
Handling disease outbreak data using epibase 0.1-0

Thibaut Jombart, Xavier Didelot, Rolf Ypma, Lulla Opatowski, Anne Cori

May 26, 2013

Abstract

This vignette introduces the main functionalities of epibase, a package implementing core tools
for the analysis of outbreak data. Disease outbreak data can be diverse and complex, and the
purpose of epibase is to simplify the handling of this information. The main feature of the package
lies in the formal (S4) class obkData (for “outbreak data”), which offers a coherent way of handling
data on individuals, samples, contact networks, clinical events, as well as phylogenies and genomic
sequences. Beyond introducing this data structure, this tutorial illustrates how these objects can
be handled and visualized in R.

1

Contents

1 Storing outbreak data 3

1.1 Class definitions . 3
1.1.1 obkData: storage of outbreak data . 3
1.1.2 obkSequences: storage of DNA sequences for different genes 8
1.1.3 obkContacts: storage of dynamics contact networks 10

1.2 Getting data into epibase . 13
1.2.1 The obkData constructor . 14
1.2.2 Using other constructors: obkSequences and obkContacts 19

2 Data handling using obkData objects 19

2.1 Accessors . 19
2.1.1 Accessors for obkData objects . 20
2.1.2 Accessors for obkSequences objects . 26
2.1.3 Accessors for obkContacts objects . 26

2.2 Subsetting the data . 28
2.3 Obtaining phylogenies from genetic sequences . 32

3 Simulating outbreak data 34

4 Graphics for obkData objects 36

4.1 Plotting a timeline of samples . 36
4.2 Visualizing samples on a map . 39
4.3 Building minimum spanning trees from genetic sequences 41
4.4 Plotting phylogenetic trees . 42

2

1 Storing outbreak data

In this section, we first detail the structure of the classes of objects used in epibase, and then explain
how to import data into the package.

1.1 Class definitions

Data collected during outbreaks can be hugely diverse and complex. In epibase, our purpose is to
have a general class of objects which can store virtually any information sampled during an outbreak,
without the user worrying about storage issues and consistency amongst different types of data. For
most purposes, the core class obkData can be taken as a black box, with which the user can interact
using specific functions called accessors. However, a basic understanding of what type of information
is stored in these objects will be useful.

1.1.1 obkData: storage of outbreak data

The main class of objects in epibase is obkData. This formal (S4) class is used to store various types
of information gathered during outbreaks. The definition of the class in terms of R objects can be
obtained by:

library(epibase)

Loading required package: MASS

Loading required package: ape

Loading required package: adegenet

Loading required package: ade4

##

Attaching package: ’ade4’

The following object is masked from ’package:base’:

##

within

Loading required package: igraph

##

Attaching package: ’igraph’

The following object is masked from ’package:ape’:

##

as.igraph, edges

==========================

adegenet 1.3-8 is loaded

==========================

##

- to start, type ’?adegenet’

- to browse adegenet website, type ’adegenetWeb()’

- to post questions/comments: adegenet-forum@lists.r-forge.r-project.org

Loading required package: network

network: Classes for Relational Data

Version 1.7.2 created on March 15, 2013.

copyright (c) 2005, Carter T. Butts, University of California-Irvine

Mark S. Handcock, University of Washington

David R. Hunter, Penn State University

Martina Morris, University of Washington

For citation information, type citation("network").

Type help("network-package") to get started.

3

##

Attaching package: ’network’

The following objects are masked from ’package:igraph’:

##

add.edges, add.vertices, %c%, delete.edges, delete.vertices,

get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,

is.directed, list.edge.attributes, list.vertex.attributes, %s%,

set.edge.attribute, set.vertex.attribute

Loading required package: networkDynamic

Loading required package: statnet.common

##

networkDynamic: version 0.4.1, created on 2013-05-2

Copyright (c) 2013, Carter T. Butts, University of California -- Irvine

Ayn Leslie-Cook, University of Washington

Pavel N. Krivitsky, Penn State University

Skye Bender-deMoll, University of Washington

with contributions from

Zack Almquist, University of California -- Irvine

David R. Hunter, Penn State University

Li Wang

Kirk Li, University of Washington

Steven M. Goodreau, University of Washington

Martina Morris, University of Washington

Based on "statnet" project software (statnet.org).

For license and citation information see statnet.org/attribution

or type citation("networkDynamic").

Loading required package: ggplot2

Loading required package: ggmap

Loading required package: sna

sna: Tools for Social Network Analysis

Version 2.3-1 created on 2013-02-28.

copyright (c) 2005, Carter T. Butts, University of California-Irvine

For citation information, type citation("sna").

Type help(package="sna") to get started.

##

Attaching package: ’sna’

The following object is masked from ’package:network’:

##

%c%

The following objects are masked from ’package:igraph’:

##

betweenness, bonpow, %c%, closeness, degree, dyad.census, evcent,

hierarchy, is.connected, neighborhood, triad.census

The following object is masked from ’package:ape’:

##

consensus

Loading required package: scales

Loading required package: plyr

##

Attaching package: ’plyr’

4

The following object is masked from ’package:network’:

##

is.discrete

Loading required package: reshape2

Loading required package: mapproj

Loading required package: maps

Loading required package: RColorBrewer

epibase 0.1-0 has been loaded

##

Attaching package: ’epibase’

The following object is masked from ’package:adegenet’:

##

.S3MethodsClasses

getClassDef("obkData")

Class "obkData" [package "epibase"]

##

Slots:

##

Name: individuals samples clinical

Class: dataframeOrNULL dataframeOrNULL listOrNULL

##

Name: dna contacts trees

Class: obkSequencesOrNULL obkContactsOrNULL multiPhyloOrNULL

One can also examine a structure using an empty object:

new("obkData")

##

=== obkData object ===

== Empty slots ==

@individuals, @samples, @clinical, @dna, @contacts, @trees

Each slot of an obkData object is optional. By convention, empty slots are always NULL. The slots
respectively contain:

• @individuals: a data.frame storing individual data, such as age, sex, or onset of symptoms. If
not NULL, this data.frame will have exactly one row per individual, with row names providing
unique identifiers for individuals.

• @samples: a data.frame storing sample data, typically swab results or accession numbers
of DNA sequences. If not NULL, this data.frame must contain the three following columns:
individualID (unique identifiers for individuals), sampleID (identifiers for samples, possibly
repeated if several measurements have been made on the same sample), and date (collection
dates for the samples).

• @clinical: a list of data.frames storing any additional clinical information; there is no
constraint on the number of data.frames stored, but each one must contain columns named
individualID (unique identifiers for individuals) and date (date of observations/interventions).

• @dna: DNA sequences of one or more genes, stored as an obkSequences object. See section
below for details on obkSequences objects.

5

• @contacts: dynamic contact network between the individuals, stored as an obkContacts object.
See section below for details on obkContacts objects.

• @trees: a list of phylogenetic trees with the class multiPhylo (from the ape package); can be
used to store e.g. a posterior distribution of trees from a Bayesian phylogenetic reconstruction
using BEAST.

The slots of an object foo can be accessed using foo@[name-of-the-slot]. Let us use the toy
outbreak dataset ToyOutbreak and examine its content:

data(ToyOutbreak)

class(ToyOutbreak)

[1] "obkData"

attr(,"package")

[1] "epibase"

slotNames(ToyOutbreak)

[1] "individuals" "samples" "clinical" "dna" "contacts"

[6] "trees"

head(ToyOutbreak)

##

=== obkData x ===

== @individuals==

infector DateInfected Sex Age lat lon

1 NA 2000-01-01 M 33 51.52 -0.1805

2 1 2000-01-02 F 42 51.52 -0.1771

3 2 2000-01-03 F 44 51.52 -0.1614

4 2 2000-01-03 M 49 51.52 -0.1706

##

== @samples==

individualID sampleID date sequenceID locus

1 1 1 2000-01-01 1 gene1

2 2 2 2000-01-02 2 gene1

3 3 3 2000-01-03 3 gene1

4 4 4 2000-01-03 4 gene1

##

== @clinical==

individualID date temperature

1 1 2000-01-03 39.1

2 2 2000-01-03 40.4

3 3 2000-01-07 40.0

4 4 2000-01-08 39.8

##

== @dna==

[836 DNA sequences in 2 loci]

##

$gene1

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

6

##

Labels: 1 2 3 4 5 6 ...

##

Base composition:

a c g t

0.237 0.248 0.252 0.263

##

$gene2

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1000

##

Labels: 419 420 421 422 423 424 ...

##

Base composition:

a c g t

0.223 0.243 0.257 0.276

##

##

== @contacts==

Number of individuals = 20

Number of contacts = 19

Contacts = dynamic

NetworkDynamic properties:

distinct change times: 5

maximal time range: 0 to 4

##

Network attributes:

vertices = 20

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = TRUE

bipartite = FALSE

total edges= 19

missing edges= 0

non-missing edges= 19

##

Vertex attribute names:

vertex.names

##

Date of origin: [1] "2000-01-01"

##

== @trees==

1 phylogenetic trees

summary(ToyOutbreak)

Dataset of 418 individuals with...

- 418 samples

coming from 418 individuals

collected between 2000-01-01 and 2000-01-10

7

containing information on:

sequenceID

locus

- 836 sequences across 2 loci

(length of concatenated alignment: 1600 nucleotides)

- clinical data from 418 individuals

containing information on:

Fever

- 19 contacts recorded between 20 individuals

- 1 phylogenetic tree with 418 tips

ToyOutbreak is an obkData object containing information on individuals (@individuals), samples
(@samples), clinical events (@clinical), some DNA sequences (@dna), a contact network (@contacts)
and a phylgenetic tree (@trees). Note the presence of the mandatory columns in @samples:
individualID, sampleID, and date. Accessing a given slot is as easy as:

head(ToyOutbreak@individuals)

infector DateInfected Sex Age lat lon

1 NA 2000-01-01 M 33 51.52 -0.1805

2 1 2000-01-02 F 42 51.52 -0.1771

3 2 2000-01-03 F 44 51.52 -0.1614

4 2 2000-01-03 M 49 51.52 -0.1706

5 2 2000-01-03 M 34 51.52 -0.1685

6 2 2000-01-03 M 31 51.51 -0.1662

head(ToyOutbreak@samples)

individualID sampleID date sequenceID locus

1 1 1 2000-01-01 1 gene1

2 2 2 2000-01-02 2 gene1

3 3 3 2000-01-03 3 gene1

4 4 4 2000-01-03 4 gene1

5 5 5 2000-01-03 5 gene1

6 6 6 2000-01-03 6 gene1

ToyOutbreak@trees

1 phylogenetic trees

However, we will see how retrieving information from obkData objects can be made more powerful
using accessors in the following sections.

1.1.2 obkSequences: storage of DNA sequences for different genes

Pathogen sequence data can typically be obtained for different genes, making the handling of such
information not entirely trivial. The class obkSequences stores such information. It consists in a list
of matrices of aligned DNA sequences (in rows), stored using ape’s class DNAbin for efficiency, with each
item of the list corresponding to a different gene. If provided, gene names are the names of the list. The
row names in each matrix contain unique identifiers for the sequences, typically accession numbers.
In obkData objects, sequences are matched to samples by the field sequenceID in the @sample slot,
which effectively contains the sequence identifiers. When several loci have been sequenced, the locus

8

information must also be provided for each sequence identifiers using the column locus in the @sample
slot.

Let us examine the DNA information stored in ToyOutbreak:

class(ToyOutbreak@dna)

[1] "obkSequences"

attr(,"package")

[1] "epibase"

ToyOutbreak@dna

[836 DNA sequences in 2 loci]

##

$gene1

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

##

Labels: 1 2 3 4 5 6 ...

##

Base composition:

a c g t

0.237 0.248 0.252 0.263

##

$gene2

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1000

##

Labels: 419 420 421 422 423 424 ...

##

Base composition:

a c g t

0.223 0.243 0.257 0.276

slotNames(ToyOutbreak@dna)

[1] "dna"

is.list(ToyOutbreak@dna@dna)

[1] TRUE

names(ToyOutbreak@dna@dna)

[1] "gene1" "gene2"

ToyOutbreak@dna@dna$gene1

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

##

9

Labels: 1 2 3 4 5 6 ...

##

Base composition:

a c g t

0.237 0.248 0.252 0.263

class(ToyOutbreak@dna@dna$gene1)

[1] "DNAbin"

ToyOutbreak@dna is an obkSequences object containing DNA sequences for two genes. The slot
ToyOutbreak@dna@dna is a list of DNAbin matrices, each containing sequences for a given gene.

1.1.3 obkContacts: storage of dynamics contact networks

obkData objects can also store contact data between individuals, in the slot @contacts. These contacts
can be fixed or vary in time, in which case data are stored as a dynamic contact network. The slot
@contacts is an instance of the class obkContacts, which currently contains either a network object
(static graph, from the network package), or a networkDynamic object, for contacts varying in time
(from the networkDynamic package). These objects are fully documented in their respective vignettes.
Here, we detail a simple toy example from the documentation of obkContacts:

cf <- c("a", "b", "a", "c", "d")

ct <- c("b", "c", "c", "d", "b")

oc.static <- new("obkContacts", cf, ct, directed=FALSE)

slotNames(oc.static)

[1] "contacts" "origin"

oc.static

Number of individuals = 4

Number of contacts = 5

Contacts = fixed

Network attributes:

vertices = 4

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = TRUE

bipartite = FALSE

total edges= 5

missing edges= 0

non-missing edges= 5

##

Vertex attribute names:

vertex.names

oc.static contains a static, non-directed contact network (slot @contacts, class network). It can
be plotted easily using:

10

plot(oc.static, main="Static contact network")

Static contact network

a

b

c

d

onset <- c(1, 2, 3, 4, 5)

terminus <- c(1.2, 4, 3.5, 4.1, 6)

oc.dynamic <- new("obkContacts",cf,ct, directed=FALSE,

contactStart=onset, contactEnd=terminus)

slotNames(oc.dynamic)

[1] "contacts" "origin"

oc.dynamic

Number of individuals = 4

Number of contacts = 5

Contacts = dynamic

NetworkDynamic properties:

distinct change times: 9

maximal time range: 1 to 6

##

Network attributes:

vertices = 4

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = TRUE

11

bipartite = FALSE

total edges= 5

missing edges= 0

non-missing edges= 5

##

Vertex attribute names:

vertex.names

##

Date of origin: NULL

oc.dynamic is a dynamic graph, i.e. a graph whose vertices and edges can change over time. By
default, plotting the object collapses the graph so that all vertices and edges that exist at some point are
displayed; however, sections of the graph for given time intervals can be obtained using get.contacts

(or alternatively, network.extract on the networkDynamic object directly). As a reminder, here is
the input of the graph oc.dynamic:

data.frame(onset,terminus,ct,cf)

onset terminus ct cf

1 1 1.2 b a

2 2 4.0 c b

3 3 3.5 c a

4 4 4.1 d c

5 5 6.0 b d

And here are various plots, first of the full (collapsed) contact network, then for different time
intervals (0–2, 2–4, 4–6):

par(mfrow=c(2,2))

plot(oc.dynamic@contacts,main="oc.dynamic - collapsed graph",

displaylabels=TRUE)

plot(get.contacts(oc.dynamic, from=0, to=2),

main="oc.dynamic - time 0--2", displaylabels=TRUE)

plot(get.contacts(oc.dynamic, from=2, to=4),

main="oc.dynamic - time 2--4", displaylabels=TRUE)

plot(get.contacts(oc.dynamic, from=4, to=6),

main="oc.dynamic - time 4--6", displaylabels=TRUE)

12

oc.dynamic − collapsed graph

a

b
c

d

oc.dynamic − time 0−−2

a

b

c

d

oc.dynamic − time 2−−4

a

b

c

d

oc.dynamic − time 4−−6

a

b

c

d

networkDynamic allows for extensive manipulation of dynamic networks. For more information,
refer to the vignette distributed with the package (vignette("networkDynamic")).

1.2 Getting data into epibase

Storing data in epibase requires the following, fairly simple steps:

1. read data into R

(a) read data.frames storing individuals, samples, and clinical information in R from a text
file, typically using read.table or read.csv for comma-separated files. Every standard
spreadsheet software can export data to these formats.

(b) read DNA sequences from a single file, typically using read.dna from the ape package; this
“master” file must contain all DNA sequences of all genes, with unique identifiers for the
sequences as labels. While phylogenies can be obtained in R, annotated trees produced by
Bayesian software such as BEAST can now be imported using read.annotated.nexus.

2. use this information as input to the obkData constructor (new("obkData",...)) to create an
obkData object.

In the following, we assume that step 1 is sorted and focus on step 2: using the constructor.

13

1.2.1 The obkData constructor

New objects are created using new, with these slots as arguments. If no argument is provided, an
empty object is created, as seen before:

new("obkData")

##

=== obkData object ===

== Empty slots ==

@individuals, @samples, @clinical, @dna, @contacts, @trees

This function accepts the following arguments, which mirror to some extent the structure of the object
(see ?obkData for more information):

• individuals: a data.frame with a mandatory column named ’individualID’, providing unique
identifiers for the individuals.

• samples: a data.frame with 3 mandatory columns named ’individualID’, ’sampleID’, and ’date’,
providing identifiers for the individuals, for the samples, and dates. Dates must be provided in a
way convertible to Date (see ?as.Date). Default format for dates provided as characters is ”%Y-
%m-%d” (e.g. 1984-09-23). Alternative format can be specified via the argument date.format.
If left to NULL, the format is determined automatically.

• clinical: a list of data.frames, each of which has 2 mandatory fields, individualID’ and ’date’
(specified as before).

• dna: a list of DNA sequences in DNAbin or character format, as read by read.dna or
fasta2DNAbin.

• contacts: a matrix of characters indicating edges using two columns; if contacts are directed,
the first column is ’from’, the second is ’to’; values should match individual IDs (as returned
by get.individuals(x)); if numeric values are provided, these are converted to integers and
assumed to correspond to individuals returned by get.individuals(x).

• contacts.start: a vector of dates indicating the beginning of each contact.

• contacts.end: a vector of dates indicating the end of each contact.

• contacts.duration: another way to specify contacts.end, as duration of contact in days.

• contacts.directed: a logical indicating if contacts are directed; defaults to FALSE.

• trees: a list of phylogenetic trees in the class multiPhylo (from the ape package); this is
basically a list of phylo objects, with the class attribute “multiPhylo”.

• date.format: a character string indicating the date format (see as.Date); if NULL, date format
is detected automatically.

We can now show how to create a new obkData from multiple inputs, using the dataset
ToyOutbreakRaw:

data(ToyOutbreakRaw)

class(ToyOutbreakRaw)

[1] "list"

14

names(ToyOutbreakRaw)

[1] "individuals" "samples" "clinical" "contacts"

[5] "contacts.start" "contacts.end" "dna" "trees"

The simplest information we can store is about the samples and individuals:

head(ToyOutbreakRaw$samples)

individualID sampleID date sequenceID locus

1 1 1 2000-01-01 1 gene1

2 2 2 2000-01-02 2 gene1

3 3 3 2000-01-03 3 gene1

4 4 4 2000-01-03 4 gene1

5 5 5 2000-01-03 5 gene1

6 6 6 2000-01-03 6 gene1

head(ToyOutbreakRaw$individuals)

infector DateInfected Sex Age lat lon

1 NA 2000-01-01 M 33 51.52 -0.1805

2 1 2000-01-02 F 42 51.52 -0.1771

3 2 2000-01-03 F 44 51.52 -0.1614

4 2 2000-01-03 M 49 51.52 -0.1706

5 2 2000-01-03 M 34 51.52 -0.1685

6 2 2000-01-03 M 31 51.51 -0.1662

x <- new("obkData", samples=ToyOutbreakRaw$samples,

individuals=ToyOutbreakRaw$individuals)

head(x)

##

=== obkData x ===

== @individuals==

infector DateInfected Sex Age lat lon

1 NA 2000-01-01 M 33 51.52 -0.1805

2 1 2000-01-02 F 42 51.52 -0.1771

3 2 2000-01-03 F 44 51.52 -0.1614

4 2 2000-01-03 M 49 51.52 -0.1706

##

== @samples==

individualID sampleID date sequenceID locus

1 1 1 2000-01-01 1 gene1

2 2 2 2000-01-02 2 gene1

3 3 3 2000-01-03 3 gene1

4 4 4 2000-01-03 4 gene1

##

== Empty slots ==

@clinical, @dna, @contacts, @trees

This apparently did not do much, as the stored information is nearly identical to the input.
However, a number of checks have been made to ensure that dates are actually Date objects, that
individual identifiers of are indeed unique, etc. More importantly, the two sources of information are

15

now connected, so that we can later e.g. subset the data per sample or per individual. This is possible
for many other types of information we may want to handle. Let us now consider the following,
additional inputs, including information about a dynamic contact network:

head(ToyOutbreakRaw$contacts)

from to

[1,] 1 2

[2,] 2 3

[3,] 2 4

[4,] 2 5

[5,] 2 6

[6,] 6 7

head(ToyOutbreakRaw$contacts.start)

[1] "2000-01-01" "2000-01-02" "2000-01-02" "2000-01-02" "2000-01-02"

[6] "2000-01-03"

head(ToyOutbreakRaw$contacts.end)

[1] "2000-01-02" "2000-01-03" "2000-01-03" "2000-01-03" "2000-01-03"

[6] "2000-01-04"

clinical intervention (here, merely temperature measurements):

head(ToyOutbreakRaw$clinical$Fever)

individualID date temperature

1 1 2000-01-03 39.1

2 2 2000-01-03 40.4

3 3 2000-01-07 40.0

4 4 2000-01-08 39.8

5 5 2000-01-04 39.4

6 6 2000-01-06 39.3

DNA sequences:

ToyOutbreakRaw$dna

836 DNA sequences in binary format stored in a list.

##

All sequences of same length: 600

##

Labels: 1 2 3 4 5 6 ...

##

Base composition:

a c g t

0.237 0.248 0.252 0.263

and even phylogenetic trees:

16

ToyOutbreakRaw$trees

1 phylogenetic trees

All this information will be compiled into a single object by:

x <- new ("obkData", individuals=ToyOutbreakRaw$individuals,

samples=ToyOutbreakRaw$samples,

clinical=ToyOutbreakRaw$clinical, contacts=ToyOutbreakRaw$contacts,

contacts.start=ToyOutbreakRaw$contacts.start,

contacts.end=ToyOutbreakRaw$contacts.end,

dna=ToyOutbreakRaw$dna, trees=ToyOutbreakRaw$trees)

head(x)

##

=== obkData x ===

== @individuals==

infector DateInfected Sex Age lat lon

1 NA 2000-01-01 M 33 51.52 -0.1805

2 1 2000-01-02 F 42 51.52 -0.1771

3 2 2000-01-03 F 44 51.52 -0.1614

4 2 2000-01-03 M 49 51.52 -0.1706

##

== @samples==

individualID sampleID date sequenceID locus

1 1 1 2000-01-01 1 gene1

2 2 2 2000-01-02 2 gene1

3 3 3 2000-01-03 3 gene1

4 4 4 2000-01-03 4 gene1

##

== @clinical==

individualID date temperature

1 1 2000-01-03 39.1

2 2 2000-01-03 40.4

3 3 2000-01-07 40.0

4 4 2000-01-08 39.8

##

== @dna==

[836 DNA sequences in 2 loci]

##

$gene1

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

##

Labels: 1 2 3 4 5 6 ...

##

Base composition:

a c g t

0.237 0.248 0.252 0.263

##

$gene2

17

418 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

##

Labels: 419 420 421 422 423 424 ...

##

Base composition:

a c g t

0.237 0.248 0.252 0.263

##

##

== @contacts==

Number of individuals = 20

Number of contacts = 19

Contacts = dynamic

NetworkDynamic properties:

distinct change times: 5

maximal time range: 0 to 4

##

Network attributes:

vertices = 20

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = TRUE

bipartite = FALSE

total edges= 19

missing edges= 0

non-missing edges= 19

##

Vertex attribute names:

vertex.names

##

Date of origin: [1] "2000-01-01"

##

== @trees==

1 phylogenetic trees

summary(x)

Dataset of 418 individuals with...

- 418 samples

coming from 418 individuals

collected between 2000-01-01 and 2000-01-10

containing information on:

sequenceID

locus

- 836 sequences across 2 loci

(length of concatenated alignment: 1200 nucleotides)

- clinical data from 418 individuals

containing information on:

Fever

18

- 19 contacts recorded between 20 individuals

- 1 phylogenetic tree with 418 tips

x is a new, coherent representation of the data. This representation ensures, amongst other things,
that:

• individual labels are unique and consistent across samples, clinical interventions, contacts, and
patient information

• every item is dated using actual dates (Date objects), using the same format

• every sample refers to an individual, for which meta-information may be available

• every DNA sequence refers to a sample

• every DNA sequence belongs to a gene

• DNA sequences from the same gene have the same length

• every tip of the trees refers to a DNA sequence

• every contact refers to documented individuals

Moreover, as all these items are now connected, data manipulation on every components will now
be drastically simplified (see section below on data handling).

1.2.2 Using other constructors: obkSequences and obkContacts

The classes obkSequences and obkContacts, both used in obkData objects, also have constructors
and can be created independently from obkData objects. However, the risk is that one would replace
e.g. the DNA sequences stored in an obkData object by a new obkSequences, which would bypass
the consistency checks made by the obkData constructor and possibly lead to an invalid object. This
practice is therefore discouraged for the moment.

2 Data handling using obkData objects

2.1 Accessors

The philosophy underlying formal (S4) classes is that the internal representation of the data can be
complex as long as accessing the information is simple. This is made possible by decoupling storage
and accession: the user is not meant to access the content of the object directly, but has to use
accessors to retrieve the information. In this section, we detail the existing accessors for object classes
implemented in epibase. We use the notation “[possible-values]” to list or describe possible values
of an argument; the symbols “[]” should be omitted from the actual command line. For instance:

myFunction(x, y=["foo" or "bar"])

means that the argument y of function myFunction can be either "foo" or "bar", and valid calls would
be:

myFunction(x, y="foo")

or:

19

myFunction(x, y="bar")

2.1.1 Accessors for obkData objects

Available accessors are also documented in ?obkData. These functions are meant to retrieve
information that is not trivially accessible. To simply access slots, use the @ operator, e.g. x@samples,
x@individuals, etc.

All accessors return NULL when information is missing, except for functions returning number of
items, which will return 0. In the following, we illustrate accessors using a random sample (n=5) of
the toy dataset ToyOutbreak:

data(ToyOutbreak)

set.seed(1)

get.nsamples(ToyOutbreak)

[1] 418

toKeep <- sample(1:nrow(ToyOutbreak@samples), 5)

toKeep

[1] 222 311 478 757 168

x <- subset(ToyOutbreak, row.samples=toKeep)

summary(x)

Dataset of 5 individuals with...

- 5 samples

coming from 5 individuals

collected between 2000-01-07 and 2000-01-10

containing information on:

sequenceID

locus

- 5 sequences across 2 loci

(length of concatenated alignment: 1600 nucleotides)

- clinical data from 5 individuals

containing information on:

Fever

- 0 contacts recorded between 0 individuals

- 1 phylogenetic tree with 3 tips

• get.individuals(x, data=["all" or "samples" or "individuals" or "clinical" or

"contacts"]): returns the individual IDs in different components of the object.

• get.nindividuals(x, data=["all" or "samples" or "individuals" or "clinical" or

"contacts"]): returns the number of individuals in different components of the object.

get.nindividuals(x)

[1] 5

20

get.nindividuals(x, "contacts")

[1] 0

get.individuals(x)

[1] "222" "311" "60" "339" "168"

There are 5 individuals in the data, except for contact information; this is because contacts were
only recorded between the first 20 individuals of ToyOutbreak:

get.individuals(ToyOutbreak, "contacts")

[1] "1" "2" "6" "5" "4" "7" "11" "9" "3" "8" "10" "12" "13" "14" "15"

[16] "16" "17" "18" "19" "20"

• get.nsamples(x): returns the number of sample.

• get.samples(x): returns the unique IDs of the samples in the data.

get.nsamples(x)

[1] 5

get.samples(x)

[1] "222" "311" "60" "339" "168"

• get.nlocus(x): returns the number of loci.

• get.locus(x): returns the names of the loci in the data.

get.nlocus(x)

[1] 2

get.locus(x)

[1] "gene1" "gene2"

• get.nsequences(x, what=["total" or "bylocus"]): returns the number of sequences in
@dna.

• get.sequences(x): returns the IDs of the sequences in @dna.

get.nsequences(x)

[1] 5

21

get.nsequences(x, "bylocus")

gene1 gene2

3 2

get.sequences(x)

gene11 gene12 gene13 gene21 gene22

"222" "311" "168" "478" "757"

• get.trees(x): returns the content of x@trees.

get.trees(x)

1 phylogenetic trees

• get.dna(x, locus=[locus IDs], id=[sequence IDs]): returns a list of matrices of DNA
sequences; the arguments locus and id are optional; if provided, they should be character
strings corresponding to the name of the loci and/or sequences to be retained. Integers or logical
will be treated as indicators based on the results of get.locus or get.sequences.

get.dna(x)

$gene1

3 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

##

Labels: 222 311 168

##

Base composition:

a c g t

0.238 0.248 0.251 0.263

##

$gene2

2 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1000

##

Labels: 478 757

##

Base composition:

a c g t

0.223 0.236 0.260 0.281

returns all the DNA sequences, in two matrices corresponding to the different genes. We can
request e.g. only the second gene:

22

get.dna(x, locus=2)

$gene2

2 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1000

##

Labels: 478 757

##

Base composition:

a c g t

0.223 0.236 0.260 0.281

or even just specific sequences, say (”311” and ”222”):

get.dna(x, id=c("311","222"))

$gene1

2 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 600

##

Labels: 311 222

##

Base composition:

a c g t

0.237 0.248 0.251 0.264

Note that we could also refer to sequences by their index in get.sequences:

get.sequences(x)

gene11 gene12 gene13 gene21 gene22

"222" "311" "168" "478" "757"

identical(get.dna(x, id=c("311","222")), get.dna(x, id=c(2,1)))

[1] TRUE

• get.ncontacts(x, from=NULL, to=NULL): returns the number of contacts in x@contacts; the
optional arguments from and to can be used, in the case of dynamic networks, to specify the
range of dates for which contacts should be kept.

• get.contacts(x, from=NULL, to=NULL): returns the contacts in x@contacts; the optional
arguments from and to can be used, in the case of dynamic networks, to specify the range
of dates for which contacts should be kept. Here, the object x contains no contact information,
as the individuals of the samples retained were had no documented contacts:

get.ncontacts(ToyOutbreak)

23

[1] 19

get.individuals(ToyOutbreak@contacts)

[1] "1" "2" "6" "5" "4" "7" "11" "9" "3" "8" "10" "12" "13" "14" "15"

[16] "16" "17" "18" "19" "20"

get.individuals(x)

[1] "222" "311" "60" "339" "168"

get.ncontacts(x)

[1] 0

• get.data(x, data=[name of data seeked], where=NULL, drop=[TRUE/FALSE],

showSource=[TRUE/FALSE]): multi-purpose accessor seeking a data field with a given
name in the entire dataset; data can be the name of a slot, or the name of a column in
x@individuals, x@samples, or x@clinical. The optional argument where allows one to specify
in which slot the information should be looked for. The argument drop states whether to return
a vector (TRUE), or a one-column data.frame (FALSE).

For instance, we can retrieve temperature measurements using:

get.data(x,"temperature")

[1] 39.2 39.7 38.7 39.6 38.5

or the sex of the different individuals:

get.data(x, "Sex")

[1] "F" "M" "M" "F" "F"

Several fields can be requested, so long as they are stored in the same slot; for instance:

get.data(x, c("Sex","Age","infector"))

Sex Age infector

60 F 37 27

168 M 37 106

222 M 39 43

311 F 32 210

339 F 50 159

The source (where matching fields were found) will be indicated if showSource is TRUE:

get.data(x, c("Sex","Age","infector"), showSource=TRUE)

24

Sex Age infector individualID source

60 F 37 27 60 individuals

168 M 37 106 168 individuals

222 M 39 43 222 individuals

311 F 32 210 311 individuals

339 F 50 159 339 individuals

This is especially useful when the same field appears in different slots, such as date:

get.data(x, "date")

[1] "2000-01-09" "2000-01-10" "2000-01-07" "2000-01-10" "2000-01-09"

[6] "2000-01-10" "2000-01-15" "2000-01-13" "2000-01-11" "2000-01-16"

actually corresponds to:

get.data(x, "date", showSource=TRUE)

date individualID source

222 2000-01-09 222 samples

311 2000-01-10 311 samples

478 2000-01-07 60 samples

757 2000-01-10 339 samples

168 2000-01-09 168 samples

60 2000-01-10 60 Fever

1681 2000-01-15 168 Fever

2221 2000-01-13 222 Fever

3111 2000-01-11 311 Fever

339 2000-01-16 339 Fever

as there are dates in both @samples and @clinical. To retain only the latter, we use the
argument where:

get.data(x, "date", where="clinical", showSource=TRUE)

date individualID source

60 2000-01-10 60 Fever

168 2000-01-15 168 Fever

222 2000-01-13 222 Fever

311 2000-01-11 311 Fever

339 2000-01-16 339 Fever

A failed search will return NULL with a warning; for instance, we can try searching for
“sugarman”:

get.data(x, "sugarman")

Warning: data ’ sugarman ’was not found in the object

NULL

25

And the same happens when looking for information in an empty slot:

x@clinical <- NULL

get.data(x, "date", where="clinical")

Warning: x@clinical is NULL

NULL

2.1.2 Accessors for obkSequences objects

Accessors of obkSequences objects are basically a subset of what is available for obkData. They work
in the same way, and use the same arguments; they include:

• get.locus

• get.nlocus

• get.sequences

• get.nsequences

• get.dna

2.1.3 Accessors for obkContacts objects

Accessors of obkContacts objects are basically a subset of what is available for obkData. They work
in the same way, and use the same arguments; they include:

• get.nindividuals

• get.individuals

• get.ncontacts

• get.contacts

Another useful function is as.matrix, which converts the object into an adjacency matrix (by
default)), a matrix of incidence, or a matrix listing edges. For instance, using a graph derived from
the first 10 individuals in ToyOutbreak:

x <- subset(ToyOutbreak, individuals=1:10)

get.ncontacts(x)

[1] 9

plot(x@contacts, main="Contacts in x", label.cex=1.25, vertex.cex=2)

26

Contacts in x

1

2

6

5

4

7

9

3

8

10

(note: see ?plot.network to customize such graphics).

as.matrix(x@contacts)

1 2 6 5 4 7 9 3 8 10

1 0 1 0 0 0 0 1 0 0 0

2 1 0 1 1 1 0 0 1 0 0

6 0 1 0 0 0 1 0 0 0 0

5 0 1 0 0 0 0 0 0 1 1

4 0 1 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0

as.matrix(x@contacts, "edgelist")

[,1] [,2]

[1,] 2 1

[2,] 8 2

[3,] 5 2

[4,] 4 2

[5,] 3 2

[6,] 6 3

[7,] 9 4

[8,] 7 1

[9,] 10 4

attr(,"n")

[1] 10

27

attr(,"vnames")

[1] "1" "2" "6" "5" "4" "7" "9" "3" "8" "10"

2.2 Subsetting the data

A lot of data handling lies in creating subsets of the data based on some given criteria. The method
subset for obkData objects allows for a range of manipulations. The syntax is as follows:

subset(x, individuals=NULL, samples=NULL, locus=NULL, sequences=NULL,

date.from=NULL, date.to=NULL, date.format=NULL,

row.individuals=NULL, row.samples=NULL,...)

See ?subset.obkData for the details of these arguments. The function works in a fairly intuitive
way. The arguments individuals, samples, locus and sequences are vectors of characters indicating
items to be kept. If integers or logicals are provided, these are assumed to match the output of
get.[...]. For instance (using a random subset of ToyOutbreak):

data(ToyOutbreak)

set.seed(1)

get.nsamples(ToyOutbreak)

[1] 418

toKeep <- sample(1:nrow(ToyOutbreak@samples), 10)

toKeep

[1] 222 311 478 757 168 747 785 548 521 52

x <- subset(ToyOutbreak, row.samples=toKeep)

summary(x)

Dataset of 10 individuals with...

- 10 samples

coming from 10 individuals

collected between 2000-01-07 and 2000-01-10

containing information on:

sequenceID

locus

- 10 sequences across 2 loci

(length of concatenated alignment: 1600 nucleotides)

- clinical data from 10 individuals

containing information on:

Fever

- 0 contacts recorded between 0 individuals

- 1 phylogenetic tree with 4 tips

get.individuals(x)

[1] "222" "311" "60" "339" "168" "329" "367" "130" "103" "52"

To retain only individuals 60 and 168, once can do:

28

x1 <- subset(x, indiv=c("60","168"))

or

x2 <- subset(x, indiv=c(3,5))

identical(x1,x2)

[1] TRUE

Another, non-exclusive way of subsetting the data is using collection dates of the samples. The
arguments date.from and date.to are used for indicating the range of dates of samples to be retained.
For instance, the range of data in the influenza H1N1 pandemic dataset FluH1N1pdm2009 is:

data(FluH1N1pdm2009)

x <- new("obkData", individuals = FluH1N1pdm2009$individuals, samples =

FluH1N1pdm2009$samples, dna = FluH1N1pdm2009$dna, trees =

FluH1N1pdm2009$trees)

range(get.data(x, "date", where="samples"))

[1] "2009-03-24" "2009-09-30"

We can retain data collected during the first month using:

min.date <- min(get.data(x, "date", where="samples"))

min.date

[1] "2009-03-24"

min.date+31

[1] "2009-04-24"

x1 <- subset(x, date.to=min.date+31)

summary(x)

Dataset of 514 individuals with...

- 514 samples

coming from 514 individuals

collected between 2009-03-24 and 2009-09-30

containing information on:

sequenceID

- 514 sequences across 1 locus

(length of concatenated alignment: 1664 nucleotides)

- clinical data from 0 individuals

- 1 phylogenetic tree with 514 tips

summary(x1)

Dataset of 12 individuals with...

- 12 samples

coming from 12 individuals

collected between 2009-03-24 and 2009-04-24

containing information on:

29

sequenceID

- 12 sequences across 1 locus

(length of concatenated alignment: 1664 nucleotides)

- clinical data from 0 individuals

- 1 phylogenetic tree with 12 tips

Note that dates can also be provided as character strings in any sensible format, in which case
subset detects it automatically.

A third way of specifying subsets of data is using indexing of the rows of @individuals or @samples,
using the arguments row.individuals and row.samples, respectively. This is particularly useful for
instance for select specific test outcomes (e.g. positive swabs), patients within a given age class or of
a given sex, or data from a given location. For instance, we can retain data from Mexico using:

toKeep <- get.data(x, "location")=="Mexico"

sum(toKeep)

[1] 43

x.mex <- subset(x, row.individuals=toKeep)

summary(x.mex)

Dataset of 43 individuals with...

- 43 samples

coming from 43 individuals

collected between 2009-03-24 and 2009-09-25

containing information on:

sequenceID

- 43 sequences across 1 locus

(length of concatenated alignment: 1664 nucleotides)

- clinical data from 0 individuals

- 1 phylogenetic tree with 43 tips

head(x.mex)

##

=== obkData x ===

== @individuals==

location

246 Mexico

247 Mexico

248 Mexico

249 Mexico

##

== @samples==

individualID sampleID date sequenceID

246 246 246 2009-07-11 A/Merida/2189_CIR/2009_Mexico_2009-07-11

247 247 247 2009-04-15 A/Mexico/4269/2009_Mexico_2009-04-15

248 248 248 2009-04-14 A/Mexico/4482/2009_Mexico_2009-04-14

249 249 249 2009-04-19 A/Mexico/4603/2009_Mexico_2009-04-19

##

== @dna==

[43 DNA sequences in 1 locus]

30

##

[[1]]

43 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1664

##

Labels: A/Merida/2189_CIR/2009_Mexico_2009-07-11 A/Mexico/4269/2009_Mexico_2009-04-15 A/Mexico/4482/2009_Mexico_2009-04-14

##

Base composition:

a c g t

0.354 0.186 0.223 0.237

##

##

== @trees==

1 phylogenetic trees

##

== Empty slots ==

@clinical, @contacts

Finally, note that several filters can be specified at the same time. For instance, in the following
we extract European data collected between the 1st June and the 31st August:

x.summerEur <- subset(x, date.from="01/06/2009", date.to="31/08/2009",

row.indiv=get.data(x, "location")=="Europe")

summary(x.summerEur)

Dataset of 30 individuals with...

- 30 samples

coming from 30 individuals

collected between 2009-06-01 and 2009-08-26

containing information on:

sequenceID

- 30 sequences across 1 locus

(length of concatenated alignment: 1664 nucleotides)

- clinical data from 0 individuals

- 1 phylogenetic tree with 30 tips

head(x.summerEur)

##

=== obkData x ===

== @individuals==

location

73 Europe

74 Europe

75 Europe

76 Europe

##

== @samples==

individualID sampleID date sequenceID

73 73 73 2009-08-05 A/Catalonia/S1206/2009_Europe_2009-08-05

74 74 74 2009-08-19 A/Catalonia/S1254/2009_Europe_2009-08-19

31

75 75 75 2009-08-21 A/Catalonia/S1271/2009_Europe_2009-08-21

76 76 76 2009-08-25 A/Catalonia/S1272/2009_Europe_2009-08-25

##

== @dna==

[30 DNA sequences in 1 locus]

##

[[1]]

30 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1664

##

Labels: A/Catalonia/S1206/2009_Europe_2009-08-05 A/Catalonia/S1254/2009_Europe_2009-08-19 A/Catalonia/S1271/2009_Europe_2009-08-21

##

Base composition:

a c g t

0.354 0.187 0.224 0.235

##

##

== @trees==

1 phylogenetic trees

##

== Empty slots ==

@clinical, @contacts

2.3 Obtaining phylogenies from genetic sequences

The package ape implements a wide range of genetic distances (see ?dist.dna) and most usual
algorithms for distance-based phylogenetic reconstruction. In epibase, the function make.phylo is a
wrapper for these methods, allowing to derive trees for a selection or all the genes present in an obkData

object. Trees can be stored in the obkData (result=’obkData’) or returned as a multiPhylo object
(result=’multiPhylo’). We illustrate this procedure using x.summerEur, the data of pandemic H1N1
influenza collected in Europe during the summer 2009 (see previous section):

x.summerEur@trees <- NULL

get.nsequences(x.summerEur)

[1] 30

make.phylo admits a range of arguments allowing to select which genes (locus), model of evolution
(model), and tree reconstruction method (method) should be used. By default, a Neighbour-Joining
tree based on Hamming distances (number of differing nucleotides) is derived for every gene, and the
resulting trees are plotted:

x2 <- make.phylo(x.summerEur)

summary(x2)

Dataset of 30 individuals with...

- 30 samples

coming from 30 individuals

collected between 2009-06-01 and 2009-08-26

containing information on:

32

sequenceID

- 30 sequences across 1 locus

(length of concatenated alignment: 1664 nucleotides)

- clinical data from 0 individuals

- 1 phylogenetic tree with 30 tips

x2 now contains a phylogenetic tree derived from the sequences in x.summerEur. This one can be
plotted simply, using:

plot(get.trees(x2)[[1]])

axisPhylo()

A/Catalonia/S1206/2009 Europe 2009−08−05

A/Catalonia/S1254/2009 Europe 2009−08−19

A/Catalonia/S1271/2009 Europe 2009−08−21

A/Catalonia/S1272/2009 Europe 2009−08−25

A/Catalonia/S1277/2009 Europe 2009−08−24

A/England/403/2009 Europe 2009−06−01

A/England/420/2009 Europe 2009−06−06

A/England/433/2009 Europe 2009−06−05

A/England/506/2009 Europe 2009−06−26

A/England/538/2009 Europe 2009−07−01

A/England/607/2009 Europe 2009−07−07
A/England/614/2009 Europe 2009−07−23

A/England/626/2009 Europe 2009−07−14
A/England/645/2009 Europe 2009−08−03

A/England/664/2009 Europe 2009−08−03
A/England/92800004/2009 Europe 2009−07−06

A/England/92820911/2009 Europe 2009−07−01

A/England/92960080/2009 Europe 2009−07−13

A/England/92980479/2009 Europe 2009−07−17

A/England/93040011/2009 Europe 2009−07−22
A/Finland/577/2009 Europe 2009−06−19
A/Italy/45/2009 Europe 2009−06−05
A/Italy/86/2009 Europe 2009−06−18

A/Milan/83/2009 Europe 2009−07−15
A/Reunion/0159 3 M1E/2009 Europe 2009−08−26

A/Reunion/1722 7 M1E/2009 Europe 2009−08−13
A/Reunion/2224 3 M3E/2009 Europe 2009−08−26

A/Roma/ISS39/2009 Europe 2009−06−03

A/Roma/ISS58/2009 Europe 2009−06−08
A/Scotland/Glasgow 419977/2009 Europe 2009−06−17

3 2 1 0

Note that we could ask for a different model of evolution, for instance Kimura’s 2 parameters distance,
and we may want to display the tree and indicate collection dates using tip colors; this can be done
by:

tree1 <- make.phylo(x.summerEur, locus=1, ask=FALSE, model="K80",

plot=TRUE, color.by="dat", palette=seasun)

axisPhylo()

33

A/Catalonia/S1206/2009 Europe 2009−08−05

A/Catalonia/S1254/2009 Europe 2009−08−19

A/Catalonia/S1271/2009 Europe 2009−08−21

A/Catalonia/S1272/2009 Europe 2009−08−25

A/Catalonia/S1277/2009 Europe 2009−08−24

A/England/403/2009 Europe 2009−06−01

A/England/420/2009 Europe 2009−06−06

A/England/433/2009 Europe 2009−06−05

A/England/506/2009 Europe 2009−06−26

A/England/538/2009 Europe 2009−07−01

A/England/607/2009 Europe 2009−07−07
A/England/614/2009 Europe 2009−07−23

A/England/626/2009 Europe 2009−07−14

A/England/645/2009 Europe 2009−08−03

A/England/664/2009 Europe 2009−08−03
A/England/92800004/2009 Europe 2009−07−06

A/England/92820911/2009 Europe 2009−07−01

A/England/92960080/2009 Europe 2009−07−13

A/England/92980479/2009 Europe 2009−07−17

A/England/93040011/2009 Europe 2009−07−22

A/Finland/577/2009 Europe 2009−06−19

A/Italy/45/2009 Europe 2009−06−05

A/Italy/86/2009 Europe 2009−06−18

A/Milan/83/2009 Europe 2009−07−15

A/Reunion/0159 3 M1E/2009 Europe 2009−08−26

A/Reunion/1722 7 M1E/2009 Europe 2009−08−13
A/Reunion/2224 3 M3E/2009 Europe 2009−08−26

A/Roma/ISS39/2009 Europe 2009−06−03
A/Roma/ISS58/2009 Europe 2009−06−08

A/Scotland/Glasgow 419977/2009 Europe 2009−06−17

date

0
20
40
60
80
100

locus: 1

0.004 0.002 0 0.001

Finally, note that epibase also integrates functions to read annotated trees with Newick
(read.annotated.tree) or NEXUS (read.annotated.nexus) formats. This will be particularly
useful to process the outputs of Bayesian phylogenetic reconstruction software such as BEAST. See
?read.annotated.nexus for more information.

3 Simulating outbreak data

epibase provides some basic functionality for the simulation of outbreak data through the simuEpi

function. A basic SIR (susceptible-infectious-removed) model is assumed, and the result is returned
as an obkData object. The arguments are as follows:

• N: the size of the population, which remains constant throughout. The simulation will start with
one infectious individual, N-1 susceptibles and zero removed. Default is N=1000.

• D: duration of the simulation, in days. Default is D=10.

• beta: probability that a susceptible individual becomes infected by a given infectious individual
on a given day. Default is beta=0.001.

• nu: rate of recovery, ie the probability that an infectious individual becomes removed on a given
day. Default is nu=10.

• L: length of genetic sequences to be generated. Default is L=1000.

• mu: rate of mutation per site per transmission event. Default is mu=0.001.

34

• showPlots: logical indicating whether to plot the SIR trajectory over time, the transmission
tree, and the phylogenetic tree if created. Default is showPlots=FALSE.

• makePhyloTree: logical indicating whether to create a neighbor-joining tree from the simulated
sequences. Default is makePhyloTree=FALSE.

Let us look at an example in a very small population of size N=50 and with the infectious rate beta
raised accordingly to generate a few transmission events:

set.seed(1)

x <- simuEpi(N=50,beta=0.01,showPlots=TRUE,makePhylo=TRUE)

0 2 4 6 8 10

0
10

20
30

40
50

Epidemic summary

Days

In
di

vi
du

al
s

Susceptible
Infected
Recovered

Transmission tree

1

2

3

4

5

6

7

8

9

10

11

summary(x)

Dataset of 11 individuals with...

- 11 samples

coming from 11 individuals

collected between 2000-01-01 and 2000-01-10

containing information on:

sequenceID

- 11 sequences across 1 locus

(length of concatenated alignment: 1000 nucleotides)

- clinical data from 0 individuals

- 1 phylogenetic tree with 11 tips

We can see that 11 individuals got infected over the default period of D=10 days during which the
outbreak was simulated. The panel on the left shows the trajectories for the number of susceptible,

35

infectious and removed individuals over time. The panel in the middle shows the transmission tree.
The panel on the right shows a Neighbor-Joining tree based on the simulated sequence data.

4 Graphics for obkData objects

Several plotting options are available for obkData, corresponding to different sub-functions (see
?plot.obkData). The syntax to use is plot(x, y=["timeline" or "geo" or "mst" or "phylo"

or "contacts"], ...) where x is an obkData object, and y indicates the type of graphic to generate.
Further arguments can be passed via The different types of graphics are:

• ‘timeline’: plots the timeline of the outbreak; the timeline of every case is plotted in a single
window; uses plotIndividualTimeline.

• ‘geo’ plots the cases on a map. Needs geographical information. Uses plotGeo.

• ‘mst’: plots a minimal spanning tree of the genetic data. Uses plotggMST.

• ‘phylo’: plots a phylogenetic tree of the genetic data. Uses plotggphy.

• ‘contacts’: plots a phylogenetic tree of the genetic data. Uses the plot method for obkContacts.

4.1 Plotting a timeline of samples

This plotting option relies on the function plotIndividualTimeline; see ?plotIndividualTimeline
for more information. Let’s plot the outbreak of equine influenza provided in HorseFlu:

data(HorseFlu)

summary(HorseFlu)

Dataset of 119 individuals with...

- 154 samples

coming from 119 individuals

collected between 2003-03-13 and 2007-04-09

containing information on:

shedding (mean: 6405.37, sd: 27377.6)

sequenceID

- 2291 sequences across 1 locus

(length of concatenated alignment: 903 nucleotides)

- clinical data from 85 individuals

containing information on:

FirstVac

LastVac

then plot

plot(HorseFlu,'timeline')

36

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●
●●
●●●●
●
●

●●● ●
●
●
●
●
●
●
●
●●
●●
●●●●●●
●
●●●
●
●
●

●
●
●
●
●

●●
●
●●

●
●●

●
●●

●
●
●

●
●

●
●

●
●●
●

●
●
●
●
●
●

●
●

●●
●●

●
●
●

●
●
●
●

●
●
●

●
●
●

●●●●
●

●
●●
●
●
●

●
●

●
●

●
●●

●
●
●●●
●●
●●

●
●●

●
●
●
●
●

●
●

●
●

2003 2004 2005 2006 2007
value

In
di

vi
du

al
s

type

● sample

These are a lot of horses in one plot, and we may want to restrict the plot to a selection of
individuals. We can do this by a vector specifying the indices of the individuals to plot. Lets plot the
first twenty:

plot(HorseFlu,selection=1:20)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Mar 17 Mar 24 Mar 31
value

In
di

vi
du

al
s

type

● sample

Notice that the names of the individuals are now plotted. The default behaviour is to plot these
when less than fifty individuals are plotted, but we can manually override this by setting plotNames.

37

The plotting of sampling times is toggled by plotSamples. This defaults to TRUE, as an error
will be generated when no ’date’ fields can be found to plot, as would be the case for the equine dataset.

We can also colour individuals by a characteristic provided in the obkData object. In this case, let
us colour the horses by the yard they were in, a column called ’yardID’

plot(HorseFlu,selection=1:20,colorBy='yardID')

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Mar 17 Mar 24 Mar 31
value

In
di

vi
du

al
s

type

● sample

yardID

●

●

●

●

●

●

●

●

●

A

B

C

D

E

F

G

H

I

It might be useful to also order the individuals, which can be done according to some provided
information (here, the yard) using orderBy:

plot(HorseFlu,selection=1:20,colorBy='yardID',orderBy='yardID')

38

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

9

18

10

11

17

7

12

13

14

19

20

15

16

8

Mar 17 Mar 24 Mar 31
value

In
di

vi
du

al
s

type

● sample

yardID

●

●

●

●

●

●

●

●

●

A

B

C

D

E

F

G

H

I

4.2 Visualizing samples on a map

If geographical information is available, the function plotGeo can be used to visualize the cases on
a map (which is by default downloaded from googlemaps). plotGeo is the function used by the
generic plot of obkData when the second argument is ’geo’. Geographical information can be
provided as longitude/latitudes, or as strings specifying locations (which are converted to lon/lat
using googlemaps). Let us plot the toy outbreak already used before, and which already contains
longitudes and latitudes.

data(ToyOutbreak)

head(ToyOutbreak@individuals)

infector DateInfected Sex Age lat lon

1 NA 2000-01-01 M 33 51.52 -0.1805

2 1 2000-01-02 F 42 51.52 -0.1771

3 2 2000-01-03 F 44 51.52 -0.1614

4 2 2000-01-03 M 49 51.52 -0.1706

5 2 2000-01-03 M 34 51.52 -0.1685

6 2 2000-01-03 M 31 51.51 -0.1662

We specify the columns holding these data with location, and we have to tell the function that
these are valid lon/lat with ’isLonLat’ (which defaults to FALSE):

plot(ToyOutbreak,'geo', location=c('lon','lat'), isLonLat=TRUE, zoom=14)

39

We can also colour individuals by a certain characteristic using colorBy (here, by sex), and even centre
the map on a given individual using center:

plot(ToyOutbreak,'geo', location=c('lon','lat'), isLonLat=TRUE, zoom=15,

colorBy='Sex', center='11')

40

4.3 Building minimum spanning trees from genetic sequences

This plotting option relies on the function plotggMST; see ?plotggMST for more information.
It can be useful to plot a minimal spanning tree of the sequences, to quickly visualize the genetic

diversity and the relation between sequences. This can be achieved using plotggMST, or simply plot

using mst for the second argument:

data(HorseFlu)

plot(HorseFlu,'mst')

[1] 1

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

this is a large tree, we can also look at the diversity within one individual, e.g. individual 42:

plot(HorseFlu,'mst',individualID=42)

[1] 1

41

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.4 Plotting phylogenetic trees

Phylogenies stored in obkData (slot @trees) can be plotted using plotggphy. This function can be
particularly useful as it allows for taking the collection dates into account and for plotting a time tree
(where branch length represent time, rather than quantity of evolution). We illustrate this function
using data on pandemic influenza stored in FluH1N1pdm2009. We first create an obkData:

data(FluH1N1pdm2009)

x <- new("obkData", individuals = FluH1N1pdm2009$individuals,

samples = FluH1N1pdm2009$samples, dna = FluH1N1pdm2009$dna,

trees = FluH1N1pdm2009$trees)

head(x)

##

=== obkData x ===

== @individuals==

location

1 CentralAsia

2 CentralAsia

3 USACanada

4 Europe

##

== @samples==

individualID sampleID date

1 1 1 2009-09-12

2 2 2 2009-09-12

3 3 3 2009-07-04

4 4 4 2009-04-29

sequenceID

42

1 A/Afghanistan/N10782/2009_CentralAsia_2009-09-12

2 A/Afghanistan/N10790/2009_CentralAsia_2009-09-12

3 A/Alaska/AF2096/2009_USACanada_2009-07-04

4 A/Andalucia/GP230/2009_Europe_2009-04-29

##

== @dna==

[514 DNA sequences in 1 locus]

##

[[1]]

514 DNA sequences in binary format stored in a matrix.

##

All sequences of same length: 1664

##

Labels: A/Mexico_City/WR1704T/2009_Mexico_2009-09-25 A/Pernambuco/609/2009_SouthAmerica_2009-09-22

##

Base composition:

a c g t

0.354 0.187 0.223 0.236

##

##

== @trees==

1 phylogenetic trees

##

== Empty slots ==

@clinical, @contacts

The phylogenie(s) contained in x can be extracted by:

get.trees(x)

1 phylogenetic trees

tre <- get.trees(x)[[1]]

tre

##

Phylogenetic tree with 514 tips and 513 internal nodes.

##

Tip labels:

A/Afghanistan/N10782/2009_CentralAsia_2009-09-12, A/Afghanistan/N10790/2009_CentralAsia_2009-09-12,

##

Rooted; includes branch lengths.

and plotted using ape’s standard plot function:

plot(get.trees(x)[[1]], show.tip=FALSE)

43

However, we are loosing the temporal information about the samples:

plot(x, colorBy="location", orderBy="location")

44

The basic plot of plotggphy gives a tree quite similar to ape’s:

plotggphy(x)

45

0.0 0.2 0.4 0.6

However, plotggphy is also more flexible and powerful. In particular, the argument
build.tip.attribute allows to derive attributes for the tips based on information on samples and
individuals. Here, for instance, we can use it to retrieve dates for each tip:

p <- plotggphy(x, ladderize = TRUE, build.tip.attribute = TRUE,

branch.unit = "year", tip.dates = "date")

46

Jan Apr Jul Oct
Time

Note that p is a graphical object, which can be re-used later to generate and modify the plot.
Importantly, other attributes can also be used and represented by colors on the tips. For instance, x
contains information about the location of different individuals:

head(x@individuals)

location

1 CentralAsia

2 CentralAsia

3 USACanada

4 Europe

5 SouthAmerica

6 SouthAmerica

Which can be exploited by:

p <- plotggphy(x, ladderize = TRUE, build.tip.attribute = TRUE,

branch.unit = "year", tip.dates = "date", tip.colour = "location",

tip.size = 3, tip.alpha = 0.75)

47

Jan Apr Jul Oct
Time

location

Africa

CentralAmerica

CentralAsia

China

Europe

JapanKorea

Mexico

Oceania

SouthAmerica

SoutheastAsia

USACanada

48

	Storing outbreak data
	Class definitions
	obkData: storage of outbreak data
	obkSequences: storage of DNA sequences for different genes
	obkContacts: storage of dynamics contact networks

	Getting data into epibase
	The obkData constructor
	Using other constructors: obkSequences and obkContacts

	Data handling using obkData objects
	Accessors
	Accessors for obkData objects
	Accessors for obkSequences objects
	Accessors for obkContacts objects

	Subsetting the data
	Obtaining phylogenies from genetic sequences

	Simulating outbreak data
	Graphics for obkData objects
	Plotting a timeline of samples
	Visualizing samples on a map
	Building minimum spanning trees from genetic sequences
	Plotting phylogenetic trees

