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1 Getting Started

This vignette is based on the ergm tutorial presented at INSNA Sunbelt - St. Pete Beach, Florida,
Feb 2011.

Open an R session, and set your working directory to the location where you would like to save
this work. You can do this with the pull-down menus (File; Change Dir) or with the command:



setwd('full.path.for.the.folder')

To install all of the packages in the statnet suite:

install.packages('statnet')
library(statnet)

Or, to only install the specific statnet packages needed for this tutorial:

install.packages('network')
install.packages('ergm')
install.packages('sna')
library(network)

library (ergm)

library(sna)

After the first time, to update the packages one can either repeat the commands above, or use:

update.packages('name.of .package')

For this tutorial, we will need one additional package (coda), which is recommended (but not
required) by ergm:

install.packages('coda')
library(coda)

2 Statistical network modeling; the ergm command and ergm
object

Make sure the statnet package is attached:

library(statnet)

or

library(ergm)
library(sna)

## Loading required package: statnet.common

##
## Attaching package: ’statnet.common’

## The following objects are masked from ’package:ergm’:

##

## colMeans.mecmc.list, sweep.mcmc.list

## The following object is masked from ’package:base’:
##

## order



## sna: Tools for Social Network Analysis

## Version 2.4 created on 2016-07-23.

## copyright (c) 2005, Carter T. Butts, University of California-Irvine
## For citation information, type citation("sna").

## Type help(package="sna") to get started.

set.seed(1)

The ergm package contains several network data sets that you can use for practice examples.

data(package='ergm') # tells us the datasets in our packages
data(florentine) # loads flomarriage and flobusiness data
flomarriage # Let's look at the flomarriage data

## Network attributes:
##  vertices = 16

##  directed = FALSE
##  hyper = FALSE

##  loops = FALSE

## multiple = FALSE
##  bipartite = FALSE
##  total edges= 20

## missing edges= 0

## non-missing edges= 20

##

## Vertex attribute names:

#H# priorates totalties vertex.names wealth
##

## No edge attributes

plot(flomarriage) # Let's view the flomarriage network



Remember the general ergm representation of the probability of the observed network, and the
conditional log-odds of a tie:

Pr(Y =y) = exp[0'g(y)]/ k()

Y is a network; ¢(y) is a vector of network stats; 6 is the vector of coefficients; k(6) is a normalizing
constant.

logit (Pr(Y;; = 1[Y€)) = 0'A (9(y)),;

Y;; is an actor pair in Y; Y© is the rest of the network; A (¢(y))
value of Y;; is toggled on.

;; 1s the change in g(y) when the

We begin with the simplest possible model, the Bernoulli or Erd?s-R?nyi model, which contains
only an edge term.

flomodel.01 <- ergm(flomarriage~edges)

## Starting mazimum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matric.



## Mazimizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

flomodel.O1

##

## MLE Coefficients:
## edges

## -1.609

summary (flomodel.01) # look in more depth

##
##
## Summary of model fit

FH === ========o==c

##

## Formula: flomarriage ~ edges

##

## Iterations: 5 out of 20

##

## Monte Carlo MLE Results:

#it Estimate Std. Error MCMC % z value Pr(>|z|)

## edges -1.6094 0.2449 0 -6.571 <1le-04 *x*x

## -—-

## Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

#it Null Deviance: 166.4 on 120 degrees of freedom

## Residual Deviance: 108.1 on 119 degrees of freedom

##

## AIC: 110.1 BIC: 112.9 (Smaller is better.)

How to interpret this model? The log-odds of any tie occurring is:

—1.609 x change in the number of ties
= —-1.609x1

for all ties, since the addition of any tie to the network changes the number of ties by 1!

Corresponding probability is:

exp(—1.609)/(1 + exp(—1.609))
= 0.1667

which is what you would expect, since there are 20/120 ties.

Let’s add a term often thought to be a measure of “clustering”: the number of completed triangles.
Note we're in stochastic simulation now — your output will differ



flomodel.02 <- ergm(flomarriage~edges+triangle)

## Starting mazimum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matriz.

## Mazimizing the pseudolikelihood.

## Finished MPLE.

## Starting Monte Carlo mazimum likelihood estimation (MCMLE):
## Iteration 1 of at most 20:

## Optimizing with step length 1.

## The log-likelthood improved by 0.004438.

## Step length converged once. Increasing MCMC sample size.
## Iteration 2 of at most 20:

## Optimizing with step length 1.

## The log-likelihood improved by 0.0004686.

## Step length converged twice. Stopping.

## Finished MCMLE.

## Evaluating log-likelihood at the estimate. Using 20 bridges: 123 4 56 78 9 10
11 12 13 14 15 16 17 18 19 20 .

## This model was fit using MCMC. To exzamine model diagnostics and check for degeneracy,
use the mcmc.diagnostics() function.

summary (flomodel. 02)

##

##

## Summary of model fit

##

##

## Formula: flomarriage ~ edges + triangle

##

## Iterations: 2 out of 20

##

## Monte Carlo MLE Results:

#i Estimate Std. Error MCMC % z value Pr(>|z|)

## edges -1.6785 0.3419 0 -4.909 <le-04 *xx
## triangle 0.1538 0.5584 0 0.275 0.783

##H ——-

## Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

#it Null Deviance: 166.4 on 120 degrees of freedom

## Residual Deviance: 108.1 on 118 degrees of freedom

##

## AIC: 112.1 BIC: 117.7 (Smaller is better.)

coefl = flomodel.02$coef [1]
coef2 = flomodel.O02$coef [2]
logodds = coefl + c(0,1,2) * coef2



expit = function(x) 1/(1+exp(-x))
ps = expit(logodds)

coefl = round(coefl, 3)

coef2 = round(coef2, 3)

logodds = round(logodds, 3)

ps = round(ps, 3)

Again, how to interpret coefficients?
Conditional log-odds of two actors forming a tie is:

—1.679 x change in the number of ties + 0.154 X change in number of triangles

if the tie will not add any triangles to the network, its log-odds is: —1.679.

if it will add one triangle to the network, its log-odds is: —1.679 4+ 0.154 = —1.525
e if it will add two triangles to the network, its log-odds is: —1.679 + 0.154 x 2 = —1.371
e the corresponding probabilities are 0.157, 0.179, and 0.202.

Let’s take a closer look at the ergm object itself:

class(flomodel.02) # this has the class ergm
## [1] "ergm"

names (flomodel.02) # let's look straight at the ERGM obj.

## [1] "coef" "sample" "sample.obs" "iterations"
## [5] "MCMCtheta" "loglikelihood" "gradient" "hessian"

## [9] "covar" "failure" "network" "newnetworks"
## [13] "newnetwork" "coef.init" "est.cov" "coef.hist"
## [17] "stats.hist" "steplen.hist" ‘"control" "etamap"

## [21] "formula" "target.stats" '"target.esteq" '"constrained"
## [25] "constraints"  "reference" "estimate" "offset"

## [29] "drop" "estimable" "null.lik" "mle.lik"

flomodel.02$coef

#it edges  triangle
## -1.6785006 0.1538257

flomodel.02$formula

## flomarriage ~ edges + triangle
flomodel.02$mle.lik

## 'log Lik.' -54.03926 (df=2)

wealth <- flomarriage %v) 'wealth' # the Jv/ exztracts wvertex
wealth # attributes from a network

## [1] 10 36 55 44 20 32 8 42 103 48 49 3 27 10 146 48

plot(flomarriage, vertex.cex=wealth/25) # network plot with vertex size



We can test whether edge probabilities are a function of wealth:

flomodel.03 <- ergm(flomarriage~edges+nodecov('wealth'))

## Starting mazimum pseudolikelihood estimation (MPLE):
## Evaluating the predictor and response matric.

## Mazimizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

summary (flomodel.03)

#i#
#i#
## Summary of model fit




#i#t

##

## Formula: flomarriage ~ edges + nodecov("wealth")

##

## Iterations: 4 out of 20

##

## Monte Carlo MLE Results:

#it Estimate Std. Error MCMC % z value Pr(>|z|)

## edges -2.594929  0.536056 0 -4.841 <l1le-04 *x*x
## nodecov.wealth 0.010546 0.004674 0 2.2566 0.0241 *
#H#t ———

## Signif. codes: O '*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i

#Hit Null Deviance: 166.4 on 120 degrees of freedom

## Residual Deviance: 103.1 on 118 degrees of freedom

##t

## AIC: 107.1 BIC: 112.7 (Smaller is better.)

Yes, there is a significant positive wealth effect on the probability of a tie.

Let’s try a model or two on:

Is there a statistically significant tendency for ties to be reciprocated ('mutuality’)?

data(samplk)

1s() # directed data: Sampson's Monks
samplk3

plot (samplk3)

sampmodel.01 <- ergm(samplk3~edges+mutual)
summary (sampmodel.01)

Let’s try a larger network

data(faux.mesa.high)
mesa <- faux.mesa.high

plot(mesa)

mesa

plot(mesa, vertex.col='Grade')
legend('bottomleft',fill=7:12,legend=paste('Grade',7:12),cex=0.75)

fauxmodel.O01 <- ergm(mesa “edges + nodematch('Grade',diff=T) + nodematch('Race',diff=T))
summary (fauxmodel.01)

Note that two of the coefficients are estimated as -Inf (the nodematch coefficients for race Black
and Other). Why is this?

table(mesa %v} 'Race') # Frequencies of race



##
## Black Hisp NatAm Other White
## 6 109 68 4 18

mixingmatrix(mesa, "Race")

## Note: Marginal totals can be misleading
## for undirected mixing matrices.

#it Black Hisp NatAm Other White
## Black 0 8 13 0 5
## Hisp 8 53 41 1 22
## NatAm 13 41 46 0 10
## Other 0 1 0 0 0
## White 5 22 10 0 4

So the problem is that there are very few students in the Black and Other race categories, and
these students form no homophilous (within-group) ties. The empty cells are what produce the -Inf
estimates.

Time to consider some missing data:

missnet <- network.initialize(10,directed=F)
missnet[1,2] <- missnet[2,7] <- missnet[3,6] <- 1
missnet[4,6] <- missnet[4,9] <- NA

missnet

plot(missnet)

ergm(missnet~edges)

The coefficient equals -2.590. This is the log-odds of the probability .0698. Our network has 3 ties,
out of the 43 nodal pairs (10 choose 2 minus 2) whose dyad status we have observed. 3/43 = 0.0698.

ergm(missnet~edges+degree(2))
missnet[4,6] <- missnet[4,9] <- O
ergm(missnet~edges+degree(2))

The two estimates for the degree 2 coefficient differ considerably. In the first case, there is one
node we know for sure has degree 2, two that may or may not, and seven that we know for sure do
not. In the latter, there is one node that has degree 2, and nine that do not.

3 Model terms available for ergm estimation and simulation

Model terms are the expressions (e.g. “triangle”) used to represent predictors on the right-hand size
of equations used in:

e calls to ergm (to estimate an ergm model)
e calls to simulate (to simulate networks from an ergm model fit)

e calls to summary (to obtain measurements of network statistics on a dataset)
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3.1 Terms provided with ergm

For a list of available terms that can be used to specify an ERGM, see Appendix B, or type:

help('ergm-terms')

For a more complete discussion of these terms see the ’Specifications’ paper in J Stat Software v.
24. (link is available online at www.statnet.org)

3.2 Coding new terms

We have recently released a new package (ergm.userterms) and tutorial aimed at making it much
easier than before to write one’s own terms. The package is available on CRAN, and installing it will
also download the tutorial (ergmuserterms.pdf). We teach a workshop at the Sunbelt meetings, and
are also hoping for the tutorial to appear soon in the Journal of Statistical Software. Note that writing
up new ergm terms requires some knowledge of C and the ability to build R from source (although the
latter is covered in the tutorial).

4 Network simulation: the stmulate command and network.list
objects

Once we have estimated the coefficients of an ERGM, the model is completely specified. It defines a
probability distribution across all networks of this size. If the model is a good fit to the observed data,
then networks drawn from this distribution will be more likely to ”resemble” the observed data. To
see examples of networks drawn from this distribution we use the simulate command:

flomodel.03.sim <- simulate(flomodel.03,nsim=10)

## Warning: You appear to be calling simulate.formula() directly. simulate.formula()
is a method, and will not be exported in a future version of ’ergm’. Use simulate() instead,
or getS3method() if absolutely necessary.

class(flomodel.03.sim)
## [1] "network.list"
summary (flomodel.03.sim)

## Number of Networks: 10

## Model: flomarriage ~ edges + nodecov("wealth")
## Reference: "Bernoulli

## Constraints:

## Parameters:

#it edges nodecov.wealth
#it -2.59492903 0.01054591
##

## Stored network statistics:

Ht edges nodecov.wealth

##  [1,] 20 2028

#  [2,] 23 2029
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##  [3,] 31 3058

## [4,] 22 2240
##  [5,] 23 2709
## [6,] 15 1530
# [7,] 20 1977
# [8,] 16 1646
#  [9,] 20 2313
## [10,] 17 1840

## Number of Networks: 10

## Model: flomarriage ~ edges + nodecov("wealth")
## Reference: "Bernoulli

## Constraints:

## Parameters:

#it edges nodecov.wealth

## -2.59492903 0.01054591

length(flomodel.03.sim)
## [1] 10
flomodel.03.sim[[1]]

## Network attributes:
##  vertices = 16

##  directed = FALSE
##  hyper = FALSE

##  loops = FALSE

## multiple = FALSE
##  bipartite = FALSE
##  total edges= 20

## missing edges= 0

## non-missing edges= 20

##

## Vertex attribute names:

#it priorates totalties vertex.names wealth
#i#

## No edge attributes

plot(flomodel.03.sim[[1]], label= flomodel.03.sim[[1]] %v% "vertex.names")
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Voila. Of course, yours will look somewhat different.

5 Examining the quality of model fit — GOF

ERGMs are generative models — that is, they represent the process that governs tie formation at a local
level. These local processes in turn aggregate up to produce characteristic global network properties,
even though these global properties are not explicit terms in the model. One test of whether a model
“fits the data” is therefore how well it reproduces these global properties. We do this by choosing a
network statistic that is not in the model, and comparing the value of this statistic observed in the
original network to the distribution of values we get in simulated networks from our model.

flomodel.03.gof <- gof (flomodel.03 degree)

flomodel.03.gof

##

## Goodness-of-fit for degree

##

##t obs min mean max MC p-value

13



.00
.00

1

1
0.42

5
7
8
8
8
5

0 1.34
0 3.62

1
4
2
6
2
0

## 0
##
##

1
2

0 4.09

14
.00

0 3.33
01.76
0 1.06
0 0.49
0 0.24
0 0.05

0 0.01

## 3

1
0.78

## 4
H#t

5

0.78

1
1
1

3
3
1
1
1

1
0
0
0
0

## 6

.00
.00
.00
.00

## 7

## 8

## 9

1

0 0.01

## 10
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## Goodness-of-fit for model statistics

##
##

mean max MC p-value

19.67

obs min
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20
## nodecov.wealth 2168 930 2139.33 3385

## edges

plot(flomodel.03.gof)
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Goodness—of-fit diagnostics
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model statistics

mesamodel.02 <- ergm(mesa~edges)

## Starting mazimum pseudolikelihood estimation (MPLE):
## Evaluating the predictor and response matric.

## Mazimizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

mesamodel.02.gof <- gof (mesamodel.02"distance,control=control.gof.ergm(nsim=10))
plot (mesamodel.02.gof)
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Goodness—of-fit diagnostics
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model statistics

For a good example of model exploration and fitting for the Add Health Friendship networks, see
Goodreau, Kitts & Morris, Demography 2009.

6 Diagnostics: troubleshooting and checking for model degen-
eracy

The computational algorithms in ergm use MCMC to estimate the likelihood function. Part of this
process involves simulating a set of networks to approximate unknown components of the likelihood.

When a model is not a good representation of the observed network the estimation process may
be affected. In the worst case scenario, the simulated networks will be so different from the observed
network that the algorithm fails altogether. This can occur for two general reasons. First, the sim-
ulation algorithm may fail to converge, and the sampled networks are thus not from the specified
distribution. Second, the model parameters used to simulate the networks are too different from the
MLE, so even though the simulation algorithm is producing a representative sample of networks, this
is not the sample that would be produced under the MLE.

For more detailed discussions of model degeneracy in the ERGM context, see the papers in J Stat
Software v. 24. (link is available online at www.statnet.org)
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We can use diagnostics to see what is happening with the simulation algorithm, and these can lead
us to ways to improve it.

We will first consider a simulation where the algorithm works. To understand the algorithm,
consider

fit <- ergm(flobusiness~edges+degree(1),
control=control.ergm(MCMC.interval=1, MCMC.burnin=1000, seed=1))

This runs a version with every network returned. Let us look at the diagnostics produced:

mcme.diagnostics(fit, center=F)

Let’s look more carefully at a default model fit:

fit <- ergm(flobusiness~edges+degree(1))
mcmc .diagnostics(fit, center=F)

Now let us look at a more interesting case, using a larger network:
data('faux.magnolia.high')

magnolia <- faux.magnolia.high
plot(magnolia, vertex.cex=.5)
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fit <- ergm(magnolia~edges+triangle, control=control.ergm(seed=1))
mcmc .diagnostics(fit, center=F)

##
##
##
##
##
##
##
##
##
##

##
##t

Starting mazimum pseudolikelihood estimation (MPLE):
Evaluating the predictor and response matrizc.

Mazimizing the pseudolikelihood.

Finished MPLE.

Starting Monte Carlo mazimum likelihood estimation (MCMLE):
Iteration 1 of at most 20:

Optimizing with step length 1.

The log-likelihood improved by 1.224.

Step length converged once. Increasing MCMC sample size.
Iteration 2 of at most 20:

Error in ergm.MCMLE(init, nw, model, initialfit = (initialfit <- NULL), :
Number of edges in a simulated network exceeds that in the observed by a factor of more than 20.
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Very interesting. This model produced degenerate networks. You could have gotten some more
feedback about this during the fitting, by using:

fit <- ergm(magnolia~edges+triangle, control=control.ergm(seed=1), verbose=T)

You might try to increase the MCMC sample size:

fit <- ergm(magnolia~edges+triangle,seed=1,
control = control.ergm(seed=1, MCMC.samplesize=20000),
verbose=T)

mcme .diagnostics(fit, center=F)

How about trying the more robust version of modeling triangles: GWESP? (For a technical intro-
duction to GWESP see Hunter and Handcock; for a more intuitive description and empirical application
see Goodreau Kitts and Morris 2009)

fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T),
control = control.ergm(seed=1))
mcmc .diagnostics(fit)

Still degenerate, but maybe getting closer?

fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T)+nodematch('Grade')+nodematch('Race')+
nodematch('Sex'),

control = control.ergm(seed=1),

verbose=T)

pdf ('diagnosticsl.pdf') #Use the recording function if possible, otherwise send to pdf
mcmc.diagnostics(fit)
dev.off () #If you saved to pdf, look at the file

fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+
nodematch('Sex'),
control = control.ergm(seed=1))
mcmc . diagnostics(fit)

One more try...

fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+
nodematch('Sex'),

control = control.ergm(seed=1,MCMC.samplesize=4096,MCMC.interval=8192),

verbose=T)

## Evaluating network in model.

## Initializing Metropolis-Hastings proposal(s): ergm:MH_TNT
## Initializing model.

## Using initial method ’MPLE’.

## Fitting initial model.

## Starting mazimum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matriz.
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

MPLE covariate matriz has 211 rows.

Mazimizing the pseudolikelihood.

Finished MPLE.

Starting Monte Carlo mazimum likelihood estimation (MCMLE) :
Density guard set to 19563 from an initial count of 974 edges.

Iteration 1 of at most 20 with parameter:
edges gwesp.fixzed.0.25 nodematch.Grade mnodematch.Race
-9.8619687 1.6946112 2.8534613 0.9886313
nodematch.Sex
0.8245285
Starting unconstrained MCMC. ..
Back from unconstrained MCMC.

Average estimating function values:
edges gwesp. fized.0.25 mnodematch.Grade mnodematch.Race
120.54614 59.71967 119.01685 116.69897
nodematch.Sex
104.13281

Starting MCMLE Optimization. ..
Optimizing with step length 0.851847879357805.
Using lognormal metric (see control.ergm function).

Using log-normal approz (no optim)
The log-likelthood improved by 4.338.
Iteration 2 of at most 20 with parameter:
edges gwesp. fized.0.25 mnodematch.Grade mnodematch.Race
-9.7891932 1.7776373 2.7672494 0.9106216
nodematch.Sex
0.7808291

Starting unconstrained MCMC. ..
Back from unconstrained MCMC.

Average estimating function values:
edges gwesp.fized.0.25 mnodematch.Grade mnodematch.Race
23.19751 12.26240 23.09399 20.51782
nodematch.Sex
20.32959

Starting MCMLE Optimization. ..

Optimizing with step length 1.

Using lognormal metric (see control.ergm function).

Using log-normal approz (no optim)

The log-likelihood improved by 0.2175.

Step length converged once. Increasing MCMC sample size.

Iteration 3 of at most 20 with parameter:
edges gwesp.fized.0.25 nodematch.Grade mnodematch.Race
-9.7759249 1.7954441 2.7443270 0.9025237
nodematch.Sex
0.7677593
Starting unconstrained MCMC. ..
Back from unconstrained MCMC.
Average estimating function values:
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##
##
##
##
##
##
##
##
##
##
##
##
##
11
##

edges gwesp.fized.0.25 nodematch.Grade mnodematch.Race
-14.91370 -14.97662 -14.96899 -15.02728
nodematch.Sex

-10.03601
Starting MCMLE Optimization. ..
Optimizing with step length 1.
Using lognormal metric (see control.ergm function).
Using log-normal approz (no optim)
Starting MCMC s.e. computation.
The log-likelihood tmproved by 0.08389.
Step length converged twice. Stopping.
Finished MCMLE.
Evaluating log-likelihood at the estimate. Using 20 bridges: 1 2 3 4 56 78 9 10
12 13 14 15 16 17 18 19 20 .
This model was fit using MCMC. To examine model diagnostics and check for degeneracy,

use the mcmc.diagnostics() function.

mcme.diagnostics(fit)

#H#t
#it
#it
##
##
##
#Hit
#i#t
#it
##
##
#it
#it
#i#t
##
##
#H#t
#it
#i#t
##
##
##
#Ht
#it
#it
##
##
##t
#it
#i#
##
##

Sample statistics summary:

Iterations = 131072:134340608
Thinning interval = 8192

Number of chains = 1
Sample size per chain = 16384
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
edges 14.91 44 .46 0.3473 3.613
gwesp.fixed.0.25 14.98 39.04 0.3050 3.633
nodematch.Grade 14.97 42.25 0.3301 3.666
nodematch.Race 15.03 41.01 0.3204 3.842
nodematch.Sex 10.04 36.08 0.2819 3.031
2. Quantiles for each variable:

2.5% 25%,  50%  75% 97.5%
edges -72.00 -16.00 15.00 46.00 102.00
gwesp.fixed.0.25 -61.46 -12.23 14.71 42.37 90.25

nodematch.Grade -67.00 -14.00 15.00 44.00 97.00
nodematch.Race -66.00 -13.00 15.00 43.00 94.00
nodematch.Sex -59.00 -14.00 10.00 35.00 80.00
Sample statistics cross-correlations:

edges gwesp.fixed.0.25 nodematch.Grade nodematch.Race
edges 1.0000000 0.8346505 0.9572414 0.9396419
gwesp.fixed.0.25 0.8346505 1.0000000 0.8550279 0.8294566
nodematch.Grade 0.9572414 0.8550279 1.0000000 0.9082906
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#i#t
#it
##
##
##t
#it
#i#t
##
##
##t
#it
#i#t
#it
##
##
##t
#it
#i#t
##
##
##t
#it
#i#
##
##
##
#Hit
#it
#it
##
##
##t
#it
#i#t
##
##
##t
#it
#i#t
##
##
##
#it

#Ht

nodematch.Race
nodematch.Sex

edges

gwesp.fixed.0.25

nodematch.Grade
nodematch.Race
nodematch. Sex

0.9396
0.9006

419
526

0.8294566
0.7797030

nodematch.Sex
0.9006526
0.7797030
0.8670579
0.8472397
1.0000000

Sample statistics auto-correlation:
Chain 1

Lag
Lag
Lag
Lag
Lag
Lag

Lag
Lag
Lag
Lag
Lag
Lag

8192

16384
24576
32768
40960

0
8192
16384
24576
32768
40960

1
0
0
0
0
0

0.9082906
0.8670579

1.0000000
0.8472397

edges gwesp.fixed.0.25 nodematch.Grade nodematch.Race

.0000000
. 7550221
.7100716
.6860926
.6664863
.6520294

nodematch.Sex

1

O O O O O

.0000000
.7670614
. 7146167
.6863572
.6666375
.6539010

il
.9797170
.9616941
.9448724
.9289803
.9137534

O O O O O

0000000

1

O O O O O

.0000000
.8129787
.7612550
. 7364692
.7179831
.7031339

Sample statistics burn-in diagnostic (Geweke) :
Chain 1

Fraction in 1st window =

Fraction in 2nd window

edges gwesp.
-3.936
nodematch.Sex
-3.636

o O
o=

fixed.0.25 nodematch.Grade
-4.035

Individual P-values (lower =

8.277195e-05
nodematch.Sex
2.771318e-04

worse) :
edges gwesp.fixed.0.25 nodematch.Grade

5.471148e-05

Joint P-value (lower =

Warning in formals(fun):

worse) :

0.3102232 .

23

-4.117

3.831993e-05

argument is not a function

1

O O O O O

.0000000
.7939076
.T477292
. 7225678
.7037593
.6922242

nodematch.Race

-3.392

nodematch.Race
6.933213e-04
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#i
## MCMC diagnostics shown here are from the last round of simulation, prior to computation of final f

Success! Of course, in real life one might have a lot more trial and error.

Changes in version 3.2 of the ergm estimation algorithm mean that the MCMC diagnostic plots
can no longer be used to ensure that the mean statistics from the model match the observed network
statistics. For that functionality, please use the GOF command: gof(fit, GOF= model). The plots
can still be used to assess MCMC mixing and convergence.

7 Working with egocentrically sampled network data

In many empirical contexts, it is not feasible to collect a network census or even an adaptive (link-
traced) sample. Even when one of these may be possible in practice, egocentrically sampled data are
typically cheaper and easier to collect.

Long regarded as the poor country cousin in the network data family, egocentric data contain
a remarkable amount of information. With the right statistical methods, such data can be used to
explore the properties of the complete networks in which they are embedded. The basic idea here is to
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combine what is observed, with assumptions, to define a class of models that describe the distribution
of networks that are centered on the observed properties. The variation in these networks quantifies
some of the uncertainty introduced by the assumptions.

Let’s start with a simple fictional example: You have a sample of persons who were asked about
the friends they had seen face-to-face more than once in the last week. The respondent was asked
their own sex, and the sex of each friend (for up to three friends). Summary statistics from these data
thus include the sex distribution, the degree distribution (it could be broken down by sex, but we will
just examine the marginal distribution here), and the joint distribution of the respondent and friend’s
sex (the sex mixing matrix). Let’s assume there are equal numbers of men and women in the sampled
respondents. The other distributions are shown below:

Degree distribution

Degree Frequency Fraction Ties Sex mixing matrix
0 180 0.36 0 (410 total) Friend
1 245 0.49 245 M F
2 60 0.12 120 Respondent M | 164 | 44
3 15 0.03 45 F | 26 | 176
Total 500 1.00 410

So, total N respondents = 500, total N friends reported = 410.

We can use an ERGM to fit the parameters associated with these observed statistics, then use the
fitted model to simulate complete networks that are drawn from the distribution of networks that is
centered around these statistics. As a theoretical exercise, this provides a method for investigating
the complete network implications of these observed summary statistics. As an empirical exercise,
the primary assumption needed for inference is that the data we have is sampled from a population
in equilibrium (and, as in all statistical inference, that our model is correct). The theory for this is
developed in Krivitsky, 2009.

We need to make assumptions about size, directedness and bipartite-ness when we model and
simulate the complete network.

e Size: any size can be simulated, but if the model is fit using the observed frequencies, it should
be used to simulate a population of that size, unless a size adjustment is made in the simulation
(see Krivitsky, Handcock and Morris 2011). We are going to work with a population size 500
here, equal to the number of respondents.

e Directedness: Ego data are in one sense inherently directed (respondents nominate alters, alters
are not observed), but the relationship may be either. In this case (“seen more than once”) it is
undirected, so we will fit and simulate an undirected network.

e Bipartite: Ego data can be bipartite (if no alters are also respondents, or data are collected
on 2-mode networks) or not (if respondents are also alters). But again, the relationship may be
either. “Seen” is undirected, and we will fit and simulated and undirected network.

In sum, we will simulate a one-mode, undirected network of size 500, assuming the ego statistics we
observed contain the information we need to calculate the statistics that would have been observed in
a self-contained population of that size, noting that other assumptions are possible.

To ensure consistency between the degree distribution (which is a tabulation of nodes) and the
mixing matrix (which is a cross-tabulation of ties) in our simulated “complete network,” it is important
to recognize that in a complete network, the degree distribution should imply twice the number of
ties observed in the mixing matrix, because every tie is being reported by both nodes in the degree
distribution. If we are fixing the population size at 500 in this simulation, then our observed mixing
matrix data needs to be divided by 2.

26



Start by initializing an empty network of the desired size and assign the “sex” attribute to the
nodes:

ego.net <- network.initialize(500, directed=F)
ego.net %vh 'sex' <- c(rep(0,250),rep(1,250))

Set up the observed statistics (adjusted for this “complete” network) as we will use them to assess
the accuracy of the simulation later:

ego.deg <- c(180, 245, 60, 15)
ego.mixmat <- matrix(c(164,44,26,176)/2, nrow=2, byrow=T)

Then, pick the observed statistics you want to target — we will start with a simple model here:
the total number of ties (edges), and the number of sex-matched ties (homophily). These are both
functions of the observed statistics:

ego.edges <- sum(ego.mixmat)
ego.sexmatch <- ego.mixmat[1,1]+ego.mixmat[2,2]

And combine these into a vector

ego.target.stats <- c(ego.edges, ego.sexmatch)
ego.target.stats

## [1] 205 170

Now, fit an ERGM to this “network”, with terms for the statistics you want to match, and the
“target.stats” argument for ergm that specifies the target values for those statistics:

ego.fit <- ergm(ego.net ~ edges + nodematch('sex'),
target.stats = ego.target.stats)

## Starting mazimum pseudolikelihood estimation (MPLE):
## Evaluating the predictor and response matriz.

## Mazimizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

Take a look at the fitted model:
summary (ego.fit)

##
##
## Summary of model fit
#i#
#i#
## Formula: nw ~ edges + nodematch("sex"
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## <environment: 0x55c09ecfa3e8>

##

## Iterations: 8 out of 20

#it

## Monte Carlo MLE Results:

## Estimate Std. Error MCMC % z value Pr(>|z|)

## edges =-7.4870 0.1690 0 -44.294 <le-04 x*x*
## nodematch.sex 1.5866 0.1857 0 8.546 <le-04 *x*x
#t ———

## Signif. codes: O '#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

#i#t Null Deviance: 172940 on 124750 degrees of freedom

## Residual Deviance: 2941 on 124748 degrees of freedom

it

## AIC: 2945 BIC: 2964 (Smaller is better.)

Now that you have a fitted model, you can simulate a complete network from it, and look at the
results:

ego.siml <- simulate(ego.fit)
plot(ego.siml, vertex.cex=.65, vertex.col="sex")
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Does it reproduce the observed degree and mixing frequencies? We only targeted the total number
of edges, not the full degree distribution.

rbind (summary (ego.siml ~ degree(c(0:3))), ego.deg)

#it degree0 degreel degree2 degree3d
## 233 153 83 26
## ego.deg 180 245 60 15
mixingmatrix(ego.siml, "sex")

## Note: Marginal totals can be misleading
## for undirected mixing matrices.

#i#t 0 1

## 0 91 39

## 1 39 79

ego.mixmat

#it [,11 [,2]
## [1,] 82 22
## [2,] 13 88
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We only targeted the number of same-sex ties, not the full mixing matrix.

The simulation stats seem quite different than the observed stats, and there are two possible reasons:
either we mis-specified the original model (bias), or this one random draw may be unrepresentative of
the distribution described by the model (variance). The latter is easily examined by simulating 100
networks, to see where the observed data fall in the distribution of networks produced by the model:

ego.sim100 <- simulate(ego.fit, nsim=100)
ego.siml100

## Number of Networks: 100

## Model: nw ~ edges + nodematch("sex")
## Reference: "Bernoulli

## Constraints: ~

## Parameters:

#i#t edges nodematch.sex

## -7.487013 1.586633

More information can be obtained with

summary (ego.sim100)

First, we’ll look at how well the simulations reproduced the target statistics that were included in
the model (note, not the observed full distributions):

sim.stats <- attr(ego.sim100,"stats")
rbind(colMeans(sim.stats), ego.target.stats)

#i#t edges nodematch.sex
#i# 203.59 169.35
## ego.target.stats 205.00 170.00

These look pretty good — the means of the simulated target stats are within 1% of the observed.
We can plot the 100 replicates to see check the variation for any problematic patterns:

matplot(l:nrow(sim.stats), sim.stats,
pch=c(”e” " no" ||+||) cex=.65
main="100 simulations from ego.fit model", sub="(default settings)",
xlab="Replicate", ylab="frequency")

abline(h=ego.target.stats, col=c(1:4))
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100 simulations from ego.fit model
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The lines mark the target statistic frequencies in the observed data. The points represent the
frequencies in the simulated networks.

The simulated network statistics vary stochastically around the target values, not trending over
time.

But, there is clear autocorrelation across the replicates, which suggests we might want to increase
the MCMC interval to draw more independent realizations.

ego.sim100 <- simulate(ego.fit, nsim=100,
control=control.simulate.ergm(MCMC.interval=10000))

sim.stats <- attr(ego.sim100,"stats")

matplot(l:nrow(sim.stats), sim.stats,
pch=c("e","m"), cex=.65,
main="100 simulations from ego.fit model", sub="(MCMC.interval=10000)",
xlab="Replicate", ylab="frequency")

abline(h=ego.target.stats, col=c(1:2))
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100 simulations from ego.fit model
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(MCMC.interval=10000)

With the larger interval, the autocorrelation is no longer detectable, and all of the statistics from
the simulated networks vary in a symmetric band around their targets.

The variation (about 4 /- 10%) represents the range of target statistics that are consistent with the
fitted coeflicients.

If you wanted instead to constrain these statistics to equal a specified value, then you can use the
“constraints=" argument during the ergnm fit instead.

This is good for verifying that the simulation reproduces the target values we specified. So now let’s
see whether the simulated complete networks also match statistics that were not set by the targets.
We targeted edges and homophily. How well does this model reproduce the full degree distribution?

sim.fulldeg <- summary(ego.siml00 ~ degree(c(0:10)))
colnames(sim.fulldeg) <- paste("deg",0:10, sep='")
sim.fulldeg[1:5,]

## deg0 degl deg2 deg3 deg4 degb degb deg7 deg8 deg9 deglO
## [1,] 223 180 80 16 1 0 0 0 0 0 0
## [2,] 226 181 66 23 4 0 0 0 0 0 0
## [3,] 202 184 76 28 6 4 0 0 0 0 0
## [4,] 227 173 82 15 3 0 0 0 0 0 0
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## [5,] 208 183 75 27 5 2 0 0 0 0 0

Recall that the degree range in our data was [0,3] by design, but we did not constrain the simulations
to this range. If our model correctly captured the processes that led to the aggregate statistics we
observe in our data, the simulated networks would show us what we missed. Here the simulated
networks suggest that the fully observed network would have a wider range of degrees, which we might
have observed, had we not truncated the data collection at 3 friends per respondent. About 1% of
nodes have degree 4 or 5, and the max observed is 6.

But did our model did correctly capture the underlying processes? How well does the simulated
degree distribution from this model match the frequencies we did observe? Aggregating the degrees of
3 or more in the simulations, we find:

sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum))
colnames(sim.deg) <- c(colnames(sim.fulldeg) [1:3],"degree3+")
rbind(colMeans (sim.deg) ,ego.deg)

#i#t degO0 degl deg2 degree3d+
## 219.19 181.77 74.41 24.63
## ego.deg 180.00 245.00 60.00 15.00

As with the single simulation above, the discrepancies between the simulation averages and the
observed statistics are quite large. We can see this more clearly by plotting the degree frequencies for
the 100 replicate networks we simulated:

matplot(l:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5,
main="Comparing ego.sims to non-targeted degree frequencies",
sub = "(only total edges targeted)",
xlab = "Replicate", ylab = "Frequencies")

abline(h=c(180, 245, 60, 15), col=c(1:4))
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Comparing ego.sims to non-targeted degree frequencies
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The simulations are producing systematically more isolates than expected (the “0” points vs. the
black line), and systematically more degree 1 nodes. In fact, the two degree frequencies are essentially
reversed in the simulation.

The fraction of nodes with 2 or 3+ partners is systematically off but by a much smaller amount.

So our observed network has fewer isolates than expected in a network of this density, more degree

1 nodes than expected,

and fewer degree 2 and 3+ nodes.

This suggests the model is mis-specified. Since the degree 0 vs. degree 1 is the worst fitting aspect,
we will try using the number of isolates as a target statistic in the model.

ego.isolates <- ego
ego.target.stats <-

ego.fit <- ergm(ego.

target.stats = ego

.degl1]

c(ego.edges, ego.sexmatch, ego.isolates)
net ~ edges + nodematch('sex') + degree(0),
.target.stats)

## Starting mazimum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matriz.

## Maxzimizing the pseudolikelihood.

## Finished MPLE.
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## Starting Monte Carlo mazimum likelihood estimation (MCMLE) :
## Iteration 1 of at most 20:

## Optimizing with step length 1.

## The log-likelihood improved by 0.005476.

## Step length converged once. Increasing MCMC sample size.
## Iteration 2 of at most 20:

## Optimizing with step length 1.

## The log-likelihood improved by 0.001338.

## Step length converged twice. Stopping.

## Finished MCMLE.

## Evaluating log-likelihood at the estimate. Using 20 bridges: 1 23 4 56 78 9 10
11 12 13 14 15 16 17 18 19 20 .

## This model was fit using MCMC. To examine model diagnostics and check for degeneracy,
use the mcmc.diagnostics() function.

summary (ego.fit)

#it

#i#

## Summary of model fit

##

##

## Formula: nw ~ edges + nodematch("sex") + degree(0)

## <environment: 0x55c0a89689b0>

#i#

## Iterations: 2 out of 20

##

## Monte Carlo MLE Results:

#i Estimate Std. Error MCMC % z value Pr(>|z|)

## edges -8.3976 0.2414 0 -34.784 <1e-04 *xx
## nodematch.sex  1.5821 0.1836 0 8.616 <le-04 *xx
## degree0 -0.9593 0.1553 0 -6.179 <le-04 *x*x
# -

## Signif. codes: O '**x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i

#H# Null Deviance: 172940 on 124750 degrees of freedom

## Residual Deviance: 2904 on 124747 degrees of freedom

##

## AIC: 2910 BIC: 2939 (Smaller is better.)

Simulating from this model, the target statistics are again well matched:

ego.sim100 <- simulate(ego.fit, nsim=100,
control=control.simulate.ergm(MCMC.interval=10000))

sim.stats <- attr(ego.siml100,"stats")

rbind(colMeans(sim.stats), ego.target.stats)

#it edges nodematch.sex degree0
## 204.53 170.12 180.52
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## ego.target.stats 205.00 170.00 180.00

And the full degree frequencies look much better:

sim.fulldeg <- summary(ego.siml00 ~ degree(c(0:10)))

sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum))
colnames(sim.deg) <- c(colnames(sim.fulldeg) [1:3],"degree3+")
rbind(colMeans (sim.deg) ,ego.deg)

#it degree(0 degreel degree2 degree3+
## 180.52 244.03 63.1 12.35
## ego.deg 180.00 245.00 60.0 15.00

and finally, plotting the full degree frequencies

matplot(l:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5,
main="Comparing ego.sims to non-targeted degree frequencies",
sub = "(only O, 2+ and total edges targeted)",
xlab = "Replicate", ylab = "Frequencies")

abline (h=c (180, 245, 60, 15), col=c(1:4))
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The degree frequencies in these simulated networks are now well centered on the observed frequen-
cies. So adding the one additional parameter to capture the lower than expected number of isolates did
a good job of capturing how our observed network deviates from a random network with this density.

The fraction of nodes with 3+ partners produced by our new model might still be a bit low.

Moral: We can use ERGMs to estimate network models using target statistics from egocentrically
sampled data. The fact that the target statistics are reproduced by this model does not guarantee
that additional features of the network would also be reproduced. But starting with simple models
can help to identify whether and how the aggregate statistics we observe from an egocentric sample
deviate from those we would expect from the model. If we fit all of the observed statistics without a
saturated model, we cannot reject the hypothesis that this model produced the network we sampled
from.

We can also use this approach to explore network statistics that are not visible at all from the
egocentric data, e.g., the geodesic distribution, betweenness, etc., but it must always be remembered
that the distributions we will produce are based on our model. They faithfully reproduce the model,
but that does not mean that the model faithfully represents the population.

In the STERGM workshop, we show how complete dynamic networks also can be simulated over
time on the basis of egocentric data like these, with the minimal addition of a single estimate of
partnership duration. For a movie of an example dynamic simulation used to explore the impact of
network structure on HIV transmission, see statnet.org/movies.

8 Additional functionality in the statnet family of packages

8.1 In the ergm and network packages:

e ERGMs for valued ties — see the paper by Pavel Krivitsky (2012)

e Analysis of bipartite networks — network recognizes this as an attribute of the network and ergm
provides specific model terms for such networks that begin with bl or b2
(try: search.ergmTerms(categories=c(’bipartite’))).

8.2 In other packages from the statnet suite:

These are in stand-alone packages that can be downloaded either from CRAN, or from the statnet
website. Many have online training materials from our workshops. For more detailed information,
please visit the statnet webpage (http://statnet.org).
8.2.1 Static (cross-sectional) network analysis packages

e |snal - Traditional SNA methods and summaries.

e latentnet|— Latent space and latent cluster analysis.

e netperm — Network permutation models.

e degreenet — MLE estimation for degree distributions (negative binomial, Poisson, scale-free,
etc.)

e networksis/— Simulation of bipartite networks with given degree distributions.
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8.2.2 Dynamic (longitudinal) network analysis packages:

8.3

tergm — Temporal ERGMs (TERGMs): discrete-time dynamic network models for longitudinal
network panel data, and other temporal extensions.

relevent — Relational event models: continuous-time dynamic network models for longitudinal
network data.

networkDynamic — Dynamic network data storage and manipulation.

ndtv — Network movie maker.

R packages that build on statnet

There is a growing number of R packages written by other folks that build on or extend the func-
tionality of the statnet suite. You can get a current list of those packages by looking at the reverse
depends/suggests on CRAN. A partial list includes:

8.4

9

EpiModel package| — Mathematical Modeling of Infectious Disease, includes functions for deter-
ministic compartmental modeling, stochastic individual contact modeling, and stochatic network
modeling

RDS package — Estimation with data collected using Respondent-Driven Sampling.
Bergm package| — Bayesian ERGM estimation

hergm package|— Hierarchical Exponential-Family Random Graph Models with Local Dependence
(for latent groups).

lvmdnet package — Latent variable models.
VBLPCM package — Variational Bayes Latent Position Cluster Models.

xergm package| — Temporal exponential random graph models (TERGM) by bootstrapped pseu-
dolikelihood, MCMC MLE and (temporal) network autocorrelation models.

Additional functionality in development:

ergm.ego package - ERGM estimation and inference from egocentrically sampled data (expected
May 2015)

tsna package — Temporally extended (vertex and edge) SNA methods for dynamic longitudinal
network data (expected May 2015)

MLergm package — ERGM estimation and inference for multi-level data (for observed groups)
(expected 2016)

Statnet Commons: The core development team

Mark S. Handcock jhandcock@stat.ucla.eduy,
David R. Hunter jdhunter@stat.psu.eduy,

Carter T. Butts jbuttscQuci.eduy,

Steven M. Goodreau jgoodreau@u.washington.eduj,
Skye Bender-deMoll jskyebend@skyeome.net);,
Martina Morris jmorrism@u.washington.eduj,
Pavel N. Krivitsky jpavelQuow.edu.auy,
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Appendix A: Clarifying the terms — ergm and network

You will see the terms ergm and network used in multiple contexts throughout the documentation.
This is common in R, but often confusing to newcomers. To clarify:

ergm

e ERGM: the acronym for an Exponential Random Graph Model; a statistical model for relational
data that takes a generalized exponential family form.

e ergm package: one of the packages within the statnet suite

e ergm function: a function within the ergm package; fits an ERGM to a network object, creating
an ergm object in the process.

e ergm object: a class of objects produced by a call to the ergm function, representing the results
of an ERGM fit to a network.

network

e network: a set of actors and the relations among them. Used interchangeably with the term
graph.

e network package: one of the packages within the statnet suite; used to create, store, modify
and plot the information found in network objects.

e network object: a class of object in R used to represent a network.
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