedom

> climit

[1] 461.6

> abline(h = climit, 1ty = 2)

> approx(sp$y[sp$x < -0.29], sp$x[sp$x < -0.29], climit)$y

[1] -0.4143
> approx(sp$yl[sp$x > -0.29], sp$x[sp$x > -0.29], climit)$y
[1] -0.1388

A horizontal line is drawn such that the two intersections of the line with the profile deviance
yield a profile confidence interval, with confidence coefficient 0.95. The end points of the interval
are calculated explicitly using approx, which performs linear interpolation. The spline function
also performs interpolation which, when plotted, draws a curve between the evaluated points.
Profile deviances for the location and scale parameters can be calculated in the same manner.

*The upper limit of the distribution function F' is defined as sup{z : F(z) < 1}.
tWhen I refer to the parameter space I include the constraints imposed by the data.

22

> scale.profile <- numeric(20)

> scales <- seq(3, 6, len = 20)

> for(i in 1:20)
scale.profile[i] <- fgev(oxford, start = list(loc=83.8, shape=-0.28),
scale = scales[i])$deviance

Warning message:

[...]

> plot(spline(scales, scale.profile), type = "1")

> abline(h = climit, 1ty = 2)

> loc.profile <- numeric(20)

> locs <- seq(82, 86, len = 20)

> for(i in 1:20)
loc.profile[i] <- fgev(oxford, start = list(scale=4.25, shape=-0.28),
loc = locs[i])$deviance

> plot(spline(locs, loc.profile), type = "1")

> abline(h = climit, 1ty = 2)

The joint profile deviance of the scale and shape parameters (which are often highly correlated)
can be plotted using

> scaleshape.profile <- numeric(20~2)

> scaleshapes <- expand.grid(scales, shapes)

> for(i in 1:(20°2))
scaleshape.profile[i] <- fgev(oxford, start = 1list(loc=83.8),
scale = scaleshapes[i,1], shape = scaleshapes[i,2])$deviance

There were 50 or more warnings (use warnings() to see the first 50)

In more than 50 optimizations the deviance was infinite at the starting values
> any(shape.profile == 1e6)

[1] FALSE

Again, the optimizer always found its way to a finite value

> br.pts <- oxford.fit$deviance +
qchisq(c(0,0.5,0.8,0.9,0.95,0.99,0.999,0.9999), 2)

Two degrees of freedom needed

> image(scales, shapes, matrix(scaleshape.profile, nrow = 20),
col = heat.colors(8), breaks = c(br.pts,max(scaleshape.profile)))

The colours of the image plot represent confidence sets with different confidence coefficients. The
lightest colour (ignoring the background colour) represents a confidence ellipse with coefficient
0.9999; the darkest colour represents a confidence ellipse with coefficient 0.5. It looks a bit
‘blocky’ though, because points were only evaluated on a 20 by 20 grid and no interpolation has
been performed. The number of points evaluated could be increased, but interpolation is the
better option. The following snippet requires the akima package.

> library(akima)

> profile.interp <- interp(scaleshapes[,1], scaleshapes[,2], scaleshape.profile,
xo = seq(3, 6, len = 75), yo = seq(-0.5, 0.1, len = 75))

> image(profile.interp, col = heat.colors(8), breaks =
c(br.pts, max(scaleshape.profile)))

23

Much better. Increasing the len arguments to xo and yo provides a better resolution. A return
period plot can be produced using

> ret.period <- 10~ (seq(0, 3, len = 100))[-1]

> plot(ret.period, ggev(l/ret.period, mle[1], mle[2], mle[3], low = FALSE),
log = "x", type = "y

> points(rev(1l/ppoints(oxford)), sort(oxford))

Return values are simply quantiles in the upper tail. Return values can be generated using
qgev(probs, low = FALSE), where probs is a vector of probabilities. The return periods asso-
ciated with these return values are 1/prob. The return value associated with a return period of
100 years (or months, or whatever) is therefore defined as the upper quantile evaluated at the
probability 0.01. The return period plot compares empirical return values with the fitted model.
Confidence intervals for the return value at any specific return period can be calculated using
e.g. the delta method, and profile deviances can be calculated by re-parameterizing the GEV
likelihood.*

Imagine that Oxford is on another planet (it’s easy if you try), and that maximum daily tem-
peratures are both stationary and independent. The snippet below fits normal and gamma
distributions to the daily observations.

> fext(oxford, start = list(mean = 40, sd = 1), distn = "norm", mlen = 365)
$estimate

mean sd

48.85 12.43

$std.err
mean sd
2.7204 0.9928

$deviance
[1] 464.2

$counts
function gradient
51 NA

> fext(oxford, start = list(scale = 1, shape = 1), distn = "gamma",
mlen = 365)

$estimate

scale shape

1.63 32.94

$std.err
scale shape
0.2407 6.0378

$deviance
[1] 465.9

*Which can only be done by hacking the code or using another routine (or waiting until I decide to implement
explicit diagnostic functions).

24

$counts
function gradient
353 NA

> plot(pvec, dgev(pvec, mle[1], mle[2], mle[3]), type = "1")

> lines(pvec, dext(pvec, mean = 48.85, sd = 12.43, distn = "norm", mlen = 365),
1ty = 2)

> lines(pvec, dext(pvec, scale = 1.63, shape = 32.94, distn = "gamma",
mlen = 365), 1ty = 3)

> rug(jitter(oxford))

The fitted densities for the yearly maxima, derived by passing normal and gamma parameter
estimates to dgev, are compared to the GEV model. The normal and gamma models yield very
similar distributions, and both are marginally more right skewed than the GEV fit.* I'll admit
that this example isn’t particularly relevant for the oxford data (Oxford isn’t on a different
planet - I checked), but it may be relevant for other data sets.

*Which will not be surprising to those who know about domains of attraction. The limiting distribution (as
mlen tends to co) of both the normal and gamma models is Gumbel.

25

I ETETETTTTT RENA
120 w020 1900 1500 100 oo w wow s

uuuuuuuuuu

100

uuuuuuuuu

[ETETTTNTE Y NN
E

B s %

ccccccccccc

Figure 2: Lots of diagnostic plots. Reading from left to right: the data itself; the fitted GEV
density including a rug plot of the (jittered) data; the fitted GEV and empirical distributions; a
quantile-quantile plot; profile deviances for the shape, scale and location parameters respectively,
including horizontal lines representing profile 95% confidence intervals; the joint profile deviance
of the scale and shape parameters; a return level plot; and finally, the first plot is repeated along
with fitted distributions for models assuming normal and gamma distributions for observed daily

maxima (valid under extremely tenuous assumptions).

26

4.3.2 A Bivariate Example

The sealevel data frame (Coles and Tawn, 1990) has two columns containing annual sea level
maxima from 1938 to 1976 at Dover and Harwich respectively, two sites on the coast of Britain.

data(sealevel)
Load the data
plot(sealevel)
plot (1938:1976, sealevell,1])
plot (1938:1976, sealevell,2])
sl <- sealevel
Save on typing

¥ V V V V #% V

The Dover data arguably contain a slight trend. It may be advisable to de-trend the data and
repeat the analysis given subsequently. Although not currently implemented in the EVD package,
it is possible to model the location parameter with an explicit trend term which can be estimated
and tested for significance. Non-stationary models such as this may be implemented at a later
date.

The plot of the Harwich maxima against the Dover maxima shows that there exists a reasonable

degree of dependence. The following code attempts to find decent starting values for the overall
fit.

> sqrt(6 * c(var(sl[,1]), var(sl[,2])))/pi

[1] 0.2073 0.2383

> c(mean(sl[,1]), mean(s1[,2])) - 0.58 * ¢(0.21, 0.24)
[1] 3.623 2.619

> tmp <- fbvlog(sl, start = list(marl = c(3.6, 0.2, 0), mar2 = c(2.6, 0.25,
0)), dep = 1, method = "BFGS")

> tmp <- fbvalog(sl, start = list(marl = c(3.6, 0.2, 0), mar2 = c(2.6, 0.25,
0)), asyl = 1, asy2 = 1, dep = 1, method = "BFGS")

> tmp <- fbvhr(sl, start = list(marl = ¢(3.6, 0.2, 0), mar2 = c(2.6, 0.25,
0)), dep = 0.01, method = "BFGS")

Equivalent. All produce the same object.

> tmp$estimate

locl scalel shapel loc2 scale2 shape2
3.62212 0.18449 0.07967 2.62140 0.19891 0.10083

The first two lines of code find method of moments estimators for the marginal GEV location and
scale marginal parameters assuming independence and zero shapes (as in Section 4.3.1). These
starting values are then passed to a bivariate fitting routine which finds the maximum likelihood
estimators of the marginal parameters assuming independence (any bivariate fitting function can
be used; three examples are given above). This is equivalent (for estimates and standard errors)
to calling fgev on both margins. In this case the estimates produced are close to the original
moment estimators, so I am going to stick with the latter to use as my starting values.

> sl.fit <- fbvalog(sl, start = list(marl = c(3.6, 0.2, 0), mar2 = c(2.6, 0.25,
0), asy = c(0.8, 0.8), dep = 0.6), method = "BFGS", control = list(trace=1))

Takes about 40 seconds for me

initial value -7.938962

27

iter 10 value -11.402720
iter 20 value -12.772531
final value -12.772534

> sl.fit
$estimate

locl scalel shapel loc2 scale2 shape2 asyl asy2 dep
3.63086 0.18639 -0.04301 2.62542 0.20160 0.08512 0.69554 0.44967 0.24316

$std.err
locl scalel shapel loc2 scale2 shape2 asyl asy2 dep
0.03351 0.02495 0.10145 0.03598 0.02585 0.10739 0.21302 0.14489 0.10671

$deviance

[1] -25.55

$counts

function gradient
82 22

The above code estimates the parameters of the asymmetric logistic model. The fit took about
40 seconds (on my machine), including the time used to find the inverse of the 9 x 9 observed
information matrix, needed to calculate the standard errors. The fitted marginal distributions
for the Dover and Harwich maxima are Weibull and Fréchet respectively. The shape parameter
on the first margin (Dover) has become negative due to the dependence between the sites (and
hence the information provided by the Harwich data). Both of the shape parameter estimates
are within two standard errors of zero, so they could feasibly be Gumbel. A likelihood ratio test
of this hypothesis is given by*

> fbvalog(sl, start = list(locl = 3.6, scalel = 0.19, loc2 = 2.6, scale2 = 0.2,
asy = c(0.7, 0.45), dep = 0.24), method = "BFGS")$deviance - sl.fit$deviance

The shapes need not be specified since zero is the default value in dbvalog
[1] 4.001

> pchisq(4.001, 2, low = FALSE)

[1] 0.1353

Which you would accept if you favour significance levels below 0.1. A likelihood ratio test for
independence can be performed using

> tmp$deviance - sl.fit$deviance
[1] 22.05

The annual maxima are clearly nowhere near independent. The asymptotic distribution of the
test statistic is non-regular because the dependence parameter in the restricted model is fixed at
the edge of the parameter space. Tawn (1988) discusses non-regular testing procedures within
bivariate extreme value models.

> mle <- sl.fit$estimate

*I'm cheating, since I perform the test only because I have already seen the parameters estimates. I'll be
cheating throughout this section.

28

> as.vector(mle[1] - mle[2]/mle([3])
[1] 7.965

> range(sl[,1])

[1] 3.32 4.57

> as.vector(mle[4] - mle[5]/mle[6])
[1] 0.2571

> range(sl[,2])

[1] 2.35 3.99

I like to know how near I am to the edge of the parameter space. For the Dover maxima, the
upper limit* of the fitted marginal distribution is 7.96. For the Harwich maxima, the lower limit!
of the fitted marginal distribution is 0.26. The ranges of the data on each margin are also shown.

The symmetric logistic distribution can be fitted directly using fbvlog, or by using fbvalog and
fixing the asymmetry parameters to be one (both methods are shown below).

> sl.fit2 <- fbvalog(sl, start = list(marl = c(3.6, 0.19, -0.04), mar2 = c(2.6,
0.2, 0.09), dep = 0.6), asyl = 1, asy2 = 1, method = "BFGS")
> sl.fit2 <- fbvlog(sl, start = list(marl = c(3.6, 0.19, -0.04), mar2 = c(2.6,
0.2, 0.09), dep = 0.6), method = "BFGS")
Equivalent. Both produce the same object.
> sl.fit2%estimate
locl scalel shapel loc2 scale2 shape2 dep
3.62966 0.18774 -0.01478 2.62206 0.19696 0.06469 0.62474
> sl.fit2$deviance

[1] -22.08
> sl.fit2$deviance - sl.fit$deviance
[1] 3.469

The asymptotic distribution of this test statistic is non-regular

> abvalog(dep = 0.24316, asy = c(0.69554, 0.44967), plot = TRUE)
> abvlog(dep = 0.62474, add = TRUE, 1ty = 2)

> abvalog(dep = 0.24316, asy = c(0.69554, 0.44967))

[1] 0.7884

> abvlog(dep = 0.62474)

[1]1 0.771

The dependence functions for the symmetric and asymmetric fits are plotted using abvalog
and abvlog (dependence functions for various models are given in Figure 3 at the end of this
section). Both show a reasonable degree of the dependence, and the amount of asymmetry within
the asymmetric model is seen to be negligible.

Brace yourself for a fair amount of code. Here are some alternative models (the symmetric and
asymmetric negative logistic, and the Hiisler-Reiss).

> fbvhr(sl, start = list(marl = c(3.6, 0.19, -0.04), mar2 = c(2.6, 0.2, 0.09),
dep = 1), method = "BFGS", control = list(trace=1))

initial wvalue -8.384898

iter 10 value -10.226785

final value -10.227197

*The upper limit of the distribution function F is defined as sup{z : F(z) < 1}.
"The lower limit of the distribution function F is defined as inf{z : F(z) > 0}.

29

converged
$estimate

locl scalel shapel loc2 scale2 shape2 dep
3.628634 0.186708 0.002070 2.624658 0.198828 0.049562 1.253410

$std.err
locl scalel shapel loc2 scale2 shape2 dep
0.03332 0.02547 0.10978 0.03492 0.02649 0.08750 0.25854

$deviance

[1] -20.45

$counts

function gradient
47 13

> abvhr(dep
> abvhr(dep
[1] 0.7875

1.253410, add = TRUE, 1ty = 3)
1.253410)

> fbvaneglog(sl, start = list(marl = c(3.6, 0.19, -0.04), mar2 = c(2.6, 0.2,

0.09), dep = 1, asy = ¢(0.8,0.8)), method = "BFGS", control = list(trace=1))

initial wvalue -10.026860
iter 10 value -11.606034
iter 20 value -12.756318
final value -12.756320
converged
$estimate
locl scalel shapel loc2 scale2 shape2 dep asyl

asy2

3.63075 0.18641 -0.04278 2.62544 0.20154 0.08580 3.44762 0.69796 0.44601

$std.err
locl scalel shapel loc2 scale2 shape2 dep asyl asy2
0.03353 0.02505 0.10219 0.03595 0.02589 0.10761 1.72055 0.21072 0.14088

$deviance

[1] -25.51

$counts

function gradient
84 21

> abvaneglog(dep
> abvaneglog(dep
[1] 0.7892

3.44762, asy

3.44762, asy = c(0.69796,0.44601))

> fbvaneglog(sl, start = list(marl = c(3.6, 0.19, -0.04), mar2 = c(2.6, 0.2,

c(0.69796,0.44601), add = TRUE, 1ty = 3)

0.09), dep = 1), asyl = 1, asy2 = 1, method = "BFGS", control = list(trace=1))

initial value -9.453044
iter 10 value -10.686188
final value -10.686679
converged

30

$estimate
locl scalel
3.62862 0.18750

$std.err
locl scalel

0.03335 0.02574 0.

$deviance

[1] -21.37

$counts

function gradient
55 13

> abvneglog(dep
> abvneglog(dep
[1] 0.7738

shapel loc2 scale2 shape2 dep
-0.00417 2.62373 0.19825 0.06005 0.87394

shapel loc2 scale2 shape2 dep

10864 0.03483 0.02639 0.08903 0.24120

0.87394, add = TRUE, 1ty = 3)
0.87394)

Models which are not nested can be compared by adding penalty terms to the deviances which
take into account the number of parameters fitted (if both models have the same number of
parameters the deviances can be compared directly). Three commonly used penalty terms are
2p*, plog(n)! and p[1 + log(n)]}, where p is the number of parameters estimated and n is the
number of observations. Adding these penalties to the deviances produced in this section gives
(the sea level data contains n = 39 observations)

2p plog(n) p[l+log(n)]
Symmetric Logistic -8.08 3.57 10.56
Symmetric Negative Logistic | -7.37 4.28 11.27
Hiisler Reiss -6.45 5.20 12.19
Asymmetric Logistic -7.55 7.42 16.42
Asymmetric Negative Logistic | -7.51 7.46 16.46

Under these criteria the symmetric logistic distribution is seen to give the best fit.

I will finish this section by fitting the asymmetric model under the constraint § = 6; = 0,.
Constrained models of this type can be fitted indirectly using profile deviances/likelihoods. The
profile deviance for 4 is given by

> theta.profile <-
> thetas <- seq(0.

> for(i in 1:10)

numeric(10)
2, 1, len = 10)

theta.profile[i] <- fbvalog(sl, start = list(marl = c(3.63, 0.19, -0.04),
mar2 = c(2.63, 0.2, 0.09), dep = 0.25), asyl = thetas[i], asy2 = thetas[i],

method = "BFGS",

control = list(trace=1))$deviance

Be prepared to wait!

initial wvalue -8.

[...]

135660

* Akaike’s information criterion, or AIC.

tSchwarz’s criterion.

fBayesian information criterion, or BIC.

31

final wvalue -11.038110
converged

> plot(th.sp <- spline(thetas, theta.profile, n = 200), type="1")

> min(th.sp$y)

[1] -23.99

The minimum profile deviance

This is also the deviance evaluated at the maximum likelihood estimates

> th.sp$x[min(th.spPy) == th.sp$y]
[1] 0.4492
The maximum likelihood estimate for theta

The the profile deviance is lowest (-23.99) when 6 = 0.45. The full model can then be fitted

using

> fbvalog(sl, start = list(marl = c(3.63, 0.18, -0.04), mar2 = c(2.63, 0.2,
0.09), dep = 0.24), asyl = 0.4492, asy2 = 0.4492, method = "BFGS",
control = list(trace=1))

initial value -8.630673

iter 10 value -11.920427

final value -11.994322

converged

$estimate

locl scalel shapel loc2 scale2 shape2 dep
3.64858 0.19343 -0.06808 2.61243 0.19516 0.06455 0.16361

$std.err
locl scalel shapel loc2 scale2 shape2 dep
0.03039 0.02314 0.09274 0.03254 0.02419 0.10000 0.07127

$deviance

[1] -23.99

$counts

function gradient
64 16

The standard errors correspond to the constrained model where § = 6, = 6y = 0.45.

References

Coles, S. G. (2001) An Introduction to Statistical Modeling of Extreme Values. London: Springer—
Verlag.

Coles, S. G. and Tawn, J. A. (1990) Statistics of coastal flood prevention. Phil. Trans. R. Soc.
Lond., A, 332, 457-476.

Galambos, J. (1975) Order statistics of samples from multivariate distributions. J. Amer. Statist.
Assoc., 70, 674-680.

32

pen
pen

Figure 3: The dependence functions of fitted bivariate models for the sea level data. The asym-
metric dependence functions in the left plot are for the asymmetric logistic (solid line) and
asymmetric negative logistic (dashed line) models respectively (they are almost indistinguish-
able). The symmetric dependence functions in the right plot are for the logistic (solid line),
negative logistic (dashed line) and Hiisler-Reiss (dotted line) models respectively.

Ghoudi, K., Khoudraji, A. and Rivest, L.-P. (1998) Propriétés statistiques des copules de valeurs
extrémes bidimensionnelles. Canad. J. Statist., 26, 187-197.

Gumbel, E. J. (1960) Distributions des valeurs extrémes en plusieurs dimensions. Publ. Inst.
Statist. Univ. Paris, 9, 171-173.

Gumbel, E. J. (1961) Bivariate logistic distributions. J. Amer. Statist. Assoc., 56, 335-349.

Hiisler, J. and Reiss, R.-D. (1989) Maxima of normal random vectors: between independence
and complete dependence. Statist. Probab. Letters, 7, 283-286.

Thaka, R. and Gentleman, R. (1996) R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5, 299-314.

Joe, H. (1990) Families of min-stable multivariate exponential and multivariate extreme value
distributions. Statist. Probab. Letters, 9, 75-81.

Kotz, S. and Nadarajah, S. (2000) Eztreme Value Distributions. London: Imperial College Press.

Pickands, J. (1981) Multivariate extreme value distributions. Proc. 43rd Sess. Int. Statist. Inst.,
49, 859-878.

Smith, R. L. (1985) Maximum likelihood estimation in a class of non-regular cases. Biometrika,
72, 67-90.

Stephenson, A. G. (2002) Simulating multivariate extreme value distributions of logistic type.
To be published - available on request.

Tabony, R. C. (1983) Extreme value analysis in meteorology. The Meteorological Magazine, 112,
77-98.

Tawn, J. A. (1988) Bivariate extreme value theory: models and estimation. Biometrika, 75,
397-415.

Tawn, J. A. (1990) Modelling multivariate extreme value distributions. Biometrika, 77, 245-253.

33

